A study on laminar motion of a viscous incompressible fluid between two parallel eccentric cylinders

A study on laminar motion of a viscous incompressible fluid between two parallel eccentric cylinders

M E C H A N I C S R E S E A R C H COMMUNICATIONS 0093-6413/92 A STUDY $8.00 + .00 ON Vol. 1 9 (1) ,48-49, LAMINAR MOTION OF A VISCOUS BETWEEN ...

197KB Sizes 3 Downloads 98 Views

M E C H A N I C S R E S E A R C H COMMUNICATIONS

0093-6413/92

A

STUDY

$8.00 + .00

ON

Vol. 1 9

(1) ,48-49,

LAMINAR MOTION OF A VISCOUS BETWEEN TWO PARALLEL ECCENTRIC O.EI-F.Badr,M.N.Farah

D e p t . o F Math.., F a c u i t y o F

1992

CopyPlght (c) 1991

and

Science

P P i n t e d In the U S A

Pe~.mon

INCOMPRESSIBLE CYLINDERS

Press plc

FLUID

A.Ei-M.Badran

,M a n s o u r e

Uni v e r s i t ~.,E g y p t

(Received 6 June 1991; accepted for print 26 AuEust 1991) SUMMARY The flow o~ incompressible viscous fluid between two eccentric cylinders under the action of a difference between the pressures imposed at the ends of the cylinders is analyzed. Using bipolar coordinates,the resulting boundary value problem is s o l v e d analvtically,and the average ~lux velocity is calculated for various values of the geometric parameters of the problem. INTRODUCTION In m a n y branches o~ nuclear research [12],the exchange oheat inside the reactor o~ the heavy water demands, beside a specific heat eneroy ,an exact chec"~:, o n t h e limited values o~ the decrease ir~ 0 r e s s u r e inside t h e r e a c t o r . It a l s o demands exact information about the volume o,~ t h e w a n t e d heavy water which must be a= little as oossible .With regard to the last demand,speciai technical constructions o E t h e h e a t e~-:changer a p p a r a t u s shou.ld be needed. Such apparatus may be composeO of arranged cor, c e n t r i c or eccen+~,-ic c y l i n d e r s ~ s o that the inner space between them is very smmil to allow flow of little heavy' w a t e r . The simple idea upon which this apparatus is d e s i g n e d is t o i n s e r t a cylindrical body inside .÷ p i p e t o 6 o r m a c o n c e n t r i c space between the body and the oip_~ However,in prar+ice ~t m a y n o t b e D o s s i b i e to a-,,o~d the ~ormation of an eccentric space in-tea.u oE the idea! ,-.'-,nren+r~.~ one.

i~_ i s w e ! l - k n o w n rM, ~ . ±.:,J _ that such ec,..-.entrici~v_, r a u s e s _ a d e c r e a s e in pressure o.~ the fluid,so that it should be taker into _ a ~~m e n t . consideration ~or an exact ~u~-~ The probiem of the lamin_~r ~!ow oE an incompressiDie ~;!t~id b e t w e e r ~ t,~o e...-_centric c y l i n d e r s has been studied in many earlier work,.Mac Donai0 [8] developed the method of the torsional strength to -a.icuiate the volume flux and the frictional forces of the inner and outer cylinders. Some authors [6~9,!3] have used con,~ormal mappino t.o t r a n s f o r m the problem to a oeom.e~rv o~ c~ncent~ic annu!us,Gor which solution was a!read,,, known. Others oer#ormed calculation usinq_ cylindrical ~~-..,~5 ] o;5iu--'_ _ _~rr,n r ~,.~_n a r e s [ 4 , 7 . I0. i ! ] . However,computations based or, these ~.~,r~:'~ m a v produce as much as 20 % error [6,~3]. in t h e o r e s e n t wo.~'i,:,an._=.ivtica.', s c , ! u t i o q ~ n r t h e ~,robie~T. i~ four, d by. usino., b ~ p o l _ ~ r r o n.r d i.n a.t . e.~ _ . a .n d . ~ o n ~ v S n q ~ . t h e ,,~-~~--'~,_,,_,s c.~ -flDu~--er a n a i , / s i s. The advantaoe o-F t h i s solution is these c a]culat!ons can be carried out to a higher decree oE accuracy .Fo~- a l l value.=_ c,E the ._Teometrir_ param~+~_.__.-= . . .~ . . ~ . ' ~ , - p n * r i c i t v ).~ aod 5 iratio o E radii~,. 45

46

M. FARAH and A. B A D R A N

Q. EL-FAROUK,

MATHEMATICAL

FOP.MULATIONS

We considerthe problem of steady laminar ~low of a n incompressible viscous Eluid passing through the interspace between two eccentric parallel cylinders with radii r and r

I

(r < r

i

2

Z

).

