Near-rings and Near-fslds, G.Betsch (editor) 0 Elsevier Science PublishersB.V. (North-Holland), 1987
A
TERNARY
255
INTERPRETATION @F THE
TNFRA-NEAR
RINGS
Mlrela Stefhescu 1.
INTRODUCTION
In studying some g e n e r a l i z a t i o n s of r i n g s a s infra-near rings (see S t e f h e s c u
[lll ),weak
r i n g s (see Climescu [3,41
,
Cupona [5J ) , p r e r i n g s (see Janln [6,7] ),we have noted t h a t cert a i n facts can be b e t t e r explained by means of a ternary i n t e r p r e t a t i o n o f t h e a d d i t i v e composition law. T h i s i n t e r p r e t a t i o n might be of considerable use i n studying a f f i n e infra-near r i n g s ( Stefgnescu LlO3 ) a s well a s i n studying i d e a l s o f those alge-
b r a i c systems. Given t h e development of t h e theory of t e r n a r y groups and t e r n a r y rings,such an i n t e r p r e t a t i o n using a t e r n a r y operation Instead o f t h e binary a d d i t i o n may be i n t e r e s t i n g I n itself. F i r s t we r e c a l l some d e f i n i t i o n s and p r o p e r t i e s o f generali-
z a t i o n s of r i n g s involved I n our considerations. (1.1) Definition. A l e f t h f r a - n e a r r i n g is a triple (I,+,.),
where I i s a nonempty s e t
, + and
(addition and m u l t l p l i c a t i o n )
.
a r e binary operations on I
, such t h a t
t h e following condi-
tions are fulfilled: (1) (I,+) ie a group (generally,noncommutative) i
(il) (I,.)
I s a semigroup;
( i 1 i ) t h e m u l t i p l i c a t i o n is l e f t i n f r a - d i s t r i b u t i v e w i t h r e s p e c t t o t h e a d d i t i o n , 1.e.
x
. (y + z ) = x.y
- x.0
+
X.Z
, for
a l l x,y,z t I .
The concent o f r i g h t infra-near ring is analogous. If x.0 = 0 f o r a l l x ~ 1 , t h e nwe o b t a i n a l e f t near-ring.
If
(I,+,.) i s a l e f t and a r i g h t infra-near ring w i t h a commutative
M. Stefanescu
256
addltion,we obtain an equivalent d e f i n i t i o n o f a weak rhg, t h e general case. We mention t h a t t h e weak rings were first Introduced by A1.Cllmescu 131 in 1961 i n a p a r t i c u l a r case,when x.0
= 0.x = x f o r a l l
X E
I
In 1964,Climescu [41 has noted a ge-
n e r a l possibil.%ltyQf o b t a i n i n g weak r i n g s s t a r t i n g from a g i v e n ring. The p a r t i c u l a r case was rediscovered by G.Cupona
(53 I n
1971, who c a l l e d it "quasi-ring".
Let ( I , + , . ) be a l e f t infra-near ring. One can e a s i l y check that f o r each
- x.0
, is
X G I t h e mapping f x r
I--+I,given by fx(y)
an endomorphism of the a d d i t i v e group (I,+)
.
I=
-
x.y
This a l -
most obvious remark may help us t o study t h e l e f t infra-distribut i v e a s s o c i a t i v e multiplications over an a d d i t i v e group (see Stefgnescu (123 ) , t h e discussion being unexpectedly i n t e r e s t i n g .
