Tetrahedron Letters,Vo1.27,No.25,pp Printed in Great Britain
2809-2812‘1986
0040-4039/86 $3.00 + .OO Pergamon Journals Ltd.
A VERSATILE SYNTHESIS OF VICINAL DIAZIDES USING HYPERVALENT IODINE Robert M. Moriarty,* and Jaffar S. Khosrowshahi Department of Chemistry University of Illinois at Chicago Chicaqo, Illinois 60680 A convenient synthesis of vicinal diazides from olefins using sum-A mechanism is proposed which accounts C H IO/HOAc/NaN is described. &e5stereochemi~al outcome.
for
Recently the conversion of alkenes to 1,2-diazides using manganese (III) acetate and sodium azide was reported.1 Mn(III)-N3
complex
alkene
yield
to
Mn(III)-N3
to
which
an
carries out a ligand transfer oxidation upon the
azidoalkyl
yield
important precursors
the
This reaction involves presumably a
radical
vicinal
which
diazide
subsequently
and
Mn(II).
for the synthesis by reduction2 of
are otherwise difficult to obtain.
Hypervalent
is attacked by 1,2-Diazides are
1,2-diamines which
iodine oxidation of alkenes
in the presence of sodium azide offers a simple and high yield route to 1,2diazides as exemplified in Eqn 1 and Table 1.
RCH =CHR’
+
NaN,
+
i
CH,COOH
RCH(N,)CH(N,)R’
la-f
2a-f
X=
NCOPh
= l_e
x=
0
=gl
48-_h
5g-h
+
i=
PhlO/
HOAc/
NaN,
2809
+
RCH(N$OR’ 3 a,s,L
2810
Table 1 1,2-Diazides from the Hypervalent Iodine Oxidation of Alkenes in the System C6H510-HOAc-NaN3a
Alkene
Conditions (to, time hr.)
Vicinal Diazide(%) cis/trans
Azido?Zatone(%)
500, 2
meso:30% -2ab= (42%) .-dl :70%
2. cyclohexene(lb) -
450, 3
-2bC= (40%)
3. styrene(lc) -
350, 3
-2cd= (70%)
4. trans-B-methyl styrene(ld) -
45O, 2.5
-2d=
5. chalcone(le) -
400, 3.5
PhCH=C(N )COPh(3e)e 7 51%) -
6. benzalacetone(lf) -
450, 2.5
PhCH=C(N )COCH3(3L)g ?49%)
I. N-benzoylindole(k)
45', 3
(34%) *ah
8. benzofuran(lh) -
R.T.,3
(85%) 4h:5hi =7:3
9. dibenzosuberenone(li) -
35', 2
(42%) 6i:7ij =2:1
1.
trans-stilbene(la) -
(69%)
PhCOCH(N )Ph(3a)b (13%) -
_cis :15% trans: 85%
erythro: 10% three90%
=7:2
a) General procedure: C6H510(0.01 mol) in HOAc(25 ml) + alkene (0.01 mol) stirred R.T. 10 min, then NaN3(0.04 mol) added and the reaction system stirred at indicated temperature and time (behind a safety shield). Workpoured into water extd*CHC13, chromatographed(silica gel 60 mesh), up: products eluted with benzene, pet-ether l:l, (h) E. Zbiral and K. Kischa, Tetrahedron Lett., 1167 (1969), (c) G. Emmer and E. Zbiral, Liebigs Ann. R. Galli and V. Malatesta, Org. Prep. Proced. a., 796, (l979)r (d) Int., 3(5), 231 (1971), (e) G. L'abbe and A. Hassner, J. Org. Chem. 36, 258 (1971), (Q) A. Hassner, G. L'abbe and M. J. Miller, J. Am. Chem. Sot. 93, 981 (1971), (h) Y. Tamura, S. Kwon, F. Tabusa, and MFIkeda, Tetrahedron Lett. 3291 (1975), (i) S. Kwon, T. Okada, M. Ikeda and Y. Tamur, He_ terocycles, 5, 33 (1977), N-Benzoylindole (lg) was prepared according to (j) Higher yield the procedure of Y. Kikugawa, Synthesis, 460 (1981). (64%) was obtained when two equivalents of iodosobenzene and eight equivalents of sodium azide were treated with one equivalents of dibenzosuberenone (li). -
2811
Formation of a-azidovinyl formation of vicinal diazides
Initial ketones -3e and -3f deserves comment. is assumed in these cases but facile loss of
HN3 occurs due to the driving force for formation of the conjugated carbohyl system. The pathway which we propose for these reaction involves initial electrophilic attack of the hypervalent
iodine species upon the double bond to
Azide anion may then attack the thus formed carboca-
yield intermediate A.