Using bipolar coordinates between the axes of the two fol lows: a r

=

arid

i

t-

(~.C,z) the radii and cylinders-fig. (1)-can

[I

2

e=a(coth

[z

- ¢oth

J

,

sLr, h

~z

(1)

~rI )

('2

}'

)

Fig. (I) G e o m e t r y ~ is ~ h e d i s t a n c e ~rom the equation

between

the

x

o F the p r o b l e m

two

cer, t e r s ( p o l e s ) a n d

r

a

*

1

=

er

2

F ( r. 2 2

L

rZ

+

t

-- e z )

2

2

-. . . . . . . . .

--

t

i

2

J

,

2

calculated

4rZr z ]

[(I+~2--C~2' --4~2] /2 =

is

I/2

2

~ - = E~-

e as

a

~

sL~

the distance be expressed

(2)

r-

where

6 =-El

,

:r"

e

c~

= - -

(3)

~"

Assuming that the flow follows that the velocity

has neitheru has only

spin one

nor radial motion non-zero component

--

while

the

other two vanish, = u = 0

u~.

z a

7-

'4)

'

, the

=

(-)

=

0

continuity

and

Navier-Stol:es

equations (c~

z

a,-,

ap ,

,,,,

[ (ico s }', <-cos

~)]

=

2

0

~

(6)

2

2

@ U= (

+

0

El

z

a

of

z ) = ! OF._._~ 2

W

7..'

~z

ac

where p is the The bc)un~ar-)~

modified pressure and u the dynamic viscosity. conditions i:or the a>'ial velocity u are:

(i>

the

No

sli0

on

it ,

i.e.

C

In t h i s c a s e become ~u

u

inner

and

outer

cylinders, i.e.

[i]]

LAMINAR

FLOW BETWEEN

CYLINDERS

) = O,

(8)

= O,

(9)

Uz(~'~2)

~or all 0 _< ~ _< 2n (//)The symmetry of the solution in t h e both sides of the straight line passing the cylinders gives u (~,~) = u ( - ~ , ~ ) , z

for- a l l which (iii)u

normal through

cross section the two axes

implies

and

that

(I0)

(z <

("

~i

<

u must be an even f u n c t i o n

in

z

must be p e r i o d i c

~.

in ~.

SOLUTIONS t h r e e e q u a t i o n s (5) and ( 6 ) , i t is obvious that u must be a ~unction of ~ and E , whereas

From t h e f i r s t axial velocity

z

m o d i G i e d p r e s s u r e p d e p e n d s o n l y on z . T h i s means t h a t e q u a t i o n (7) s h o u l d be c o n s t a n t , i . e . d~ = -C dz Substituting in e u u a t i o n 2

C

each s i d e

"-0 .

(7),

the the of

(II)

we

get

2

a u

a u

M a *z

"- +

= = -

2

2

a~ where a l i s speed.

on of

z

0 -< ~ < 2~

2

47

,

(12)

a material

characteristic

2

a(

given

by

(2)

and M=CrZ/~H 2

is

E q u a t i o n (12) i s a n o n - h o m o g e n e o u s p a r t i a l differential equation of the second o r d e r . The general periodic solution o~ this equation, which satisfies the boundary condition (1O),has the form U

M

=

a ~z

- 4

(coBb ~ - c o ~ ~)

+

(s o C + f ~ o )

O0

+~. (e The O o , ~ o , e and f conditions analysis.

(S)

Introducing

r i

m(



~c . ~ h

mC)cos m~

(13)

(9);then

m a k i n g use o f

t h e methods

of

Fourier

~imensionless parameters =~nh ~2 (14)

K s~n6

2

e r

boundary

the

c a n be d e t e r m i n e d by a p p l y i n g

and the

cosh

z

--

r

El coth

~2

--

coth

csch

~"

--

c~ch

El O<

i

~

<

i

(15)

48

as

Q. EL-FAROUK,

M. FARAH a n d A. B A D R A N

-For- t h e c o n s t a n t a n d 6 [9, a ~ ] c a n

The expressions .Functions in m

=

x

-

o

(X z

/90=

[i

Xz

/ -

X2

x

in

I)

(a

iXZ+l 2 X2 _

+

coe.F~icients in the be deduced, namely

1

2a

i

6

+

o

(X zm

X (X 2

-

i)

+ I -+ Xz 1

m

2a

'

}

-

I)Z

+

I)Z

ore]

(16)

Z (×am

X2

=

(i3)

] 6X)

ox] ,

a 1

series

X

6

(X z

-

I)

Z m

where a=~(1-6) Z

=

,

-(a

A=

+ 6_

I-a z -6 z 2~6

)m

, X=(A+~A--i)

Z =(a

+

6X)m

_

XZm(~

+ 6_

X The series solution (13),together with ~ormulae enables o n e t o ~:ind t h e velocity profiles .Forvalues o~: ~ a n d 6 t o a r b i t r a r y accuracy, so that more transparent .For s u c h e c c e n t r i c configuration. The average ~lux velocity u can be calculated -

u

1

=

-$$

u

S

where

s

=

(17)

ds

(16) and (17), all permissiblp results become ~rom

,

the

2

(i8)

the

cross

section

area

between

the

cylinders.

