A study of Galerkin method for the heat convection equations

A study of Galerkin method for the heat convection equations

Applied Mathematics and Computation 218 (2011) 520–531 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepag...

262KB Sizes 4 Downloads 102 Views

Applied Mathematics and Computation 218 (2011) 520–531

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

A study of Galerkin method for the heat convection equations Polina Vinogradova ⇑, Anatoli Zarubin Department of Natural Sciences, Far Eastern State Transport University, 680021, Khabarovsk, Serisheva 47, Russia

a r t i c l e

i n f o

Keywords: Approximate solution Error estimate Galerkin method Heat convection equation Orthogonal projection

a b s t r a c t This article investigates the Galerkin method for an initial boundary value problem for heat convection equations. The new error estimates for the approximate solutions and their derivatives in strong norm are obtained. Ó 2011 Elsevier Inc. All rights reserved.

1. Introduction The large number of works is devoted to the study of various convection problems. It is possible to recognize two important directions of the study of convection phenomena. The first one is experimental and theoretical study of the convective stability. In detail these questions are considered, for example, in the monograph [1]. The other important direction is the numerical modeling of convection processes (see, for example, [2–5]). It allows to calculate the modes of convection at various meanings of Rayleigh, Reynolds numbers and at other parameters of the model. It is known that the main theoretical basis of numerical methods is the proof of convergence of the approximate solution to the exact one of the corresponding differential problem. The order of the convergence speed of approximate solutions of a nonlinear problem much depends on a kind of the nonlinear terms. It is often difficult to establish the convergence. In this case the basic information on the convergence of the computing procedure is found out by numerical experiments. In the present paper we study the Galerkin method for the approximate solving of an initial boundary value problem for a non-stationary quasi-linear system which describes the motion of the non-uniformly heated viscous incompressible fluid. The convergence of the Galerkin approximations in a strong norm is established, and also the asymptotic error estimates for the solutions and their derivatives in the uniform norm are obtained. 2. Statement of the problem and auxiliary assertions Let X be a bounded domain in R2with the smooth boundary oX, Q = X  (0, T), S = oX  (0, T], where T < 1. The initial boundary value problem for the heat convection in Boussinesq approximation is formulated in the following way ([1, 6, 7]): we seek a vector-function u(x, t):X  [0, T] ? R2 and scalar functions p(x, t), h (x, t):X  [0, T] ? R such that

@u  mDu þ q1 0 rp þ ðu  rÞu  gbk3 h ¼ f ðx; tÞ; ðx; tÞ 2 Q; @t @h  jDh þ u  rh ¼ uðx; tÞ; ðx; tÞ 2 Q ; @t div uðx; tÞ ¼ 0; ðx; tÞ 2 Q ;

ð1Þ ð2Þ ð3Þ

uðx; tÞ ¼ 0; hðx; tÞ ¼ 0; ðx; tÞ 2 S;

ð4Þ

uðx; 0Þ ¼ 0; hðx; 0Þ ¼ 0; x 2 X;

ð5Þ

⇑ Corresponding author. E-mail addresses: [email protected] (P. Vinogradova), [email protected] (A. Zarubin). 0096-3003/$ - see front matter Ó 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2011.05.095

P. Vinogradova, A. Zarubin / Applied Mathematics and Computation 218 (2011) 520–531

521

where m, j, q0, b > 0 are some phisical constants; k3 is a vertically directed up unit vector. Let Lp(X), 1 < p < +1, (respectively L1 (X)) be a space of real functions are absolutely integrable on X with the power of p according to Lebesque measure dx = dx1dx2 (respectively essentially bounded). These spaces with the norms

kukLp ðXÞ ¼

Z

1=p juðxÞjp dx X

respectively

kukL1 ðXÞ ¼ ess sup juðxÞj X

are Banach spaces. The space Lp(Q) is defined similarly. The Sobolev space W m p ðXÞ is a space of functions from Lp(X) whose all generalized partial derivatives up to order m inclusively belong to Lp(X) (m is a nonnegative integer). It is a Banach space with the norm

X

kukW mp ðXÞ ¼

!1=p j

kD

ukpLp ðXÞ

:

jjj6m

The space W 2m;m ðQ Þ (see [8]) with mbeing a nonnegative integer is a Banach space of functions from Lp(Q), which have genp eralized derivatives Drt Dsx with arbitrary nonnegative integers r and s satisfying inequality 2r + s 6 2m. The norm in W 2m;m ðQ Þ p is defined as

kukW 2m;m ðQÞ ¼ p

2m X X

kDrt Dsx ukLp ðQÞ :

j¼0 2rþs¼j

We put

W 1;0 p ðQ Þ ¼ fu 2 Lp ðQ Þ : Dx u 2 Lp ðQ Þg; n o  W 12 ðXÞ ¼ u 2 W 12 ðXÞ : u ¼ 0 on @ X in the sense of traces : 

2;1 The symbol W 2;1 2 ðQ Þ denotes the set of functions belonging W 2 ðQ Þ satisfying zero initial conditions and vanishing on S. We shall deal with two-dimensional vector-functions, each component of which belongs to one of the above defined spaces. We denote [Lp(X)]2 = Lp(X)  Lp(X), [Lp(Q)]2 = Lp(Q)  Lp(Q), etc. The norm, for example, in [Lp(X)]2 (p > 2) we shall h i2 h i2 denote by ½Lp ðXÞ . Let us denote similarly the norms in the spaces W 22 ðXÞ ; ½Lp ðQ Þ2 ; W 2;1 2 ðQ Þ .

The norm in L2(X) and in [L2(X)]2 will be denoted by kk and [], respectively. The inner product in L2(X) and in [L2(X)]2 will be denoted by (, ).  Let J(X) be a set of solenoidal infinitely differentiable and finite on X vectors v(x) = (v1(x), v2(x)), J ðXÞ be the closure with h i2  1 respect to the norm of space W 2 ðXÞ .The elements of J ðQ Þ are the vectors v(x, t) that belong to J ðXÞ for almost all t. Let PJ be  the orthogonal projection in [L2(X)]2 onto J ðXÞ. Using the operator PJ, the problem (1)–(5) can be written as

@u  mPJ Du þ P J ððu  rÞuÞ  gbPJ ðk3 hÞ ¼ P J f ðx; tÞ; @t @h  jDh þ u  rh ¼ uðx; tÞ; ðx; tÞ 2 Q ; @t uðx; tÞ ¼ 0; hðx; tÞ ¼ 0; ðx; tÞ 2 S; uðx; 0Þ ¼ 0; hðx; 0Þ ¼ 0;

x 2 X:

ðx; tÞ 2 Q ;

ð6Þ ð7Þ ð8Þ ð9Þ

We consider the spectral problems

 mP J De ¼ ke; eðxÞ ¼ 0;



e 2 J ðXÞ;

x 2 @X

and

 jDm ¼ lm; mðxÞ ¼ 0;

x 2 @ X:

By ki we denote an eigenvalue, corresponding to the eigenvector ei(x), by li we denote an eigenvalue, corresponding to the h i2   eigenvector mi(x). The existence and the completeness of the eigenfunctions ei ðxÞ 2 W 22 ðXÞ \ J ðXÞ; mi ðxÞ 2 W 22 ðXÞ \ W 12 ðXÞ in the spaces [L2(X)]2 and L2(X) are proved in [9, 10]. Let Pn1 be the orthogonal projection in [L2(X)]2 onto the linear span of the vector-functions fei ðxÞgni¼1 ; P n2 be the orthogonal projection in L2(X) onto the linear span of the functions fmi ðxÞgni¼1 . The approximate solutions for the problem(6)–(9) are defined as

522

P. Vinogradova, A. Zarubin / Applied Mathematics and Computation 218 (2011) 520–531

un ðx; tÞ ¼ hn ðx; tÞ ¼

n X i¼1 n X

ai ðtÞei ðxÞ; ci ðtÞmi ðxÞ;

i¼1

where unknown functions ai(t) and ci(t) (i = 1, 2, . . . , n) are the exact solution of the following problem:

@un  mPJ Dun þ Pn1 PJ ððun  rÞun Þ  gbPn1 PJ ðk3 hn Þ ¼ Pn1 PJ f ðx; tÞ; @t @hn  jDhn þ Pn2 ðun  rhn Þ ¼ Pn2 uðx; tÞ; ðx; tÞ 2 Q ; @t un ðx; 0Þ ¼ 0; hn ðx; 0Þ ¼ 0; x 2 X:

ðx; tÞ 2 Q ;

From now on, by C we denote the difference positive constants independent of n. Later the following multiplicative inequalities will be used very often (see, for example, [11, 12]). Let

m1 ¼

ð10Þ ð11Þ ð12Þ

v 2 W lp

1 1

ðXÞ,

j3  j2 2 ; ji ¼  li ; j1 < j2 < j3 ; l3 6 l2 < l1 : pi j3  j1

Then

kv kW l2 ðXÞ 6 Ckv k1l3m1 kv km1 l1 W p ðXÞ

p2

3

W p ðXÞ

ð13Þ

:

1

This inequality also holds with l2 = l3 = 0 and p2 = 1. Let u 2 W 2m;m ðQ Þ and p(2m  2h  s) > 4. Then any derivative Dht Dax u with —a— = s belongs to the space Lr(Q) with any p r P p including r = 1 and the inequality

kDht Dax ukLr ðQ Þ 6 e2m2hs4ðp r Þ kukW 2m;m ðQÞ þ e2hs4ðp r Þ kukLp ðQ Þ 1 1

1 1

p

holds for any e > 0. In the multiplicative form this inequality can be written as

kDht Dax ukLr ðQ Þ 6 CkukbW 2m;m ðQÞ kuk1b Lp ðQ Þ ;

ð14Þ

p



  where b ¼ 2h þ s þ 4 1p  1r =ð2mÞ. h i2  Lemma 2.1. Let f(x, t) 2 [L2(Q)]2, u(x, t) 2 L2(Q). Then problem (10)–(12) has a unique solution un ðx; tÞ 2 W 2;1 \J 2 ðQ Þ  ðQ Þ; hn ðx; tÞ 2 W 2;1 2 ðQ Þ for each n. The inequalities

½un ðx; tÞW 2;1 ðQÞ 6 C;

ð15Þ

khn ðx; tÞkW 2;1 ðQ Þ 6 C

ð16Þ

2

2

hold. Proof. We take the inner product of (11) in L2(X) by hn(x, s) and integrate the resulting relation over the interval [0, t], t 6 T. Then, using the equality

ðPn2 ðun  rhn Þ; hn Þ ¼ 0; we obtain

sup khn ðx; tÞk2 þ

Z

06t6T

t

krhn k2 ds 6 C:

ð17Þ

0

Similarly, using the equality

ðPn1 PJ ððun  rÞun Þ; un Þ ¼ 0 and (17), we have

sup ½un ðx; tÞ2 þ 06t6T

Z

t

½run 2 ds 6 C:

0

We multiply the Eq. (10) in [L2(X)]2 by  PJDun and integrate the resulting relation over the interval [0, t], t 6 T. Then

ð18Þ

P. Vinogradova, A. Zarubin / Applied Mathematics and Computation 218 (2011) 520–531

1 ½run ðx; tÞ2 þ m 2

Z

t



2 PJ Dun ðx; sÞ ds 6

Z

0

t

0

  ½f ðx; sÞ P J Dun ðx; sÞ ds þ gb

t

  khn ðx; sÞk PJ Dun ðx; sÞ ds

0

Z

þ

Z

523

t

  ½ðun ðx; sÞ  rÞun ðx; sÞ PJ Dun ðx; sÞ ds:

0

Now, using Cauchy inequality jakbj 6 2e jaj2 þ 21e jbj2 , for sufficiently small e > 0 we obtain

½run ðx; tÞ2 þ

Z

t

0

  Z t ½PJ Dun ðx; sÞ2 ds 6 C ½f 2L2 ðQ Þ þ khn k2L2 ðQ Þ þ ½ðun  rÞun 2 ds : 0

From this and (17) it follows that

½run ðx; tÞ2 þ

Z

t

  Z t ½PJ Dun ðx; sÞ2 ds 6 C 1 þ ½ðun ðx; sÞ  rÞun ðx; sÞ2 ds :

0

ð19Þ

0

Let us estimate the integral of the right-hand side of (19). We apply the Hölder inequality, then

J

Z

t

½ðun  rÞun 2 ds 6

0

Z

t

0

½un 2L4 ðXÞ ½run 2L4 ðXÞ ds:

By using (13) for the spaces W 14 ðXÞ, W 22 ðXÞ and W 12 ðXÞ, we get

J6C

Z

t

½un 2L4 ðXÞ ½run ½un W 2 ðXÞ ds: 2

0

From this and coercive inequality (see, for example, [9]): 

½zðxÞW 2 ðXÞ 6 C½PJ DzðxÞ; 8zðxÞ 2 ½W 22 ðXÞ2 \ J ðXÞ;

ð20Þ

2

we obtain

J6C

Z 0

t

½un 2L4 ðXÞ ½P J Dun ½run ds:

Therefore, from (19) it follows that

½run ðx; tÞ2 þ

Z

t

0

  Z t Z 1 t ½PJ Dun ðx; sÞ2 ds 6 C 1 þ e ½PJ Dun 2 ds þ ½un 4L4 ðXÞ ½run 2 ds :

e

0

0

Choosing sufficiently small e > 0, we have

  Z t ½run ðx; tÞ2 6 C 1 þ ½un 4L4 ðXÞ ½run 2 ds : 0

Now, applying the Gronwall inequality (see [13]), we come to an estimate

 Z t  ½run ðx; tÞ2 6 C exp C ½un 4L4 ðXÞ ds : 0

We use the inequality (13) for the spaces L4 ðXÞ; W 12 ðXÞ; L2 ðXÞ and also inequality (18), then

Z 0

T

½un 4L4 ðXÞ ds 6 C

Z

T

½un 2 ½run 2 ds 6 C

0

Z

T

½run 2 ds:

0

Thus,

sup ½run ðx; tÞ 6 C:

ð21Þ

06t6T

By applying the estimate (21), from the Eq. (11) it follows that

sup krhn ðx; tÞk 6 C:

ð22Þ

06t6T

From coercive inequality (see [9]):

 ½zW 2;1 ðQÞ 6 C 2

 @  mPJ D z ; @t L2 ðQÞ

h

i2

8z 2 W 2;1 2 ðQ Þ

we have

  ½un W 2;1 ðQÞ 6 C ½f L2 ðQ Þ þ khn kL2 ðQ Þ þ ½ðun  rÞun L2 ðQÞ : 2



\ J ðQ Þ;

ð23Þ

524

P. Vinogradova, A. Zarubin / Applied Mathematics and Computation 218 (2011) 520–531

Then

  ½un W 2;1 ðQÞ 6 C 1 þ ½un L6 ðQ Þ ½run L3 ðQÞ : 2

2;1 By using the inequality (14) for the spaces W 1;0 3 ðQ Þ; W 2 ðQ Þ; L2 ðQ Þ, we get

  5=6 1=6 ½un W 2;1 ðQÞ 6 C 1 þ ½un L6 ðQ Þ ½un W 2;1 ðQ Þ ½un L2 ðQ Þ : 2

Since the space

½un W 2;1 ðQÞ 2

2

W 12 ð

XÞ is embedded in L6(X) and the inequalities (18), (21) hold; it follows that   : 6 C 1 þ ½un 5=62;1 W 2 ðQÞ

Thus, the estimate (15) holds. By analogy we obtain (16). h

3. Error estimates for Galerkin method In this section we establish the error estimates for the approximate solutions, for the gradient of the approximate solutions and for the derivative with respect to t. Theorem 3.1. Suppose that f(x, t) 2 [L2(Q)]2 and u(x, t) 2 L2(Q). Then 1=2 1=2 sup ½un ðx; tÞ  uðx; tÞ 6 Cðknþ1 þ lnþ1 Þ;

ð24Þ

1=2 sup khn ðx; tÞ  hðx; tÞk 6 Cðk1=2 nþ1 þ lnþ1 Þ;

ð25Þ

lim ½un ðx; tÞ  uðx; tÞW 2;1 ðQ Þ ¼ 0;

ð26Þ

lim khn ðx; tÞ  hðx; tÞkW 2;1 ðQÞ ¼ 0;

ð27Þ

06t6T

06t6T n!1

2

n!1

2

where u(x, t) and h(x, t) are the solution of the problem (6)–(9). Proof. For the differences un(x, t)  u(x, t) and hn(x, t)  h(x, t) we have

ðun  uÞ0  mPJ Dðun  uÞ ¼ ðI  Pn1 ÞPJ ððun  rÞun  f Þ þ PJ ððu  rÞu  ðun  rÞun Þ  gbðI  Pn1 ÞPJ ðk3 hn Þ þ gbPJ ðk3 hn  k3 hÞ;