Subsequent reductive elimination of iodobenzene with attack by a tion (A+B). -second azide anion yields the vicinal diazides.
CBH,IX~
RCH =CHR’
F
Rc”H -CHR’
N;
v RCH -CHR’
-
I ‘(C6HJX
I ‘kHs)X E
4
4
X=
OAc,
N,
This pathway accounts for the lack of stereoselectivity in the sense that attack of -N3 upon Bmay of
I(C6H5)X
be upon the carbocation (SNl-like) or via displacement
(SN2-like),
and
the
balance
between
these
two
pathways
will
depend upon the nature of the substrate and intermediate A. The
reactions
Furthermore, alkenes
with
Zbiral
reported and
here
are
coworkers
similar
have
Pb(IV)(OAc)4-(CH3)3SiN34,
to iodine
azide
additions.3
studied the functionalization of C6H51(III)(OAc)2-(CH3)3SiN3, 5,7 and
T1(III)(OAc)3-(CH3)3SiN36. In the C6H51(OAc)2-(CH3)3SiN3/CH2Cl2 trile
occurs,
system oxidative cleavage to a ketoni-
e.q. a-pinine + cis
1-acetyl-3-cyanomethyl-2,3-dimethylcyclobutane'l, also styrene + o-azidoacetophenone 7 . By contrast the system C6H510-
HOAc-NaN3 leads to simple addition of two azido groups in a vicinal arrangement at the original position of the double bond.
2812
Referenoes 1.
W. E. Fristad, T. A. Brandvold, J. R. Peterson and J. R. Thompson, -J. Org. Chem., 50, 3647 (1985).
2.
Among
the reagents which has been used for the reduction of the azido
group
to
LiA1H4,
the
amino
group
are
PdO*nH20/H2,
Pt02/H2,
Pd-C/H2,
NaBH4,
(C6H5)3P, H2S/pyridine, sodium sulfide/Et3N, diborane, Cr(II), Mo(III), Bu3SnH/AIBN, Ti(III), Zn/HCl, HBr/AcOH, and
V(II), CH3COCH2COCH3/Et3N.
References to these various methods may be found in
H. Suzuki and K. Takaaka, Chem. Letters, 1733 (1984) in which these workers describe the use of sodium hydrogen telluride for this reduction. 3.
A. Hassner, Accounts Chem. Res., r, 9 (1971); Y. Tamura, M. W. Chun, S. Chem. Pharm Bull. 26 (ll), 3515 Kwon, S. M. Bayomi, T. Okada and M. Ikeda ~(1978); Y. Tamura,
S. Kwon, F. Tabusa,
3291 (1975); S. Kwon, T. Okada, M.
and M. Ikeda Tetrahedron
Lett.
Ikeda and Y. Tamura Heterocycles, 5,
33 (1977); T. Sasaki, K. Kanematsu and Y. Yukimoto J. Org. Chem., 37, 890 (1972). 4.
E. Zbiral and K. Kischa Tetrahedron Lett. 1167 (1969); H. Hugl, E. Zbiral Tetrahedron,
2,
Tetrahedron, 26,
753
(1973);
E.
Zbiral,
G.
Nestler,
and
K.
Kischa,
1427 (1970); E. Zbiral, A. Stiitz Tetrahedron, _27_,4953
(1971): E. Zbiral and G. Nestler Tetrahedron, 27, 2293 (1971); E. Zbiral, Synthesis, 285 (1972). 5.
F. Cech and E. Zbiral, Tetrahedron, -31, 605 (1975); J. Ehrenfreund and E. Zbiral Tetrahedron, 28, 1697 (1972); E. Zbiral and J. Ehrenfreund, Tetrahedron, -27, 4125 (1971).
6.
G. Emmer and E. Zbiral Liebigs Ann. Chem., 796
7.
E. Zbiral and G. