A Theory of Nonlinear Evolution Equations

A Theory of Nonlinear Evolution Equations

Trends in the Theory and Practice of NorrLmear Analysis V. Lakshmikantham (Editor) Elsevier Science Publishers B.V.(North-Holland), 1985 17 A THEORY...

465KB Sizes 2 Downloads 111 Views

Trends in the Theory and Practice of NorrLmear Analysis V. Lakshmikantham (Editor) Elsevier Science Publishers B.V.(North-Holland), 1985

17

A THEORY OF NONLINEAR EVOLUTION EQUATIONS Mieczyslaw Altman Department of Mathematics Louisiana State University Baton Rouge, Louisiana U.S.A.

A theory of solving nonlinear evolution equations based on three different methods is presented which is independent of Co-semigroups. From the standpoint of applications, its important feature is the possibility of solving nonlinear evolution equations via linearized evolution equations. INTRODUCTION Kato's [12] theory of quasilinear evolution equations, which he successfully applied to nonlinear partial differential equations of mathematical physics, was the first significant step in the nonlinear direction. His famous theorem which applies only to reflexive Banach spaces was generalized to nonreflexive ones in [2] by a different method. In 1956 Nash [14] introduced the concept of smoothing operators and in 1966 Moser [13] introduced the concept of the degree of approximate linearization. Based on these notions and what is called the Nash-Moser technique constitutes a truely fundamental development in handling of the "loss of derivatives." But so far the related theorems and their generalizations are designed for nonlinear operator equations and do not apply to abstract nonlinear evolution equations (NEE). In a series of investigations [5,7,8] an attempt was made to solve the nonlinear problem for EE. Our theory is based on three global linearization iterative methods (GLIM). Global linearization means that the equation is linearized about a vector running over a nonbounded set B whereas local linearization indicates that B is bounded. The theory also applies to nonlinear operator equations ( s e e 131). Thus a unified approach has been developed to both nonlinear operator and evolution equations. Although the general theory is independent of Co-semigroups, nevertheless from the point of view of applications to nonlinear partial differential equations it is rather important that nonlinear evolution equations can be solved via linearized evolution equations. In this way one can make use of the theory of Co-semigroups which is more powerful and advanced than the theory of nonlinear semigroups which is rather limited in scope. Some highlights of our theory will be presented below.

1. CONVEX APPROXIMATE LINEARIZATION AND GLOBAL LINEARIZATION ITERATIVE METHODS (GLIM) FOR SOLVING NONLINEAR EVOLUTION EQUATIONS

Let

Z C Y C X be Banach spaces with norms

(l.A ) that'

(1.O )

11 -11

z ->

11 * 11

IIXII

<

c

-

-

-x

> 11 11

YWe assume that there exist constants C > 0 and

s

with

0 <

IIxlll-s IIXIIS

s

< 1

such

YX 2' b, denote by C(0, b; X) the Banach space of all continuous functions

Given 0 < x = x(t) defined on the interval

[ O , b]

with values in X

and norm

M.Altman

18 RxR

I n t h e same way a r e d e f i n e d respectively.

Denote by

t h e norms

C1(O,b;

d i f f e r e n t i a b l e f u n c t i o n s from with center

in

xo

t h e c l o s u r e of

in

Vo

and

llzl

the vector

[O,b]

to

ro

Let

X.

>

0.

Put

Y

for

-,Z

space of

and

2,

a l l continuously

be an open b a l l in

Wo

and l e t

Vo = Vo n Z

Y

be

V1

Y.