One of t h e first examples o f r i g h t near-rings was the s e t of a l l a f f i n e transformations over a vector space or over an Abelian a d d i t i v e group endowed w i t h the pointwise addition and the mapping composition. This is a l s o a l e f t infra-near ring and a
few p r o p e r t i e s of t h i s s e t come from i t s infra-near r i n g struc-
ture
. It is s u r p r i s i n g how much algebra can be obtained only by
considering t h i s weaker s t r u c t u r e (see ClO'J
,a
?aper i n which we
have studied and generalized the infra-near ring of a f f l n e trans-
formations from t h i s point o f view ). If a l e f t infra-near ring s a t i s f i e s the condition I 0.x = 0
, for
all xcI,
then we c a l l it a l e f t C-infra-near 0.x = x
, for
all x
rinp;
, while
in the case
I
61,
we c a l l it a l e f t Z-infra-near
ring.
we give two examples o f f i n i t e l e f t C-infra-near rings: .'1
The c y c l i c group (&,,+),with
1.x = 2.x = x , f o r a l l x e Z 3
.
t h e multiplication
I 0.x
= 0,
A ternary interpretation of the infra-near rings
.'2
The symmetric group S3
3:
where 3a = 2x = 0 and x+a = b
257
{O,a,b = 2a,x,y = x+a,z
+
, with
x
x.8
= y.s =
z.8
= a
, b.8
=
(11) 0.8 = 0,a.s = x . 6 = y.6 = a, b.s = z . s =
(111) 0.8 = 0,a.s = x . 8 = a , b.8
P
y.6
P
x+b],
t h e multiplicatlon given
by one of the following t h re e p o e s l b i l l t i e s r
(I) 0.8 = 0,a.s =
a
z.8 =
B
, for a l l
BC
%'
8
,for a l l s e S 3 1
8
,for a l l B E + .
Many o t h e r eaamples of l e f t infra-near rings and a general s t u d y of such algebraic systems can be found in [llJ
mark that
, If
. Let u s re-
(I,+) is a group,then (I,+,+)I s a l e f t and a
right
lnfra-near ring. I n a l e f t lnfra-near r i n g we do not obtain 0.0 = 0. For examp l e , i f we consider I = 25 and the binary operations I x
+ y = (x1+91,72+92,X?)+Y3
,XI++Yl+,x5+x2 .Y3+Xl+.Yl+Y51#
x.y = ( X I .Y1,'2*92,a~ ,a&, w i t h a3,a4,a5 fi x e d elements in Z,then we obtain a l e f t infra-near ring for which
0.0 = (0,0,a3,a4,a5),whlle 0 = (0,0,0,0,0).
The r e a l difference between t h e general case (see L83
in
which th e multiplication is an "independenttt operation on an ad-
d i t i v e group,
- that means the multlplication
cond!tions w i t h respect t o t h e addition,
does not f u l f i l any
- and our case
( I n which
t h e multiplication I s l e f t l n fra -d i st r i b u t i v e over t h e addition) is perceptibly I n the theory of congruences,hence i n defining homomorphisms and Ideals of such st ru ct u res . (1.2) Definition. A fno-Slded Ideal of a l e f t infra-near ring (I,+,.)I s a nonempty subset J o f I s a t l s f y l n g the conditions: (I(J,+) ) is a normal subgroup of t h e group
(ii) x . j (ill ) ( j
- x.0 e J
+
x).y
, for
a l l x E I and j E J
- x.yeJ , f o r
(I,+)i
i
a l l x , y E I and
j C J
.
If J o n l y satisfies t h e conditions (Iand ) (ii) (reSpeCtiVdg, (Iand ) (ill )) , J I s c a l l e d a l e f t Ideal (respectlvely,a right
I d e al) of
I.
M. StefGnescu
258
If (I,+,.)is a l e f t near-ring,hence x.0 = 0 for a l l x e 1 , t h e n
we obtain t h e d e f i n i t i o n s o f the two-sided,left and r i g h t idealB of a l e f t near-ring.
The similitude is a m a s i n g , B u t i n f a c t the
s i t u a t i o n 1s more complicated
, since
even t h e two sided i d e a l s
of a l e f t infra-near ring a r e not closed under the multiplloa-
tion,hence generally they a r e not subinfra-near r i n g s o f I. For l e f t near-rings a s i m i l a r assertion is t r u e only f o r the r i g h t ideal8 (see P i l z L9l
, 1.28
and 1.33).
O f c o u r s e , i f J is a two-sided i d e a l of the l e f t Fnfra-near
ring I
, then
I/J = f x + J / x
E
I) i s a l e f t infra-near r i n g with
respect t o t h e usilal operations beween cosets.
(1.3) Definition. Let (I,+,.)and (It,+,.) be t w o l e f t infra-near r i n g s . A mapping y t 141’ i s c a l l e d a homomorphism of l e f t infra-near rings i f t h e following two conditions a r e f u l filled : (1)
‘P(x + Y) = \ p ( x ) + \ P ( Y )
,
.
fix). y(y) , f o r a l l x , y c I , k e r ‘4 = jx E I / yJ (x) = 0’5 , i s a two-sided
(ii) .p(x.y) =
The kernel of ‘f
i d e a l of 1,while t h e image o f p
, Im y
=
(p(x> / x E I
a subinfra-near ring of 1’. Moreover,the %-sided
f , is
i d e a l s of I
a r e exactly t h e kernels of the homomorphisms from I t o another l e f t infra-near ring
.
(1.4) Definition. Let I be a l e f t C-bfra-near be a group. If t h e r e e x i s t s a mapping
= m.x
, such
(I) m.(x
MxI4M
that t h e following axioms a r e f u l f i l l e d
+ y) = m.x
(ii) (m.x).y
= m.(xy)
- m.0
+ m.y
,p ( m , x )
(M,+,p) a right
, f o r a l l m h M and x,y 0 I 4
, I-group.
Obviously I is i t s e l f a r i g h t I-group and each right i d e a l of I i s a r i g h t I-subgroup
, while
=
I
, f o r a l l m cM and x,ye I ;
(111) 0.x = C , f o r a l l x C I
then we c a l l
,441
r i n g and (M,+)
a r i g h t I-subgroup of I i s
259
A ternary interpretation of the infra-near rings
n o t a r i g h t ideal of 1,even in th6 cam when it i e a normal oubgroup of (Il+).
Denote by D = i d G I / d.0 = 0 5 and W
wrI / w.0 =
o
w),
t h e s u b s e t of a l l l e f t d i s t r i b u t i v e elements of I and t h e s u b s e t of
a l l weakly l e f t d i s t r i b u t i v e elements of I , r e s p e c t i v e l y . I f I
i s a l e f t C-infra-near
x,yr:I
, hence
+
ring and (x
y).O
e
x.0
+
y.0 f o r
0 i s a r i g h t d i s t r i b u t i v e element of I
all
, then
D is
a l e f t subinfra-near r i n g of I which i s a normal eubgroup of (Il+)
.
and W i s a r i g h t I-subgroup of I
r e c t decomposition I = D + W x = (x
- x.0)
2. TERNARY
+
, where
x.0
x
;
Moreover w e have t h e semidi-
indeed,for any x E I ,we have
- x.OED
.
and x . O E W
GROWS
Let u s note t h a t t h e l e f t i n f r a - d i s t r i b u t i v i t y of t h e m u l t i p l i c a t i o n w i t h r e s p e c t t o t h e a d d i t i o n reminds one of a l e f t distri-
b u t i v i t y of the binary multiplication over a ternary composition defined by
8
( y , t , z ) := y
-t+z
(y,@,z) = y
Indeed,we have then for a l l x l y l z 6 1
.
for all x , y , t , z 6 1
for a l l y , t l z GI.
+
Moreover we have x.(y
.
= (x.y1x.Olx.~)
z and x.(y,O,z)
-t
+ z)
= xdy-x.t+x.z,
B u t such t r i p l e s were obtained by Dijrnte
and by Baer i n t h e t w e n t i e s i n connection w i t h some g e o m e t r i c a l f a c t s
( t h e Erlangen Program on groups) ; In
[11
,R.Baer had n i c e l y ex-
plained the geometrical and algebraic reasons to take a s Fnva-
riants f o r a group of transformations t h e expressions of t h e form x
.
-y+z
S t a r t i n g f r o m t h i s point
Certaine
was
guided t o consider a ternary operation on a group (G,+) defined by
(x,y,z)
I=
x
-y+z
f o r a l l x,y,z E G (we t r a n s l a t e i n t o an
a d d i t i v e notation t h e paper written by Certaine)
.
By considering
t h e a b s t r a c t properties of such an o p e r a t i o n , C e r t a h e has defined ternary groups.
M.Stefdnescu
260
(2.1) Definition. Let I! be a nonemptg eet endowed with a tar-
nary composition
,.) : T
(.?.
%
T x T 4 T and With a f i x e d element
O d T such that t h e following conditions a r e f u l f i l l e d : (1) (x,O,(y,Z,u)).= ((x,O,y),z,u)
, for a l l x t T , for a l l x e T
(2) (x,O,O) = x
(3)
(x,x,O) = 0
, for
a l l x,y,z,u e T ;
.
;
Such an alg ebra i c system i s called a ternary group of first type
(Certaine 121
, Definition
3
By defining a binary operation on T
(4) x
+ y r = (x,O,y)
, for a l l
x,yeT
,
we obtain a group (T,+) w i t h 0 a s i t s n eu t ral element ( 123
Theorem 4 )
.
,
?%en t h e binary and t h e ternary operations a r e r e l a t e d by t h e
eq u ali ty :
(5)
(x,y,z) = x
- y + z , f o r a l l x,y,z
E T
,
then we say t h a t t h e ternary group i s reg u l ar
, the
In a binary group
n e u t ra l element is unique
statement does n o t hold f o r a ternary group satisfy (11,
( 2 ) and ( 3 ) i n D e f i n i t i o n ( 2 . 1 1 ,
, but
.
A s i mi l ar
if 0 and O1 both
then t h e cor-
responding binary groups by (4) a r e isomorphic a s it i s proved in
(21
( t h e isomorphism i s given by x ~ ( x , O , O 1 )
, for
xe!&
Moreover it i s possible t h a t d i s t i n c t ternary groups correspond t o the same binary group,aa it is shown
in c2’J f o r t h e
c y c li c group w i t h two elements. To i l l u s t r a t e this,we consider th e cy c li c group o f order 3 3a = 0
,
(T = {O,a,b) ,+) w i t h b = 2a and
. We f i n d three p o s s i b i l i t i e s t o define t ern ary group8
o f f i r s t type,namely
t
(I) the r egu l a r ternary gmup (x,y,z) = x X,Y,Z
-y+
6T 3
(11) the s p e c i a l products a r e (a , a , a ) = (O,b,b) = b
, f o r my
, (b,b,b)
=I
26 1
A ternary interpretation of the infra-near rings P
(O,a,a)
a
L
, (b,a,a)
(a,b,b)
o
, the
0
other ternary pro-
ducts being r e g u l a r ;
(a,a,b) = (b,b,a) = 0
(111) the s p e c i a l products a r e
, (O,a,b)
(O,b,a) = (b,a,b) = a
= (a,b,a) = b
, the
,
other pro-
ducts being regular, ~e obtain anotkz concept of ternary group, which we call
of
seccpld
type,
type, while a ternary group of Certain's type is called of f & s t type.
(2.2) Definition. A couple ( T , ( . , * , . ) )
.,
set and (., .)
I
Tx Tx T
,where T i s a nonempty
, if
called a t e r n a r y group of second type
it s a t i s f i e s the
following axioms f o r a l l x , y , z E T and a fixed element O € f ( 6 ) ((X,Y,O),Z,O)
(7)
(O,X,O)
(8)
((O,O,x),x,o>
= x
,
=
(X,(YtZ,O>,O~
, then
(T,+)
, where
defined by (9)
+
x
y
I=
I
,
= 0
(2.3) Proposition. If ( T , ( . , . , . ) ) cond type
, is
i s a t e r n a r y operation on T
3T
(x,y,O)
i s a t e r n a r y group o f set
, for
i s t h e binary composition
a l l x,yC:T
is a group.