ð28Þ

ðhn  hÞ0  jDðhn  hÞ ¼ ðI  Pn2 Þðrhn  un  uÞ  rhn  un þ rh  u:

ð29Þ

2

We take the inner product of the Eq. (28) in [L2(X)] by un(x, t)  u(x, t), multiply the Eq. (29) by hn(x, t)  h(x, t) in L2(X) and integrate over the interval [0, s], s 6 T. Then

1 ½un  u2 þ m 2

Z

s

½rðun  uÞ2 dt 6

0

Z

s

jðP J ðf þ ðun  rÞun  gbk3 hn Þ; ðI  Pn1 Þðun  uÞÞjdt Z s Z s jððun  rÞun þ ðu  rÞu; un  uÞjdt þ gb jðk3 hn  k3 h; un  uÞjdt; þ 0

0

1 khn  hk2 þ j 2

Z

s

Z

krðhn  hÞk2 dt 6

0

s

jðrhn  un  u; ðI  Pn2 Þðhn  hÞÞjdt þ

Z

0

s

jðrh  u  rhn  un ; hn  hÞjdt:

0



Since hn  hbelongs to the space W 2;1 2 ðQ Þ, from (31) we obtain

1 khn  hk2 þ j 2

Z

s

0

1

2 krðhn  hÞk2 dt 6 lnþ1

Z

s

krðhn  hÞkkrhn  un  ukdt þ

0

Z

s

jðrhn  ðun  uÞ; hn  hÞjdt:

0

1;0 Because the space W 2;1 2 ðQ Þ is embedded in L4(Q) and in W 4 ðQ Þ, by using (15), (16), we get

1 khn  hk2 þ j 2

Z

s

C

krðhn  hÞk2 dt 6

e

0

l1 nþ1 þ

e

Z

2

s

krðhn  hÞk2 dt þ

0

Z

0

s

krhn k½u  un 2L4 ðXÞ khn  hk2L4 ðXÞ dt:

From this and (22) for sufficiently small e > 0 we have

khn  hk2 þ

Z 0

s

krðhn  hÞk2 dt 6 C



ð30Þ

0

l1 nþ1 þ

Z 0

s

 ½u  un 2L4 ðXÞ khn  hk2L4 ðXÞ dt :

We use the inequality (13) for the spaces L4 ðXÞ; W 12 ðXÞ and L2(X), then

ð31Þ

P. Vinogradova, A. Zarubin / Applied Mathematics and Computation 218 (2011) 520–531

khn  hk2 þ

Z

s

krðhn  hÞk2 dt 6 C



0

l1 nþ1 þ

Z

s

0

525

 ½u  un 2L4 ðXÞ krðhn  hÞkkhn  hkdt :

Now, by applying Cauchy inequality, we obtain

khn  hk2 þ

Z

s

krðhn  hÞk2 dt 6 C



0

l1 nþ1 þ

Z

e 2

s

krðhn  hÞk2 dt þ

0

1 2e

Z 0

s

 ½u  un 4L4 ðXÞ khn  hk2 dt :

From this for sufficiently small e > 0 it follows that

khn  hk2 þ

Z

s

krðhn  hÞk2 dt 6 C

0



l1 nþ1 þ

Z 0

s

 ½u  un 4L4 ðXÞ khn  hk2 dt :

ð32Þ

By analogy, from the Eq. (30) we have

½un  u2 þ

Z

s

0

  Z s Z s ½rðun  uÞ2 dt 6 C k1 ½u  un 4L4 ðXÞ ½un  u2 dt þ khn  hk2 dt : nþ1 þ 0

ð33Þ

0

Adding (32) and (33), we come to the inequality

½un  u2 þ khn  hk2 6 C



1 l1 nþ1 þ knþ1 þ

Z 0

s

 ð½u  un 4L4 ðXÞ þ 1Þðkh  hn k2 þ ½u  un 2 Þdt :

We use the Gronwall inequality, then

 Z T  4 4 1 ½un  u2 þ khn  hk2 6 Cðl1 þ k Þ exp C ð½u  u  þ kh  h k þ 1Þdt : n L4 ðXÞ n L4 ðXÞ nþ1 nþ1

ð34Þ

0

Since

Z

T

0

½u  un 4L4 ðXÞ dt 6 C

Z

T

½rðu  un Þ2 ½un  u2 dt;

0

from (18) and (21) it follows that

Z

T

0

½u  un 4L4 ðXÞ dt 6 C:

In the similar way, it is possible to obtain

Z 0

T

½kh  hn k4L4 ðXÞ dt 6 C:

From (34) and from last two inequalities we obtain the estimates (24), (25). Now we shall prove the relations (26) and (27). We put

@un  mPJ Dun þ P J ððun  rÞun Þ  gbPJ ðk3 hn Þ  PJ f ; @t @hn d2n ¼  jDhn þ rhn  un  u: @t

d1n ¼

Since un and hn are the solution of the problem (10)–(12), then

d1n ¼ ðI  Pn1 ÞPJ f þ ðI  Pn1 ÞPJ ððun  rÞun Þ  gbðI  Pn1 ÞPJ ðk3 hn Þ: Hence,

 1 dn L

2 ðQ Þ

6 ½ðI  Pn1 ÞPJ f L2 ðQ Þ þ ½ðI  Pn1 ÞPJ ððun  rÞun ÞL2 ðQÞ þ ½gbðI  Pn1 ÞPJ ðk3 hn ÞL2 ðQ Þ :

From (15), (16) and from the embedding theorems (see [12]) it follows that the sets {PJ(unr)un} and {hn} are compact in L2(Q). It is known that the sequence of the bounded operators converges uniformly on a compact set, therefore

 1 dn L

2 ðQ Þ

! 0;

n ! 1:

By analogy, we establish that

kd2n kL2 ðQ Þ ! 0;

n ! 1:

For difference un  u we have the identity

@ðun  uÞ  mPJ Dðun  uÞ ¼ d1n þ PJ ððu  rÞu  ðun  rÞun Þ þ gbPJ ðk3 ðhn  hÞÞ: @t

ð35Þ

526

P. Vinogradova, A. Zarubin / Applied Mathematics and Computation 218 (2011) 520–531

From this and from (23) it follows that

½un  uW 2;1 ðQ Þ 6 C 2

  d1n L

 þ ½ðu  rÞu  ðun  rÞun L2 ðQ Þ þ ½gbk3 ðhn  hÞL2 ðQ Þ :

2 ðQ Þ

ð36Þ

From (25) we obtain

½gbk3 ðhn  hÞL2 ðQ Þ ! 0;

n ! 1:

ð37Þ

Now we estimate the second addend of the right-hand side of (36)

½ðu  rÞu  ðun  rÞun L2 ðQ Þ 6 ½un  uL4 ðQ Þ ½ruL4 ðQ Þ þ ½un L6 ðQÞ ½rðun  uÞL3 ðQ Þ : 1;0 By using the inequality (15) and the embedding of the space W 2;1 2 ðQ Þ in L6(Q) and in W 4 ðQ Þ, we come to the estimate

½ðu  rÞu  ðun  rÞun L2 ðQ Þ 6 Cð½un  uL4 ðQÞ þ ½rðun  uÞL3 ðQ Þ Þ: 1;0 2;1 Further, applying the inequality (14) for spaces L4 ðQ Þ; W 2;1 2 ðQ Þ and L2(Q), and also for W 3 ðQ Þ; W 2 ðQ Þ and L2(Q),we have

½ðu  rÞu  ðun  rÞun L2 ðQ Þ 6 Cð½un  u1=22;1

W 2 ðQ Þ

5=6 ½un  u1=2 L2 ðQ Þ þ ½un  u 2;1

W 2 ðQÞ

½un  u1=6 L2 ðQ Þ Þ:

From this and (15), (24) it follows that

½ðu  rÞu  ðun  rÞun L2 ðQ Þ ! 0;

n ! 1:

ð38Þ

Using (35)–(38), we obtain (26). By analogy, we come to the estimate (27). h  2 2;1 Let the vector-function z (x, t) belongs to the space ½W ðQ Þ \ J ðQ Þ and let the function z2(x,t) belongs to the space 1 2  W 2;1 2 ðQ Þ. We consider the following problem

@v  mPJ Dv þ PJ ððz1  rÞv þ ðv  rÞz1 Þ  gbPJ ðk3 wÞ ¼ PJ hðx; tÞ; @t @w  jDw þ rw  z1 þ rz2  v ¼ h1 ðx; tÞ; ðx; tÞ 2 Q ; @t div v ¼ 0;

v ðx; tÞ ¼ 0; v ðx; 0Þ ¼ 0;

ðx; tÞ 2 Q;

ð39Þ ð40Þ ð41Þ

wðx; tÞ ¼ 0;

ðx; tÞ 2 S;

ð42Þ

wðx; 0Þ ¼ 0;

x 2 X:

ð43Þ

Lemma 3.1. Suppose that h(x, t) 2 [L2(Q)]2, h1(x, t) 2 L2(Q). Then problem (39)–(43) has a unique solution h i2     2;1 \ J ðQ Þ; w 2 W 2;1 \ J ðQ Þ and z2 2 W 2;1 2 ðQ Þ for any functions z1 2 W 2 ðQ Þ 2 ðQ Þ such that

½z1 W 2;1 ðQ Þ 6 R; 2

v2

h

W 2;1 2 ðQ Þ

i2

kz2 kW 2;1 ðQ Þ 6 R; 2

where R is a positive constant. Proof. We put

 Kðz1 ; z2 Þw ¼

PJ ððz1  rÞI þ ðI  rÞz1 Þ gbP J ðk3 IÞ

rz2  I

r I  z1

   v  : w

Then

kKðz1 ; z2 Þwk½L2 ðXÞ3 6 ½ðz1  rÞv  þ krw  z1 k þ ½ðv  rÞz1  þ krz2  v k þ gb½k3 w:

ð44Þ

By using Hölder inequality and (13), we obtain 3

1

I1 ¼ ½ðz1  rÞv  6 ½z1 L4 ðXÞ ½rv L4 ðXÞ 6 C½z1 L4 ðXÞ ½v 4W 2 ðXÞ ½v 4 : 2

From (20) we have 3

1

I1 6 C½z1 L4 ðXÞ ½PJ Dv 4 ½v 4 :

ð45Þ

Because z1(x, 0) = 0, we see that

Z 0

s

Z X

@z1 3 1 z dxdt ¼ 4 @t 1

Z Z X

0

s

@ 4 1 z dtdx ¼ @t 1 4

Z X

z41 dx:

P. Vinogradova, A. Zarubin / Applied Mathematics and Computation 218 (2011) 520–531

527

From this it follows that

Z X

z41 dx 6 C½z1 W 2;1 ðQ Þ ½z1 3L6 ðQÞ : 2

W 2;1 2 ðQ Þ

The space

Z X

is embedded in L6(Q) (see [12]). Therefore,

z41 dx 6 C½z1 4W 2;1 ðQ Þ : 2

Hence, from (45) we have 3

1

I1 6 CR½PJ Dv 4 ½v 4 :

ð46Þ

By analogy, we come to estimate 3

1

I2 ¼ krw  z1 k 6 CRkDwk4 kwk4 : W 22 ð

The space

ð47Þ

XÞ is embedded in L1(X) (see [12]). Therefore,

I3 ¼ ½ðv  rÞz1  6 C½v L1 ðXÞ ½rz1 : By using the inequality (13) for the spaces L1 ðXÞ; W 22 ðXÞand L2(X), we get 1

1

I3 6 C½rz1 ½PJ Dv 2 ½v 2 :

ð48Þ

It is obvious that

Z

s

Z

0

X

@z1 Dz1 dxdt ¼  @t

Z

s

Z

0

X

@ rz1 1 rz1 dxdt ¼  2 @t

Z Z X

s 0

@jrz1 j2 1 dtdx ¼  ½rz1 2 : 2 @t

From this and from (48) it follows that 1

1

I3 6 CR½PJ Dv 2 ½v 2 :

ð49Þ

Likewise, we come to estimate 1

1

I4 ¼ krz2  v k 6 CR½PJ Dv 2 ½v 2 :

ð50Þ

From 44, 46, 47, 49 and 50 we obtain

  3 1 3 1 1 1 kKðz1 ; z2 Þwk½L2 ðXÞ3 6 CR ½PJ Dv 4 ½v 4 þ kDwk4 kwk4 þ ½PJ Dv 2 ½v 2 þ Ckwk:

ð51Þ

We denote





mPJ D

0

0

jD

 ;

then

kAwk½L2 ðXÞ3 ¼ ½mPJ Dv  þ k  jDwk: From this and (51), by using the positive definiteness of the operators (PJD) and (D), it follows that 3

kKðz1 ; z2 Þwk½L2 ðXÞ3 6 CkAwk4½L

1

2 ðXÞ

3

kwk4½L

2 ðXÞ

3

:

ð52Þ

Thus, the operator K(z1, z2) is subordinated to the operator A with order 34. Therefore, the statement of this lemma follows from Theorem 2.1 of the paper [14]. h Theorem 3.2. Let f(x, t) 2 [C1([0, T];L2(X))]2,f(x, 0) = 0, u(x, t) 2 C1([0, T];L2(X)),u(x,0) = 0. Then

 1  @ðhn  hÞ 1 @ðun  uÞ 6 C k8 þ l8 ; þ sup nþ1 nþ1 @t @t 06t6T 06t6T  1  14 4 þ lnþ1 : sup ½rðun  uÞ þ sup krðhn  hÞk 6 C knþ1 sup

06t6T



ð53Þ ð54Þ

06t6T

Proof. In the problem (39)–(43) we put z1 = u, z2 = h, where u and hare the solution of the problem (6)–(9), h ¼ @f , h1 ¼ @@tu. @t   2 2;1 Then, according to Lemma 3.1, the problem (39)–(43) has a unique solution v 2 ½W 2;1 ðQ Þ \ J ðQ Þ, w 2 W ðQ Þ. Now, we 2 2 set z1 = un, z2 = hn, where un and hnare the solution of the problem (10)–(12). Again, using Lemma 3.1, we obtain that the   2 2;1 problem (39)–(43) has a unique solution v ðnÞ ¼ v ðn; x; tÞ 2 ½W 2;1 2 ðQ Þ \ J ðQ Þ; wðnÞ ¼ wðn; x; tÞ 2 W 2 ðQ Þ for each n.

528

P. Vinogradova, A. Zarubin / Applied Mathematics and Computation 218 (2011) 520–531

Let w ¼



   v ; wðnÞ ¼ wðn; x; tÞ ¼ v ðnÞ ; F ¼ wðnÞ w

PJ @f @t

!

@u @t

, then

@w þ Aw þ Kðu; hÞw ¼ F; wðx; 0Þ ¼ 0; @t @wðnÞ þ AwðnÞ þ Kðun ; hn ÞwðnÞ ¼ F; wðn; x; 0Þ ¼ 0: @t  

Pn1 Let P n ¼ 0 (56) we have

0 P n2

ð55Þ ð56Þ

be the orthogonal projection in [L2(X)]3 onto the linear span of the elements fei ; mi gni¼1 . Then from (55),

@ðw  wðnÞÞ þ Aðw  wðnÞÞ þ Pn Kðu; hÞðw  wðnÞÞ ¼ ðPn  IÞKðu; hÞðw  wðnÞÞ þ ðKðun ; hn Þ  Kðu; hÞÞwðnÞ: @t

ð57Þ

According to the inequality (52), the operator K(u, h) is subordinated to the operator A with order 34. Hence, from [14] it fol

lows that the operator @t@ þ A þ Pn Kðu; hÞ is invertible and



@ þ A þ Pn Kðu; hÞ @t

0 1 1  1 !1  1 @ @ @ @ A: ¼ I  P n I þ Kðu; hÞ Pn Kðu; hÞ þA þA þA @t @t @t

1



Therefore, from (57) we have



@ þA w  wðnÞ ¼ @t

1

0

1  1 !1  1 @ @I  Pn I þ Kðu; hÞ @ þ A A þA Pn Kðu; hÞ @t @t

 ððPn  IÞKðu; hÞðw  wðnÞÞ þ ðKðun ; hn Þ  Kðu; hÞÞwðnÞÞ:

ð58Þ

We estimate each addend of the right-hand side of (58)

kJ 1 k½L2 ðXÞ3

0 1  1  1 !1  1 @ @ @ @I  Pn I þ Kðu; hÞ AðPn  IÞKðu; hÞðw  wðnÞÞk þA þA ¼ Pn Kðu; hÞ ½L2 ðXÞ3 @t þ A @t @t   1 1  1 !1 @ @ @ þA þA þA 6 ðPn  IÞKðu; hÞðw  wðnÞÞ þ Pn I þ Kðu; hÞ Pn @t @t @t 3 ½L2 ðXÞ

 1 @  ðu; hÞ þA ðPn  IÞKðu; hÞðw  wðnÞÞk @t

In [14] the estimates were established, which with reference to the given problem can be written as

