A versatile synthesis of vicinal diazides using hypervalent iodine

A versatile synthesis of vicinal diazides using hypervalent iodine

Tetrahedron Letters,Vo1.27,No.25,pp Printed in Great Britain 2809-2812‘1986 0040-4039/86 $3.00 + .OO Pergamon Journals Ltd. A VERSATILE SYNTHESIS O...

192KB Sizes 27 Downloads 170 Views

Tetrahedron Letters,Vo1.27,No.25,pp Printed in Great Britain

2809-2812‘1986

0040-4039/86 $3.00 + .OO Pergamon Journals Ltd.

A VERSATILE SYNTHESIS OF VICINAL DIAZIDES USING HYPERVALENT IODINE Robert M. Moriarty,* and Jaffar S. Khosrowshahi Department of Chemistry University of Illinois at Chicago Chicaqo, Illinois 60680 A convenient synthesis of vicinal diazides from olefins using sum-A mechanism is proposed which accounts C H IO/HOAc/NaN is described. &e5stereochemi~al outcome.

for

Recently the conversion of alkenes to 1,2-diazides using manganese (III) acetate and sodium azide was reported.1 Mn(III)-N3

complex

alkene

yield

to

Mn(III)-N3

to

which

an

carries out a ligand transfer oxidation upon the

azidoalkyl

yield

important precursors

the

This reaction involves presumably a

radical

vicinal

which

diazide

subsequently

and

Mn(II).

for the synthesis by reduction2 of

are otherwise difficult to obtain.

Hypervalent

is attacked by 1,2-Diazides are

1,2-diamines which

iodine oxidation of alkenes

in the presence of sodium azide offers a simple and high yield route to 1,2diazides as exemplified in Eqn 1 and Table 1.

RCH =CHR’

+

NaN,

+

i

CH,COOH

RCH(N,)CH(N,)R’

la-f

2a-f

X=

NCOPh

= l_e

x=

0

=gl

48-_h

5g-h

+

i=

PhlO/

HOAc/

NaN,

2809

+

RCH(N$OR’ 3 a,s,L

2810

Table 1 1,2-Diazides from the Hypervalent Iodine Oxidation of Alkenes in the System C6H510-HOAc-NaN3a

Alkene

Conditions (to, time hr.)

Vicinal Diazide(%) cis/trans

Azido?Zatone(%)

500, 2

meso:30% -2ab= (42%) .-dl :70%

2. cyclohexene(lb) -

450, 3

-2bC= (40%)

3. styrene(lc) -

350, 3

-2cd= (70%)

4. trans-B-methyl styrene(ld) -

45O, 2.5

-2d=

5. chalcone(le) -

400, 3.5

PhCH=C(N )COPh(3e)e 7 51%) -

6. benzalacetone(lf) -

450, 2.5

PhCH=C(N )COCH3(3L)g ?49%)

I. N-benzoylindole(k)

45', 3

(34%) *ah

8. benzofuran(lh) -

R.T.,3

(85%) 4h:5hi =7:3

9. dibenzosuberenone(li) -

35', 2

(42%) 6i:7ij =2:1

1.

trans-stilbene(la) -

(69%)

PhCOCH(N )Ph(3a)b (13%) -

_cis :15% trans: 85%

erythro: 10% three90%

=7:2

a) General procedure: C6H510(0.01 mol) in HOAc(25 ml) + alkene (0.01 mol) stirred R.T. 10 min, then NaN3(0.04 mol) added and the reaction system stirred at indicated temperature and time (behind a safety shield). Workpoured into water extd*CHC13, chromatographed(silica gel 60 mesh), up: products eluted with benzene, pet-ether l:l, (h) E. Zbiral and K. Kischa, Tetrahedron Lett., 1167 (1969), (c) G. Emmer and E. Zbiral, Liebigs Ann. R. Galli and V. Malatesta, Org. Prep. Proced. a., 796, (l979)r (d) Int., 3(5), 231 (1971), (e) G. L'abbe and A. Hassner, J. Org. Chem. 36, 258 (1971), (Q) A. Hassner, G. L'abbe and M. J. Miller, J. Am. Chem. Sot. 93, 981 (1971), (h) Y. Tamura, S. Kwon, F. Tabusa, and MFIkeda, Tetrahedron Lett. 3291 (1975), (i) S. Kwon, T. Okada, M. Ikeda and Y. Tamur, He_ terocycles, 5, 33 (1977), N-Benzoylindole (lg) was prepared according to (j) Higher yield the procedure of Y. Kikugawa, Synthesis, 460 (1981). (64%) was obtained when two equivalents of iodosobenzene and eight equivalents of sodium azide were treated with one equivalents of dibenzosuberenone (li). -

2811

Formation of a-azidovinyl formation of vicinal diazides

Initial ketones -3e and -3f deserves comment. is assumed in these cases but facile loss of

HN3 occurs due to the driving force for formation of the conjugated carbohyl system. The pathway which we propose for these reaction involves initial electrophilic attack of the hypervalent

iodine species upon the double bond to

Azide anion may then attack the thus formed carboca-

yield intermediate A.