Proof. The a s s o c i a t i v i t y
comes from (6)
, , by
using the defi-
n i t i o n o f t h e binary operation. The other two axioms t r a n s l a t e d into the addition complete the definition of a group. We a l s o have the equalities:
,for
(7')
(x,O,O)
(8')
(x,(O,C?,x),C) = 0
= x
all x%T
, for
,
all xbT ,
(2.4) Definition. A t e r n a r y group of second type i s c a l l e d
regular
,
i f the ternary operation is connected w i t h t h e binary
composition (9) by the following equality!
(lo)
(x,y,z) = x
+y
-z
, for
all x , y , z E T
.
As in the case of t e r n a r y groups of first type, t h e r e
are
M. Stefanescu
262
many t e r n a r y groups of second t y p e a s s o c i a t e d t o t h e same group by t h e e q u a l i t y ( 9 ) . For example, for t h e c y c l i c group of o r d e r 2 , (T = { O , a ) , + ) , we may d e f i n e a t e r n a r y composition: ( O r O r O ) = = (a,O,a) = (a,a,O) = ( a , a , a ) = 0, (O,a,O) = (O,O,a) = ( a t O , O )
=
= ( O , a , a ) = a , which p r o v i d e s T w i t h t h e s t r u c t u r e of a t e r n a r y g r o u p of second t y p e w i t h (T,+) a s t h e a s s o c i a t e d group. T h i s t e r n a r y group is n o t r e g u l a r , s i n c e ( a , a , a ) = 0 # a = a + a a.
-
The following ternary compositions on T = \O,a)
,namely (7), (8)
only two of the three axioms I n Definition (2.2) for (tl),
(61,031 for (t,) and (6),(7) for (t,)
I
{
o
(O,O,O) = (a,O,O> = (O,a,a) = (a,a,o) =
satisfg
,
(O,o,a) = (a,O,a) = (O,a,O) = ( a , a , a ) = a ; (0,0,0)= ( O , O , a )
= (o,a,o) = (O,a,a) = 0
,
= (a,O,a> = (a,a,O) = ( a , a , a ) = a ;
lo ,o,o)
= (a,O,a) = (O,a,a) = 0
(t3) (O,O,a) = (a,O,O) = (o,a,o)
b
= (a,a,O) = ( a , a , a ) = a
.
These uodels prove t h e following
(2.5) Proposition. The system of axioms in Definition (2.2) is independent. (2.6) Definiti0n.A ternary group
(of first or of
(I,(.,.,.))
second type) together w i t h an a s s o c i a t i v e binary m u l t i p l i c a t i o n which i s l e f t d i s t r i b u t i v e w i t h respect t o the t e r n a r y composi-
t i o n , i . e . which s a t i s f i e s the e q u a l i t y (11) x.(y,z,w)
= (x.~,x.z,x.w)
, for
a l l x , y , z , w ~ I,
i s c a l l e d a l e f t t e r n a r y near-ring (of first o r of second type).
(2.7) Fropositlon.(l) If ( I , ( . , . , . ) , . ) is a l e f t t e r n a r y near-ring of first type
, then
(I,+,*), where + is defined by (4),
.
., ,
is a l e f t infra-near r i n g , (ii)If (I,(., .)
i s a repular
l e f t ternary near-ring of second type, t h e n (Il+, defined by (9)
, is
a l e f t infra-near ring.
,where + is
263
A ternary interpretation o f the infra-near rings
Proof. (i) Since (I,+) I s a group (Certalne 127, Theorem 4) , and (I,.) is a semlgroup by assumption, we have to check the left
i n f r a - d i s t r l b u t i v i t y of t h e m u l t i p l i c a t l m w i t h r e s p e c t t o t h e addition. We have
I
= ((x.y,0,0>,x.0,x.z) But x.0
+
(O,X.O,x.Z)
= (x.O,x.O,x.z) - - x.0 + X . Z y,zGI
.
,
+ z ) = x.(y,O,z) = (x.y,x.O,x.z)
x.(y
= (x.y,0,(0,x.0,x.z~) =
+
, therefore
X.Z
z ) = x.y
(ii)Here we obtain immediately
= (x.y,x.z,x.O)
= x.y
= x.y + (O,X.O,X.Z).
