A soft computing method for the prediction of energy performance of residential buildings

A soft computing method for the prediction of energy performance of residential buildings

Accepted Manuscript A Soft Computing Method for the Prediction of Energy Performance of Residential Buildings Mehrbakhsh Nilashi, Mohammad Dalvi, Othm...

3MB Sizes 2 Downloads 26 Views

Accepted Manuscript A Soft Computing Method for the Prediction of Energy Performance of Residential Buildings Mehrbakhsh Nilashi, Mohammad Dalvi, Othman Ibrahim, Karamollah Bagheri Fard, Abbas Mardani, Norhayati Zakuan PII: DOI: Reference:

S0263-2241(17)30337-8 http://dx.doi.org/10.1016/j.measurement.2017.05.048 MEASUR 4774

To appear in:

Measurement

Received Date: Revised Date: Accepted Date:

12 August 2016 10 May 2017 16 May 2017

Please cite this article as: M. Nilashi, M. Dalvi, O. Ibrahim, K.B. Fard, A. Mardani, N. Zakuan, A Soft Computing Method for the Prediction of Energy Performance of Residential Buildings, Measurement (2017), doi: http:// dx.doi.org/10.1016/j.measurement.2017.05.048

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

the

greenhouse gas

1

problems (

2

ANFIS is a powerful technique which has been widely used for the modeling of complex .

3

Data pre-processing

Clustering Using EM

Clusteri

Energy Efficiency Data Set

PCAi

Cluster1



Clustern

10-Fold Cross Validation

Test

Test Training Set

Maintain

Set

Training Set



Set

Test Training Set

Set

Test Training Set

Set

ANFIS

Prediction Models

Prediction of CL and HL New Sample

Parameter "Relative compactness" "Surface area" "Wall area" "Roof area" "Overall height" "Orientation" "Glazing area" "Catalog" "Heating load (HL) " "Cooling load (CL) "

4

Variable {X1} {X2}

Number of possible value 12 12

Type of input/output {Real} {Real}

Min. Value 0.62 514.5

Max. Value 0.98 808.5

Avg. Value 0.76 671.71

{X3} {X4} {X5} {X6 {X7} {X8} {Y1} {Y2}

7 4 2 4 4 6 586 636

{Real} {Real} {Real} {Catalog} {Real} {Catalog} {Real} {Real}

245 110.25 3.50 2 0 0 6.01 10.9

416.5 220.5 7.00 5 0.4 5 43.1 48.03

318.50 176.60 5.25 3.50 0.23 2.81 22.31 24.59

1

850

0.95

800 750

Possible Values

Possible Values

0.9 0.85 0.8 0.75

700 650 600

0.7

550

0.65 0

100

200

300 400 500 Instances Number

600

500

700

0

100

200

(a) Relative compactness

300 400 500 Instance Number

600

700

600

700

600

700

(b) Surface area 240

450

220

400

Possible Values

Possible Values

200

350

300

180 160 140

250

200

120 100

0

100

200

300 400 500 Instance Number

600

700

0

100

200

300 400 500 Instance Number

(d) Roof area

(c) Wall area 7

5

6.5

4.5

Possible Values

Possible Values

6 5.5 5 4.5

3.5 3 2.5

4 3.5

4

0

100

200

300 400 500 Instance Number

600

2

700

0

100

200

(e) Overall height

300 400 500 Instance Number

(f) Orientation

0.4

5

0.35

4

Possible Values

Possible Values

0.3 0.25 0.2 0.15 0.1

0

100

200

300 400 500 Instance Number

(g) Glazing area

5

2

1

0.05 0

3

600

700

0

0

100

200

300 400 500 Instance Number

(h) Catalog

600

700

50

40

45

35

40

Possible Values

Possible Values

45

30 25 20

35 30 25

15

20

10

15

5

0

100

200

300 400 500 Instance Number

600

700

10

0

(i) HL

K

0

: Q(, ( q ) )  E[ P]

P  log(CL(, Z | X ) tik( q )

tik( q ) 

 k( q ) f k ( x; k( q ) )  l  l( q ) fl ( x;l( q) ) ( q1) is found

( q 1)  arg max Q(  | ( q ) ) 

6

200

300 400 500 Instance Number

(j) CL

CL(, Z | X )   k 1  k 1 zik log ( k f k ( x;k ) K

100

600

700

0 xa  b  a f ( x, a, b, c)   c  x c  b 0  f ( x, c,  )  e

7



( x c ) 2 2

xa a x b b x  c

(7)

cx

(8)

Knowledge Base

X1 X2 . . . Xn

Database

Output Defuzzification Interface

Fuzzification Interface (Fuzzy)

Crisp Inputs

Decision-Making Unit

Fig. 3. A schematic diagram of fuzzy rule-based system

8

Rule Base

(Fuzzy)

Tune

Test

Train

Test

Train

Model Tune

. . .

Tune Train

9

Test

4

3.5

x 10

3

Criterion

2.5

2

1.5

1

0.5

0

1

2

Fig. 6. Best cluster using EM algorithm

10

3

4

5 6 Number of Clusters

7

8

9

10

4

5 4

Eigen Value

Eigen Value

3 2 1

1

2

3

4 5 Component

6

7

0

8

4

4

3

3

2

2

3

4 5 Component

6

7

8

3

4 5 Component

6

7

8

4 Component

6

2

0

1

2

3

4 5 Component

6

7

8

1

3

3

2.5

2.5

2

2

Eigen Value

Eigen Value

0

1

1

1

1.5 1

0

2

1.5 1 0.5

0.5

11

2 1

Eigen Value

Eigen Value

0

3

2

4 Component

6

8

0

2

8

3

3

2.5

2.5

2

2

Eigen Value

Eigen Value

Scree Plot

1.5 1 0.5 0

12

1.5 1 0.5

2

4 Component

6

8

0

2

4 Component

6

8



Xn

X1

Correlated Variables (X1-X8) PCA

Feature 1

Feature p

Uncorrelated Variables

2

1

q

M1

Mq

3 2

1

q

3

2

1

q

3

2

1

Layer 2

3

M1

Layer 1

Mq

q

PC1



PCn

Layer 3 Layer 4

Layer 5

HL/CL

Fig. 9. PCA-ANFIS for predicting HL/CL

13

Table 2 The information of MFs for first cluster in predicting HL Variables

Inputs

PC1 PC2 PC3 PC4

Type Gaussian Gaussian Gaussian Gaussian

Ranges of MFs for {Low}, {Moderate} and {High} Low Moderate High [0.1386 -3.038] [0.1386 -2.712] [0.1386 -2.385] [0.6291 -2.644] [0.6291 -1.163] [0.6291 0.3183] [0.3551 -2.833] [0.3551 -1.997] [0.3551 -1.161] [0.5745 -1.36] [0.5745 -0.006815] [0.5745 1.346]

Table 3 The information of MFs for first cluster in predicting CL Variables

Inputs

PC1 PC2 PC3 PC4

Type Gaussian Gaussian Gaussian Gaussian

Ranges of MFs for {Low}, {Moderate} and {High} Low Moderate High [0.1386 -3.038] [0.1386 -3.038] [0.1386 -2.385] [0.6291 -2.644] [0.6291 -1.163] [0.6291 0.3183] [0.3551 -2.833] [0.3551 -2.833] [0.3551 -1.161] [0.5745 -1.36] [0.5745 -0.006815] [0.5745 1.346]

Table 4 The information of MFs for second cluster in predicting HL

14

Variables

Inputs

PC1 PC2 PC3 PC4

Type Gaussian Gaussian Gaussian Gaussian

Ranges of MFs for {Low}, {Moderate} and {High} Low Moderate High [0.1474 1.316] [0.2032 1.721] [0.1706 2.267] [0.376 -0.4263] [0.4293 0.648] [0.4079 1.74] [0.4284 -3.388] [0.5447 -2.104] [0.549 -0.8581] [0.5431 -1.37] [0.5963 0.007414] [0.53 1.388]

Table 5 The information of MFs for second cluster in predicting CL Variables

Inputs

PC1 PC2 PC3 PC4

Type Gaussian Gaussian Gaussian Gaussian

Ranges of MFs for {Low}, {Moderate} and {High} Low Moderate High [0.1953 1.374] [0.1953 1.833] [0.1953 1.833] [0.449 -0.388] [0.449 0.6694] [0.449 1.727] [0.5276 -3.333] [0.5276 -2.091] [0.5276 -0.8483] [0.5759 -1.352] [0.5759 0.00454] [0.5759 1.361]

HL and CL HL CL

(a)

15

(b) Fig. 10. HL and CL versus two PCs for (a) first cluster and (b) second cluster

PC, 4GB RAM and Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE) n

 actual (O)  prediction (O) MAE =

(6)

O 1

n n

MAPE 

 (actual (O)  prediction (O)) / actual (O) n n

RMSE 

(7)

O 1

 (actual (O)  prediction (O))

2

(8)

O 1

n

n

16

Fig. 11.

HL and CL)

17

Table 6

18

0.80

1.93

CL HL CL HL CL HL CL HL CL HL CL HL CL HL CL

0.86 0.66 1.12 0.98 1.61 1.70 2.29 2.10 2.53 0.25 0.59 0.35 0.71 0.16 0.52

1.32 1.24 1.62 1.77 2.40 2.23 2.92 2.68 3.24 0.67 0.91 0.47 1 0.26 0.81

2.82 2.55 3.17 3.00 3.82 3.57 4.22 3.90 4.60 1.56 2.89 1.62 2.75 1.39 2.45

4

2.5

2

1.5

1

0.5

0

(a)

x 10

0.50

Computation Time (ms)

Computation Time (ms)

2.5

HL

ANFIS

NN

CART

MLR

SVR

(b)

4

2

1.5

1

0.5

0

PCA-ANFIS EM-PCA-ANFIS

x 10

ANFIS

NN

CART

MLR

SVR

PCA-ANFIS EM-PCA-ANFIS

19

20

21

Graphical Abstract

22

Highlights

   

23

A method is proposed for energy performance prediction of residential buildings. The method is developed using EM, PCA and ANFIS. Energy Efficiency dataset obtained from UCI is used in evaluating the method. The MAE of the predictions for HL and CL are respectively 0.16 and 0.52.