I

.For u

an0

evaluating

the

surface

integral,we

obtain

z

Q~

=

u_ =

H~

M

(J z -

~ J

t

)

(~.)

.j

_

j

L

-4a

[z a= X ° X2 _

+8(~) [

)+

_a(jz_

1

2

+

Jzln

-

jz)

1

2

(J3)-J1 In

!

i)

(xz_l) z

3

-"~=z X~ where =

(a

+6XI~,

3

i]'

j2

HX=s ~ n)"2~ z

2

23 3

Z

J

=e~ i

(

= I

(e 3

(X)]

I]

I

(j2

J

~:ormula

z

n(rZ-rZ .)is.

Substituting

)m

X

+

~

rrh

)

]

(19)

LAMINAR FLOW BETWEEN CYLINDERS

2

Jz

= ¢sch

i

~'2

Hi

.,,

(~)~=[2 ~. (I+~) (em _ ~c~ ) _ and

49

( 1+4/3° )I

O0

(~) ]

[ , E'~'(~: ~ T.- =e rn~ +

2f: i

r~=2

PJSFERENCES

[1] ARFKEN, G. ( 1 9 6 8 ) , M a t h e m a t i c a l M e t h o d s Got Physicists,Academic Press International Edition. [2] B A T C H E L O R , G.K. (1979),An Introduction to Fluid Dynamics, Cambridge University Press,Cambridge. [3] B E C K , F . ( 1 9 6 0 ) , W a r m e u b e r g a n g und D r u c k v e r l u s t in K o n z e n t r i s c h e n E x z e n t r i s c h e n R i n g s p a l t e n bei E r z w u n g e n e r S t r o m u n g und Freier Konvektion. [4] C H E N G , K . C . , a n d H A W A N G , G . J . ( 1 9 6 8 ) , A I C h E J . , V o l . 1 4 , N o . 3 , p p . 5 1 0 512. [ 5 ] FARAH,M.N.and BABRAN,A . E I - M ( 1 9 9 0 ) , The Flow o f t h e Laminar Motion o f a Viscous I n c o m p r e s s i b l e F l u i d between Two P a r a l l e l E c c e n r t r i c . c y l i n d e r s (by Using C y l i n d r i c a l C o o r d i n a t e s ) , M.Sc Thesis. [ 6 ] HAPPEL, J . , and BRENNER, H., (1965). Low Reynolds Number Hydrodynamics,Prentice-Hall,Englewood C l i f f s , N.J.,pp.35-37. [ 7 ] HEYDA,J.F, (1958),Heat T r a n s f e r i n T u r b u l e n t Flow Through non Concentric Annuli Having Unequal Heat Release ~rom the W a l l s - G e n e r a l E l e c t r i c C o . , R e p o r t APEX-391. of a Hollow [8] MAC D O N A L D , H . M . (1894),0n t h e T o r s i o n a l S t r e n g t h ShaEt. Proc. Camb. P h i l . S o c . 8 , p p . 6 2 - 6 8 . [9] P I E R C Y , N . A . V . , H O O P E R , M . S . , a n d WINNY,H.F. (1933), V i s c o u s Flow through Pipes with Cores,Phil.Mag.,Vol.15.No.7,pp.647-676. [ 1 0 ] R E D B E R G E R , P . J . , a n d C h a r l e s , M . W . (1962),Can. J.Chem. Eng.,Vol. 40, pp. 148-151. [ I I ] S N Y D E R , W . T . , and GOLDSTEIN,G.A., (1965),AIChE J.Vol.ll,pp.462467. r4.~ L~]VOLLBRECHT,H.und OBERSTEDT,H.W. (1959),Rohrenwarmetaucher mit V e r d r a n g e r k o r p e r n , D e c h e n a - M o n o q r_a p h i e n , B d . 3 3 , ~ 2~5 • . [13]WHITE,F.M., (1974),Viscous Fluid Flow, Mc G r a w - H i i l Book Co., New Y o r k , p a g e s 125-128.