= (x.O,O, (O,X.O,X.Z))
= x.(O,O,z) hence x.(y
+
- x.0
X.Z
x.(y
-
=
= ((X.O,O,O) ,x.O,X.Z)
(O,x.O,x.z) f x.0 + xlz , f o r all x,
t z)
, from
= x.(y,z,O)
=
t h e r e g u l a r i t y of t h e
t e r n a r y group. B u t taking y = 0 we obtain (12)
therefore
x.z
+
x.(y
x.C = x.0
+ z) = x.y
+
X.Z
- x.0
,for a l l x , z e I
+
X.Z
The o t h e r exioms i n the d e f i n i t i o n o f
,
.
, for
a l l x,y,z € 1
left
infra-near r i n g s
come from t h e hypotheses and t h e Proposition (2.3)
.
Ye note t h a t i n the g e n e r a l case t h i s c o m u t a t i v i t y g h e n
, as
by (12) does n o t h o l d f o r l e f t infra-near rings
one can
see from the exemple I = E5 i n Section 1.
T h i s way we obtain a s a p a r t i c u l a r case of t h e t e r n a r y near-
-rings the ttpreringsttdefined by Janin [6,73
.
Indeed, a p r e r h g
is a ternary near-ring of first type or of second type which satisfies for all x,y,zqI a commutativity condition of the ternary com-
position
, namely
(x,y,z) =(y,x,z)
(x,y,z) = (z,y,x)
- for
- f o r the
first type and
t h e sec-nd e T e ,which has a n idempotent
m u l t i p l i c a t i o n being l e f t and r i g h t d i s t r i b u t i v e w i t h r e s p e c t t o t h e ternary composition.
We t r a n s l a t e the d e f i n i t i o n of a two-sided i d e a l of a l e f t infra-near ring into ternary language. In a left ternary near-ring,
we say t h a t a nonempty subset J i s a n idea1,lf it t h e following conditionsr
satisfies
M.Stefdnescu
264
, ((x,O,a),x,O)e
J
(i) (a,b,O)(
J
for a l l a , b € J and ~ € 1 1
, for a l l a d J and x G I ; (ill)((x,O,a).y,x.y,O) € J , f o r all a E J and x , y e I (ii) (x.a,x.O,O)
E J
.
Let I be a l e f t ternary near-ring of first type i n which x.0 f 0 b u t 0.x = 0 f o r a l l x G 1 . In addition, we assume t h a t f o r any x,y( I
, (x,O,y).O
, hence
= (x.O,O,y.O)
i s r i g h t d i s t r i b u t i v e with respect t o the
t h e element 0
t r i p l e s o f t h e given
, a s defined above, which a r e semigroups under multiplj.catlon , a r e a l s o closed under t h e t e r n a r y operation. We note t h a t x.wEW , for any X E Iand w e W
form. Then t h e subsets D and W
In f a c t , t h e following proposition holdsi
Proposition. Let I be a l e f t ternary near-ring of f i r s t
(2.8)
type which s a t i s f i e s t h e conditions
= x
(I) 0.x
, for
(ii)(x,y,z).O
I
a l l XO ; I
, for
= (x.O,y.O,z.O)
a l l x,y,zeI ;
, for a l l X Q ; I (w.x,O,d.x) , f o r a l l d c D , w e W and
(iii) (O,x.O,x) = (x,x.O,O)
( i v ) (w,O,d).x =
/ deD,weW
Then : (i) I = (D,G,W) = i ( d , O , w ) x
f
xaI.
and foa? each
e I , t h e elements d t D and w c g W such that x = (d,O,w)
a r e uni-
quely determined; (ii)Using ternary expressions f o r two a r b i t r a r y elements
of I
,
the multiplication is given by t h e formula8
= (d.d',O,(w,O,d.w'))
(13) ( d , O , w ) . ( d ' , O , w ' >
Proof. (i) For each -
x C I
belongs t o D and w = x.0 EW
, we
.