 1 @ 12 12 þA ðPn  IÞg 6 Cðknþ1 þ lnþ1 Þkgk½L2 ðQ Þ3 ; 8g 2 ½L2 ðQÞ3 ; @t ½L2 ðXÞ3  1 !1 I þ Kðu; hÞ @ þ A Pn 6 C; @t ½L2 ðQÞ3 !½L2 ðQ Þ3  1 @ þA g 6 Ckgk½L2 ðQ Þ3 ; 8g 2 ½L2 ðQ Þ3 : @t 3

ð59Þ

ð60Þ

ð61Þ

½L2 ðXÞ

Taking into account (59)–(61), we come to the estimate

 1 @ 12 12 þA kJ 1 k½L2 ðXÞ3 6 Cðknþ1 þ lnþ1 ÞkKðu; hÞðw  wðnÞÞk½L2 ðQ Þ3 þ C Kðu; hÞ ðPn  IÞKðu; hÞðw  wðnÞÞ @t

:

ð62Þ

½L2 ðQÞ3

From (52) we have 3

kKðu; hÞðw  wðnÞÞk½L2 ðQ Þ3 6 CkAðw  wðnÞÞk4½L

2 ðQÞ

1

3

kw  wðnÞk4½L

2 ðQÞ

3

:

From Lemma 3.1 it follows that

sup kwðnÞk½L2 ðXÞ3 6 C;

06t6T

kAwðnÞk½L2 ðQ Þ3 6 C:

ð63Þ

Therefore, from the last three inequalities we obtain

kKðu; hÞðw  wðnÞÞk½L2 ðQ Þ3 6 C:

ð64Þ

529

P. Vinogradova, A. Zarubin / Applied Mathematics and Computation 218 (2011) 520–531

Now we shall consider the second addend of (62)

 1 @ þA ðPn  IÞKðu; hÞðw  wðnÞÞ Kðu; hÞ @t

½L2 ðQ Þ3

3  1 4 @ þA 6 C A ðP n  IÞKðu; hÞðw  wðnÞÞ @t

½L2 ðQÞ3

1  1 4 @ þA  ðPn  IÞKðu; hÞðw  wðnÞÞ @t

:

½L2 ðQ Þ3

Thus, taking into account the inequalities (59) and (64), we derive

 1 @ ðPn  IÞKðu; hÞðw  wðnÞÞ þA Kðu; hÞ @t

 1  18 8 6 C knþ1 þ lnþ1 :

½L2 ðQ Þ3

This, together with (62), (64), leads to the estimate

 1  18 8 kJ 1 k½L2 ðXÞ3 6 C knþ1 þ lnþ1 :

ð65Þ

We estimate the second addend of the right-hand side of (58)

kJ 2 k½L2 ðXÞ3

0 1  1  1 !1  1 @ @ @ @I  Pn I þ Kðu; hÞ AððKðun ; hn Þ  Kðu; hÞÞwðnÞÞk þA þA ¼ Pn Kðu; hÞ ½L2 ðXÞ3 @t þ A @t @t 6 CkðKðun ; hn Þ  Kðu; hÞÞwðnÞk½L2 ðQÞ3 : ð66Þ

It is obvious that

kðKðun ; hn Þ  Kðu; hÞÞwðnÞk½L2 ðQÞ3 6 ½PJ ðððun  uÞ  rÞv ðnÞÞL2 ðQ Þ þ krwðnÞðun  uÞkL2 ðQ Þ þ ½PJ ððv ðnÞ  rÞ  ðun  uÞÞL2 ðQ Þ þ krðhn  hÞ  v ðnÞkL2 ðQÞ :

ð67Þ

Now we shall consider each addend of the right-hand side of (67). We apply Hölder inequality, then

I1 ¼ ½PJ ðððun  uÞ  rÞv ðnÞÞL2 ðQÞ 6 ½un  uL4 ðQ Þ ½rv ðnÞL4 ðQÞ : Next, we use the estimate (63) and inequality (13) for the spaces L4 ðXÞ; W 22 ðXÞ; L2 ðXÞ. Therefore,

I1 6 C

Z

T

½un  u2W 2 ðXÞ ½un  u3 dt

14 :

2

0

From this and from Theorem 3.1 we obtain 3

8 I1 6 Cknþ1 :

ð68Þ

By analogy, we obtain 3

8 I2 ¼ krwðnÞðun  uÞkL2 ðQÞ 6 Cknþ1 ; I3 ¼ ½PJ ððv ðnÞ  rÞðun  uÞÞL2 ðQ Þ 6 ½v ðnÞL6 ðQ Þ ½rðun  uÞL3 ðQ Þ :

ð69Þ

Now we apply the estimate (63) and the inequality (13) for the spaces W 13 ðXÞ; W 22 ðXÞ; L2 ðXÞ. Then

I3 6 C

Z

T

½un 

0

u2W 2 ðXÞ ½un 2

 udt

13 :

From preceding relation and also from Lemma 2.1 and Theorem 3.1 it follows that 1

6 I3 6 Cknþ1 :

ð70Þ

Likewise, we obtain 1

6 I4 ¼ krðhn  hÞv ðnÞkL2 ðQ Þ 6 C lnþ1 :

ð71Þ

According to the inequalities (66)–(71), we have 1

1

6 6 kJ 2 k½L2 ðXÞ3 6 Cðknþ1 þ lnþ1 Þ:

ð72Þ

530

P. Vinogradova, A. Zarubin / Applied Mathematics and Computation 218 (2011) 520–531

From 58, 65 and 72 it follows

 1  18 8 : kw  wðnÞk½L2 ðXÞ3 6 C knþ1 þ lnþ1 We put wn ¼



ð73Þ

     v n ; z ¼ un ; z ¼ u , then n wn hn h

@wn þ Awn þ Pn Kðun ; hn Þwn ¼ P n F; @t

wn ðx; 0Þ ¼ 0:

ð74Þ

The Eqs. (74) and (56) leads to the relation

@ðwn  wðnÞÞ þ Aðwn  wðnÞÞ þ Pn Kðun ; hn Þðwn  wðnÞÞ ¼ ðI  Pn ÞðKðun ; hn ÞwðnÞ  FÞ: @t By analogy with the proof of (73), it is easy to establish that

 1  18 8 kwn  wðnÞk½L2 ðXÞ3 6 C knþ1 þ lnþ1 :

ð75Þ

From (26) and (27) it follows that

@z lim w  ¼ 0: n n!1 @t ½L2 ðQ Þ3

ð76Þ

It is obvious that

w  @z wn  @z 6 kw  wðnÞk : 3 þ kwn  wðnÞk 3 þ ½L2 ðQ Þ ½L2 ðQ Þ @t ½L2 ðQÞ3 @t ½L2 ðQ Þ3 The last inequality, together with 73, 75, 76 leads to the equality w ¼ @z almost everywhere in Q. Since @t

@ðzn  zÞ @t

½L2 ðXÞ3

@z  wðnÞ 6 þ kwðnÞ  wn k½L2 ðXÞ3 ; @t ½L2 ðXÞ3

from (73) and (75) we obtain the estimate (53). Because zn is the solution of the problem (10)–(12), we see that

@zn kAzn k½L2 ðXÞ3 6 þ ½Pn1 PJ ððun  rÞun Þ þ kPn2 ðrhn  un Þk þ gb½Pn1 P J ðk3 hn Þ þ ½Pn1 PJ f  þ kPn2 uk: @t ½L2 ðXÞ3 Hence, from (53) and (17) we have

kAzn k½L2 ðXÞ3 6 C þ ½ðun  rÞun  þ krhn  un k: Let us apply the Hölder inequality, then

kAzn k½L2 ðXÞ3 6 C þ ½un L6 ðXÞ ½run L3 ðXÞ þ ½un L6 ðXÞ krhn kL3 ðXÞ : Since the space W 12 ðXÞ is embedded in L6(X), from (21) and (22) it follows that

kAzn k½L2 ðXÞ3 6 Cð1 þ ½run L3 ðXÞ þ krhn kL3 ðXÞ Þ: Now we use the inequality (13) for the spaces W 13 ðXÞ; W 22 ðXÞ; L2 ðXÞ and the inequalities (17), (18). Then

  2 2 kAzn k½L2 ðXÞ3 6 C 1 þ ½un 3W 2 ðXÞ þ khn k3W 2 ðXÞ : 2

2

From it and coercive inequality (20) we obtain

 2 kAzn k½L2 ðXÞ3 6 C 1 þ kAzn k3½L

3 2 ðXÞ

 :

Therefore,

sup kAzn k½L2 ðXÞ3 6 C:

06t6T

We use the moment inequality (see [15]), then 1

½rðun  uÞ þ krðhn  hÞk 6 kAðzn  zÞk2½L

1

2 ðXÞ

3

kzn  zk2½L

3 2 ðXÞ

:

From this the desired estimate (54) follows. The proof of the theorem is complete.

h

P. Vinogradova, A. Zarubin / Applied Mathematics and Computation 218 (2011) 520–531

531

References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

G.Z. Gershuni, E.M. Zhuhovitsky, Convective Stability of Incompressible Fluid, Nauka, Moscow, 1972 (in Russian). B.J. Daly, A numerical study of turbulent transitions in convective flow, J. Fluid Mech. 64 (1974) 129–165. J.H. Curry, J.R. Herring, J. Loncatic, S.A. Orszag, Order and disorder in two- and three-dimensional Benard convection, J. Fluid Mech. 147 (1984) 1–38. J. Werne, E.E. DeLuca, R. Rosner, F. Cattaneo, Numerical simulation of soft and hard turbulence: preliminary results for two-dimensional convection, Phys. Rev. Lett. 64 (20) (1990) 2370–2373. V. Ambethkar, Numerical solutions of heat and mass transfer effects of an unsteady MHD free convective flow past an infinite vertical plate with constant suction, J. Naval Arch. Marine Eng. 5 (2008) 28–36. M. Shihbot, W.P. Kotorynski, The initial value problem for a viscous heat-conducting equations, J. Math. Anal. Appl. 45 (1) (1974) 1–22. V.G. Babskii, N.D. Kopachevskii, A.D. Myshkis, L.A. Slobozhanin, A.D. Tyuptsov, Fluid Mechanics of Weightlessness, Nauka, Moscow, 1976 (in Russian). O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967. pp. 736; O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural’tseva, English Translation: Transactions on Mathematics Monograph, vol. 23, AMS, Rhode Island, 1968. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluids, Gordon and Breach, New York, 1969. S. Agmon, On the eigenfunctions and on the eigenvalue of general elliptic boundary value problems, Comm. Pure Appl. Math. 15 (1962) 119–147. V.P. Glushko, S.G. Krein, Inequalities for the norms of derivative in spaces Lp with weight, Sib. Mat. J. 1 I.3 (1960) 343–382 (in Russian). V.A. Solonnikov, On estimates of the solutions of elliptic and parabolic systems in Lp, Tr. MIAN SSSR 102 (1967) 137–160 (in Russian). F. Beckenbach, R. Bellman, Inequalities, Springer-Verlag, Berlin, 1961. P. Vinogradova, A. Zarubin, Projection method for Cauchy problem for operator-differential equation, Numer. Funct. Anal. Optim. 30 (1-2) (2009) 148–167. S.G. Krein, Linear Differential Equations in Banach Spaces, Transactions on Mathematics Monograph, vol. 29, AMS, Providence, 1971.