F : [O,b] x V1 + X

Let

< b].

t

IlyII*,Y

x)

and r a d i u s

2

<

sup[llx(t)!lx : 0

=

-,x

be a n o n l i n e a r

mapping and c o n s i d e r

t h e Cauchy

problem Px(t)

(1.1) where

+

dx/dt

S

be t h e set of f u n c t i o n s

G

-

x ( 0 ) = ~ 0 , Rx

<

X ~ N - , ~

<

f ( t , x ) = 0, 0 < t

b, x ( 0 ) = xo,

i s a l s o a n o n l i n e a r mapping.

f : [O,b] x V 1 + X

Let

+

F(t,x)

r o and

We assume t h a t t h e mapping

x

llxl F

-.

z <

-9

1 n C (0,b; X)

C(0,b; Vo(l.Uz))

E

i s d i f f e r e n t i a b l e i n t h e f o l l o w i n g sense.

For e a c h ( t , x ) c [O,b] x G, there e x i s t s a linear operator F'(t,x) -1 E IIF(*,x) + Eh) - F ( . , x ) - E F ' ( * , x ) h l + 0 as E + O+, where -,x 1 h E C(0,b; Z) n C (0.b; XI. We make t h e f o l l o w i n g assumptions. a

Cauchy sequence

bounded i n -1 E lF(*,xn n

+

(1.A:) t

E

with

(1.A;)

+

with

h)

-

F'(t,u)(u

(l.AZ)

- x i -,Y n

true for

f.

+

Eh)

Rf

(a

,x

E

G

and

-

F,f

implies

be be

vII Ilu 0

C

>

0

such t h a t

- vly, M1

>

for a l l

0

such t h a t x e G,

a r e continuous i n t h e f o l l o w i n g s e n s e ,

- F ( . , X ) E ~ , ~+ 0

IIF(.,xn)

qo

>

0

as

n +

-,

and t h e same i s

such t h a t

f( - , ~ ) l l ~ < ,qOEUhUm,X. ~

with

<

agn,,X

+

m,

F'(t,x)h

if

+

Co

>

h

i s a s o l u t i o n of t h e e q u a t i o n

0

w i t h t h e following p r o p e r t y .

g = 0, 0 < t

C

For

b, h ( 0 ) = 0,

Ilhlla,X < bCOlgUm,X. (1.A4)

(1.2)

-9

{xn} c G

n + -; o r

< M l l h ! ~ ~ ~ I I h l E , Z where , 0 0 < 8 < 1.

There e x i s t s a c o n s t a n t g

-

v)llo < Clllu

and

X),

1

{hn} c C(0,b; Y) n C (0,b; X )

E ~ F ' ( * , X ~ ) ~ , +U 0~ , a~s

- P'(.,x)hll

dh/dt then

-

Let

such t h a t

implies

There exists a c o n s t a n t

(l.A3)

x

0

let

i = 1.

with

There e x i s t s a c o n s t a n t

i = 3.

F(*,x)

The f u n c t i o n s +

and

Y) cn + O+

or

h c C(0,b; Z ) n C1(O,b;

Ilx

(1.A;)

There e x i s t s a c o n s t a n t

i = 2.

-

[O,bl; u , v c Vo;

IIF(*,x

C(0,b; Then

- F(*,xn) -

Enhn)

- F(t,v)

IIF(t,u)

in

C(0,b; Y).

with

dz/dt

For

+

x

E

G,

F'(t,x)z

the linearized equation

+

F(t,x)

- F'(t,x)x

+

f ( t , x ) = 0, 0 < t < b,

Z(0)

=

"0

19

A Theory of Nonlinear Evolution Equations a d m i t s approximate s o l u t i o n s of o r d e r t h e following

with

(p,u,u)

0

< u

<

1

in t h e s e n s e of

Then D e f i n i t i o n 1.1. [9]. L e t p > 0 , v > 0 , u > 0 be g i v e n numbers. if t h e l i n e a r i z e d e q u a t i o n (1.2) admits approximate s o l u t i o n s of o r d e r (U,U,U) t h e r e e x i s t s a c o n s t a n t M > 0 which has t h e f o l l o w i n g p r o p e r t y . For e v e r y < K then t h e r e e x i s t s a r e s i d u a l ( e r r o r ) x E G, K > 1, and Q > 1, if nxll function

z

-9

and a f u n c t i o n

y

such t h a t

z

iizu - 9 2

llyll (1.2')

dz/dt

<

0

+

+

F'(t,x)z

m,X

< MQK" and

s MQ-!-IK',

F(t,x) = F'(t,x)x

+

+y

f(t,x)

= 0,

t C b, z ( 0 ) = xo.

Now f o r x E G, l e t z be a s o l u t i o n of t h e e q u a t i o n ( 1 . 2 ' ) z = x + h. Then o b v i o u s l y h is a s o l u t i o n of t h e e q u a t i o n

(1.3)

dh/dt

+

+

F'(t,x)h

+

Px

and put

y = 0, 0 < t < b, h ( 0 ) = 0 ,

and we g e t

Put

The f o l l o w i n g is a n i t e r a t i v e method of c o n t r a c t o r d i r e c t i o n s and assume t h a t x0,x1 ,...,xn 7: xo , 0, ,..., GLIM-I.

to =

E G; t O , t l

t

[61. are

known and put (1.6) that

x

and

~ =+ xn~ + ~~h~

tn+l = tn + cn,

S

= (1

Xn+l

-

En'Xn

+

EnZn,

which j u s t i f i e s t h e term "convex approximate l i n e a r i z a t i o n , where and

h ,,

being a s o l u t i o n of (1.3).

-

qObCO = q

<

q/2

<

1/2,

and put

, x ) s qlPxollm ,exp(-(l n n 9 e x i s t s 0 < E < 1 s u c h that P(1,h

where

po = XPxoII

-9

x

and put

To detemine

P(E,h,x)

-

q)tn),

E

n

= c-lllP(x

then

put

2F/q

let

E~

+

Eh) E

n

-

(1

= 1.

Otherwise

= E.

The method (1.6) s a t i s f i e s t h e f o l l o w i n g ' i n d u c t i o n

zn =

+ hn

< c < 1, where - E)PXU-,~. I f

assumptions

there

20

M.Altman


Ux It n m,Z

I l F ' ~ ~ l l , , ~G llPxoi~

-9

Theorem 1.1 [91.

u(1

-

-

v)

u

>

N = [(I

/u <

-

q)

a ) :

>

by

has a s o l u t i o n

x

b'

-

(1

+

GLIM-11. The directions. Put

- q)tn),

exp(-(1

0,

a

- q) -

>

with

i = 1, suppose t h a t

[ ~ ( l v)

11,

and

- 01-'

and

i s such t h a t

b'

-

-

- q)AlS < ro.

- q)G)C[b'Co(l + ~ ) p o ] l - s [ a ( l

0

and

and

a Ilxn

_ _ < (1 - s ) / s . - X U -,y + 0

iterative

~ =+ zn~ = xn

+

Then (1.1) as

,

(xn

with

-.

i s independent of

method

hn

n +

b

replaced

contractor

G),

E

as i n (1.6) and i n d u c t i o n assumptions

with

<

IIxn II-,Z where

>

1

following

xo, x

x0 ( t )

(1.7)

-

- q)6l-'exp((l

6

= Kn

0 t o be determined.

Al-v-o/lJ [ a ( l

where

= 1

x

I n a d d i t i o n t o (1.AO-1.A4)

0, a(l

M(2M)l /u(Tpo)-l

>

a,A

f o r some c o n s t a n t s

- q)tn)

exp(a(1

q

<

2-1/a

Theorem 1.2.

and

Aq-m

(C1ro

+

= Kn

and

qO)bCO(l + 27)

I n a d d i t i o n t o (l.AO-l.Aq)

c poq",

IIpXnII,,x

<

<

q

with

1;

4<

i = 2

q.

and

E = 1

suppose t h a t

0 = 1

- F(1 +

a)

>

0, N(1

- q 0) <

ro, N = C[b'CO(l

_

i n (l.Az),

+ ~)poll-s[A(q-u -

-

1)Is,

Then t h e s t a t e m e n t of Theorem 1.1 h o l d s t r u e . GLIM-111. The f o l l o w i n g i s a r a p i d l y convergent i t e r a t i o n method which i s based on t h e e s s e n t i a l technique of MDser [131.

(1.A5)

Let 1

<

a,T;

(11

-

X

<

a)-l(i

LI

be such t h a t

+

a(1

+ X) +

11)

<

'I

<

2

-

-ao

<

2

-

a,

21

A Theory of Nonlinear Evolution Equations

<

0

where

<

.to

i s such t h a t

1

o < B < Remark. 0 < 2A

- n)[(l

uA(ao

-

5

0.

t h e constant

bCo

(1.A;)

=

2.

x

1.

= KT+a n

and

I I P X ~ I I ~< , K ; ’ .~

-

+

<

T

-

A-1

2 )P+1

<

0

<

.

X

+

-,y

< (u +

1

Then

T

>

are s a t i s f i e d w i t h

1 such t h a t :

i = 3

if

-.

t h e n e q u a t i o n (1.1) w i t h as n + L e t us n o t i c e that

2),

+ 0

i n (A3) can be r e p l a c e d by

(1

ul:

-

CO.

1)/2

and

is a number such that

2.

Theorem 1.3 remains v a l i d i f (l.Ag) is r e p l a c e d by

(1.A;)

and

0.

Smoothing o p e r a t o r s combined w i t h e l l i p t i c r e g u l a r i z a t i o n . The choice of Moser’s d e g r e e

of e l l i p t i c r e g u l a r i z a t i o n . linearization. with

{Xj}

Let

norms such t h a t

o <

<

i n t h e above. Then = 1 + a, and put Kn+l

K~(M,B,LI,X,~)

0 and s < A(A and Exn XU

Suppose t h a t

Theorem 1.4.

a

and

- - - -S T >

x 0 < B <--x+l 1 < ( 1 -$)-’

1,

~ ( 2+ U)I-’

+

Suppose that assumptions (l.AO-l.Ag) Then t h e r e e x i s t s

6 = (I s)A has a s o l u t i o n

where f = 0

CI

!i)

>

a,)

as in (1.7) w i t h i n d u c t i o n assumptions

(xn]

Theorem 1.3. f

+

3) u =

-

ao)/(l

+

+

# x n # m , z < Kn

and

+

(1

1)/(u One can put a. = (u (11 - 1 ) / ( ~+ 1). W e assume

<

define

>

!I

ml

<

m2

<

3

W e assume t h a t

(2.k)

operators

s

0 <

< j implies < 5 < p. i

So,

0

> 1,

p

v

The d e g r e e

k

o f approximate

be a scale of Banach s p a c e s w i t h i n c r e a s i n g X. c Xi

J

there

and

W*Rj

>

II*li

and l e t

e x i s t s a one parameter

( s e e Nash [ 1 4 ] , Moser [ 1 3 ] ) such t h a t

f a m i l y of

linear

22

M. Altman P-9 IISXil < c k l e p

f o r some c o n s t a n t

>

C

0. where

< cnxii~-Aiixiih f o r j

that

P

m2

i s t h e i d e n t i t y mapping.

I

-

(1

=

IIXII

+

A)r

W e a l s o assume

0 c A c 1.

~ p . with

Using t h e same n o t a t i o n a s i n S e c t i o n 1 p u t lixil

m,j

= sup[Ix(t)!l

center

xo = 0

c l o s u r e of

in

F,f

>

ro

and r a d i u s

Vo

Let

0 c t c b],

*

j '

and l e t

0.

Put

Wo

Vo =

Xs.

: [O,b] x

Xs + Xo

be

+

+

two

CI

be an open b a l l w i t h

X,

wO n XP and l e t Vs

nonlinear

mappings

and

be the

consider

the

Cauchy problem (2.1) Let

Px(t) G

%

dx/dt

F(t,x)

be t h e s e t of f u n c t i o n s

x ( 0 ) = 0 , I l ~ l l ~<, r~ o

and

Y

=

with

Xs

s

<

( t , x ) c [O,b]

x

m2

ml

G

Cllhil

+

F'(t,x)z

0 c t < b , z ( 0 ) = 0, solution

z

-

>

C

For

k > 0 (t,x) E

+

0L.z

with s m a l l

0

Xg, 2 =

=

Yp

and

such t h a t

< CMhM

llF'(t,x)hllo

>

0

ml

<

0

L = L(n)

101

<

F'(t,x)x

x

G, l t e

z

C

such t h a t

and the modified l i n e a r i z e d e q u a t i o n

+ F(t,x) -

t o be determind and [O,b]

X

s = s/p.

F'(t,x)x 1

and

+ f(t,x)

>

+

= 0,

( t , x ) E [O,b]

such t h a t

-

with

m.

m2

C

f o r some

= 0.

Vo.

f o r some c o n s t a n t

dz/dt

(2.2)

< b, x ( 0 )

"SP a r e the same as i n S e c t i o n 1, where

There e x i s t s a l i n e a r ( r e g u l a r i z i n g ) o p e r a t o r llLzIIo & CUzll

t

1

t o be determined and

ilF'(t,x)hR

<

C(0,b; V o ( l l ~ l l ) ) n C (0,b; Xo) P

There e x i s t s a c o n s t a n t

(2.Aq)

for all

E

llxll

Assumptions (2.!1-2.A3) and

x

f ( t , x ) = 0, 0

f(t,x)l~ m2

0.

be a s o l u t i o n o f (2.1).

x

G

has

a

23

A Theory of Nonlinear Evolution Equations Lemma 2 . 1 ( 9 1 . llxll

<

'0.P

>

K, K

The f o l l o w i n g holds f o r

M1,M2,M3

>

0

-

and

0

x

G

with

-

+ n ) n -"K;

M1(9 -1

and

z = S,z

[O,bl

(t,x) E

u = T/p.

1,

- S,)dF/dtii,m,O C

[(I

f o r some


0

1 and

<

C

1.

Now put z = x + h. Then z i s an approximate s o l u t i o n of ( 1 . 2 ) of o r d e r w i t h u = a ( t o be determined) and II = m/p-m2 where

(u,u,a)

-

m = min(ml,m2

But t h i s c h o i c e of

ml).

r e q u i r e s s t r o n g e r assumptions f o r

!J

The f o l l o w i n g l e m m a g i v e s a b e t t e r choice.

L.

-

Lemma 2 . 2 [9]. For s u c h t h a t f o r K > 1 and p - 9 -i;; satisfy 9 rl K < QK'

<

0

C

7;

p

>

i?(l

1

- 7.

- k).

Since (2.A4) where

zn

=

and

X = Xo,

[u(l

-

xn

+

vl-'

Theorem 1 . 3 ,

a

< v < 1, > 1 one

and

(gem

implies (l.A4) z

h,,

<

(1

= v = 1

-

+

--

~ ) r l - ~ K "< Q-'Kv

provided

i t f o l l o w s t h a t Theorems 1 . 1 - 1 . 4

a = v, s = s / p

s)/y

+

a

in

case of

with

X(X

s<

with

+

2).

such t h a t

s

Theorems

1.1

But

Note t h a t k = 1 i n Theorem 1 . 3 i s a d m i s s i b l e . II exceeds one and Lemma 2 . 2 h a s t o be modified.

but

Fi

3.

If

F ' = Fi

+

Fi,

then

P'

i s s u b j e c t t o t h e same c o n d i t i o n s of

The case of

L = 0

remain v a l i d ,

= s z n, zn _being a s o l u t i o n of ( 2 . 2 ) s a t i s f y i n g ( 2 . 3 ) ,

5, -

1.4,

Remark 2 . 1 .

- >0

with ~ ( 1 u) v 1 and 8 > 1 which

u

<

n

- -

=

-

there exists can f i n d 0 <

then the last i n e q u a l i t y i s equivalent t o

= F/p,

Y = Ys, 2

-

w)

u

If

v

Q

and

and

a = 0

1.2.

I n case of

i n Theorem 1 . 4 .

I n b o t h Theorems 1 . 3 and

i n (2.A4) can be r e p l a c e d by

Fi

f.

k=0

T h i s i s a s p e c i a l case of S e c t i o n 2 and Lemmas 2 . 1 and 2 . 2 a r e s t i l l v a l i d as w e l l as a m o d i f i c a t i o n of Lemma 2 . 2 which i s needed f o r GLIM-111. Thus Theorems 2 . 1 - 2 . 4 c a n be proved i f t h e assumptions of S e c t i o n 2 are s a t i s f i e d with L = 0 and k = 0.

24

M. Altman Nonlinear e v o l u t i o n e q u a t i o n s v i a l i n e a r i z e d e v o l u t i o n e q u a t i o n s

4.

Denote by semigroups

t h e set of a l l n e g a t i v e i n f i n i t e s i m a l g e n e r a t o r s of

G(XO)

{U(t)}

an

-A.

i s t h e semigroup g e n e r a t e d by assume

that

A(t,x(t))

For

x

i s a f u n c t i o n from

A

is s t a b l e i n

a l s o assume t h a t s t a b i l i t y of

-A E G(XO),

If

Xo.

being dense 2and

put

G

E

0 < t

{ U ( t ) } = {e-tA},

Co-

<

the

[O,b] x V0

in

Xo

w,

A(t,x(t)) = F'(t,x(t)). into

G(Xo),

and

A(t)

(see Kato [ l o - 1 2 1 , Yosida [ 1 6 ] , Tanabe 1151).

Xo

Xm

A(t)

then

i s a d m i s s i b l e and

evolution operators

U(t,s;

We =

We

preserves the

x)

generated

by

A ( t , x ( t ) ) e x i s t and

for all

x E G

and some L = 0

( 2 . 3 ) hold w i t h

and

>

MO,MZ

k

=

Tnese assumptions imply t h a t ( 2 . 2 ) and

0.

0.

Example 1.

consider the nonlinear equation

For

w i t h a p p r o p r i a t e c h o i c e of

x E G

s , i t f o l l o w s from K a t o ' s

K

> 2,

since

It

u

follows

-9s

+

t

u xxx

from

and

Example 3.

(4.3) where

ro.

s

+

F(t,u,u

Kato's

e q u a t i o n s f o r (4.3) u E G

<

b r t e w e g - d e Vries n o n l i n e a r e q u a t i o n

Example 2 .

(4.3)

full

[ I 2 1 argument

= Hr(-m,m), X m2

t h a t the linearized equations f o r ( 4 . 2 ) s a t i s f y ( 4 . 1 ) with

) = 0, 0

[12]

c

argument

satisfy (4.1) i f

i s p r o p e r l y chosen.

X

m2

t

< b,

-m

<

and Remark 4

= H (--,-)

x

<

m.

that

2.1 with

K

the

> 3,

linearized

where

Consider t h e n o n l i n e a r system du/dt

+

F(t,x,u,ux)

u = u(t,x) = u,(t.x)

=

0, 0 < t < b,

,...,u N ( t , x ) ) ,

x E Rm, F

=

(F1

,...,FN).

Suppose t h a t

t h e l i n e a r i z e d systems f o r ( 4 . 3 ) s a t i s f y Kato's ( s e e ( 1 2 ) assumptions f o r s y m m e t r i c h y p e r b o l i c systems, t h e n (4.1) is s a t i s f i e d w i t h x r e p l a c e d by u provided that s i s p r o p e r l y chosen.

25

A Theory of Nonlinear Evolution Equations The e v o l u t i o n o p e r a t o r s U(t,s;x) i n (4.1) can b e r e p l a c e d by Remark 4.1. Um(t , s ; x) g e n e r a t e d by t h e a p p r o p r i a t e s t e p f u n c t i o n s t h e i r approx i m a t i o n s (see [31). Remark 4.2.