Subsequent reductive elimination of iodobenzene with attack by a tion (A+B). -second azide anion yields the vicinal diazides.

CBH,IX~

RCH =CHR’

F

Rc”H -CHR’

N;

v RCH -CHR’

-

I ‘(C6HJX

I ‘kHs)X E

4

4

X=

OAc,

N,

This pathway accounts for the lack of stereoselectivity in the sense that attack of -N3 upon Bmay of

I(C6H5)X

be upon the carbocation (SNl-like) or via displacement

(SN2-like),

and

the

balance

between

these

two

pathways

will

depend upon the nature of the substrate and intermediate A. The

reactions

Furthermore, alkenes

with

Zbiral

reported and

here

are

coworkers

similar

have

Pb(IV)(OAc)4-(CH3)3SiN34,

to iodine

azide

additions.3

studied the functionalization of C6H51(III)(OAc)2-(CH3)3SiN3, 5,7 and

T1(III)(OAc)3-(CH3)3SiN36. In the C6H51(OAc)2-(CH3)3SiN3/CH2Cl2 trile

occurs,

system oxidative cleavage to a ketoni-

e.q. a-pinine + cis

1-acetyl-3-cyanomethyl-2,3-dimethylcyclobutane'l, also styrene + o-azidoacetophenone 7 . By contrast the system C6H510-

HOAc-NaN3 leads to simple addition of two azido groups in a vicinal arrangement at the original position of the double bond.

2812

Referenoes 1.

W. E. Fristad, T. A. Brandvold, J. R. Peterson and J. R. Thompson, -J. Org. Chem., 50, 3647 (1985).

2.

Among

the reagents which has been used for the reduction of the azido

group

to

LiA1H4,

the

amino

group

are

PdO*nH20/H2,

Pt02/H2,

Pd-C/H2,

NaBH4,

(C6H5)3P, H2S/pyridine, sodium sulfide/Et3N, diborane, Cr(II), Mo(III), Bu3SnH/AIBN, Ti(III), Zn/HCl, HBr/AcOH, and

V(II), CH3COCH2COCH3/Et3N.

References to these various methods may be found in

H. Suzuki and K. Takaaka, Chem. Letters, 1733 (1984) in which these workers describe the use of sodium hydrogen telluride for this reduction. 3.

A. Hassner, Accounts Chem. Res., r, 9 (1971); Y. Tamura, M. W. Chun, S. Chem. Pharm Bull. 26 (ll), 3515 Kwon, S. M. Bayomi, T. Okada and M. Ikeda ~(1978); Y. Tamura,

S. Kwon, F. Tabusa,

3291 (1975); S. Kwon, T. Okada, M.

and M. Ikeda Tetrahedron

Lett.

Ikeda and Y. Tamura Heterocycles, 5,

33 (1977); T. Sasaki, K. Kanematsu and Y. Yukimoto J. Org. Chem., 37, 890 (1972). 4.

E. Zbiral and K. Kischa Tetrahedron Lett. 1167 (1969); H. Hugl, E. Zbiral Tetrahedron,

2,

Tetrahedron, 26,

753

(1973);

E.

Zbiral,

G.

Nestler,

and

K.

Kischa,

1427 (1970); E. Zbiral, A. Stiitz Tetrahedron, _27_,4953

(1971): E. Zbiral and G. Nestler Tetrahedron, 27, 2293 (1971); E. Zbiral, Synthesis, 285 (1972). 5.

F. Cech and E. Zbiral, Tetrahedron, -31, 605 (1975); J. Ehrenfreund and E. Zbiral Tetrahedron, 28, 1697 (1972); E. Zbiral and J. Ehrenfreund, Tetrahedron, -27, 4125 (1971).

6.

G. Emmer and E. Zbiral Liebigs Ann. Chem., 796

7.

E. Zbiral and G. Nestler Tetrahedron, 26, 2945 (1970). (Received in USA 5 March 1986)

(1979).