determine d = (x,x.O,O) which w i t h d and w j u s t
B u t x=(d,O,w),
determined above (one can verify this relation by straightforward calculations). w,wl t w
, we
have
If (d,O,w)
= (d',O,w')
, with
d , d l E D and
=
(((O,d',O),O,(d,O,wR)),O,(O,w,O))
= (((0,d',0~,0,(d',0,w~),0,~0,w,0~~ and after some skillful calcu-
l a t i o n s we obtain = (w',w,O)
(0,d:d) = ( w ' , w , O ) C W n D
= 0 , B u t then d1 = ( d ' , O , O )
, hence
(O,d',d)=
= (dl,O,(O,dl,d)) =
265
A ternary interpretation of the infra-near rings
= ((d',OiO),d',d)
(d',d',d)
p
(d',d',(O,O,d))
p
= (O,O,d) = d
t((d',d',O),O,d)
0
I n t h e same manner, we prove
that w' = w
(it) The formula (13) is obtained by using t h e condition (iv) the e q u a l i t y w.x = w f o r a l l x 6 1 and w t w .
t a k i n g i n t o account
It might be Fnteresting t o study ternary near-rings In an Independent context
. Here we
have used t h e t e r n a r y i n t e r p r e t a -
t i o n f o r showing t h e r e l a t i o n between infra-near rings and pre-
rings and f o r explaining t h e l e f t l n f r a - d l s t r i b u t i v i t y a s a ref l e c t i o n o f a l e f t d i s t r i b u t i v i t y of t h e m u l t i p l i c a t i o n with r e s p e c t t o a t e r n a r g composiflon. REFEFf ENCES
C11. Baer,R.
- Z u r EinfUhrung des Scharbegriffs, J.reine
Math. ,160 (1929) C23. Certaine,J.-
, 199-207.
The t e r n a r g operation (abc) = ab-lc of a
group, Bull.Amer.Math.Soc.,49
c3]. Climescu,Al.-
Anneaux f a i b l e s
(11) (1961)
ClFmescu,Al.
[4],
9
(1943)
, 869-877.
, Bul.Inst.Polit.Ia$i
,7
1-6
- A new c l a s s of weak rings , (Romanian) ,
ibidem, 1 0 ( 1 4 ) ( 1 9 6 4 ) , 1 - 4 .
[5]. Cupona,G.
angew.
- On
quasirings
Phys,ldaC$doine
, (Macedonian
, 20
, Eull.Soc.lyfath.
)
(1969) ,19-22 (1971) 4 MR
44 #I703
c63. J a n h , P . - Une g h 6 r a l l s a t i o n de l a notion d'anneau.Pr6-
anneaux.C.R.Acad.Scl.Paris,Sec.A
, 269
(1969)
,
62-64
[7].
Janln,P.
- Une g h 6 r a l i s a t i o n de l a notion
Prealghbres. C.R.Acad.Sci,mris
(81
.
(1969)
, 120-122.
Murdoch,D.C. ,Ore,O.
d'algbbre.
, Sec.A , 269
- On generalized rings, Amer. J.Math. ,
M.StejZnescu
266
63 (1941) 973-78
0
[91. P i l e ,G.- Near-rings .The theory and its applications
North-Holland Mathematics Studies 23
, North-Holland
Pub1 .Comp. ,Amsterdam, 1977.
[lo].
Stefhescu,MFrela
- Infra-near
An.St.Univ.Al.I.Cuza
1111.
Stefhescu,Mirela
-A
r i n g s o f a f f i n e type,
I a s i , 2 4 (1978) ,5-14
generalization o f the concept of
n e a r r i n g rInfra-near r i n g s
45 [12].
- 56
9
StefZinescu ,Mirela
,
ibidem, 25 ( 1 9 7 9 ) ,
- Multiplications i n f r a - d i s t r i b u t i v e 6
s u r un groupe,Publ .hth.Debrecen, 255
- 262.
.
27 (198C3,