I n a d d i t i o n t o t h e a s s u m p t i o n s made above, s u p p o s e t h a t

-

F(t,u)

for all

F(t,v)

-

F'(t,v)(u

t : [O,b]; h , u , v : V s

u n i q u e f o r small

b.

-

and some

v)!l0 < C : I U

c

>

0.

-

vII

xO

!lu

-

vllX

Then t h e s o l u t i o n of (1.1)

is

(see [31).

Re f er ences Altman, C o n t r a c t o r s and C o n t r a c t o r D i r e c t i o n s , Theory and A p p l i c a t i o n s , L e c t u r e Notes i n Pure and App. Math. (M. Dekker, N e w York, 1977).

M.

Altman, Q u a s i l i n e a r e v o l u t i o n e q u a t i o n s i n n o n r e f l e x i v e s p a c e s , J. I n t e g r a l Equ. 3 (1981), 153-164.

Banach

M.

M. Altman, N o n l i n e a r e v o l u t i o n I n t e g r a l Equ. 4 (1982), 307-322.

equations

in

Banach

M. Altman, G l o b a l l i n e a r i z a t i o n i t e r a t i v e methods p a r t i a l d i f f e r e n t i a l e q u a t i o n s I,II,III, t o a p p e a r .

sapces,

and

J.

nonlinear

Altman, N o n l i n e a r e v o l u t i o n e q u a t i o n s and smoothing o p e r a t o r s i n Banach s p a c e s , J. Nonlin. Analys. 8 ( 1 9 8 4 ) , 481-490.

M.

Altman, I t e r a t i v e methods o f Analys. 4 (1980), 761-722.

M.

contractor directions,

J.

NOnlin.

Altman, N o n l i n e a r e q u a t i o n s o f e v o l u t i o n and convex a p p r o x i m a t e l i n e a r i z a t i o n i n Banach s p a c e s I , I I , J. NOnlin. Analys. 8 (1984), 4 57-4 70.

M.

M. Altman, N o n l i n e a r e q u a t i o n s of Nonlin. Analys. 8 (1984), 491-499. Altman, G l o b a l l i n e a r i z a t i o n evolution equations, t o appear.

M.

T. Kato,

S c i . Univ.

e v o l u t i o n i n Banach iterative

mehtods

L i n e a r e v o l u t i o n e q u a t i o n s of " h y p e r b o l i c " Tokyo, Sec. I. 17 (1970), 241-258.

spaces,

for type,

J.

nonlinear J.

Fac.

T. Kato, L i n e a r e v o l u t i o n e q u a t i o n s o f " h y p e r b o l i c t y p e 11, J. Math SOC. J a p a n , 25 (1973),

648-666.

Kato, Q u a s i - l i n e a r e q u a t i o n s f o e v o l u t i o n w i t h a p p l i c a t i o n s t o p a r t i a l d i f f e r e n t i a l e q u a t i o n s , i n L e c t u r e Notes i n Math. No. 448 ( S p r i n g e r - V e r l a g , New York, 19751, pp. 25-70.

T.

26

M. Altman

[I31

J. Moser, A r a p i d l y convergent i t e r a t i o n method and non-linear p a r t i a l d i f f e r e n t i a l e q u a t i o n s -I, Ann. Scuola Norm. Sup. F'isa 20 (1966), 265-315.

[I41

J. Nash, The embedding problem f o r Riemannian manifolds, Ann. Math. 63 (1956), 20-63.

[I51

H. Tanabe, Equations of Evolutions, (Pitman, 1979).

[I61

K.

Yosida, Functional Analysis, 1968).

2nd ed.

(Springer-Verlag,

New York,

T h i s paper i s i n f i n a l form a n d n o v e r s i o n of i t w i l l be submitted f o r p u b l i c a t i o n elsewhere.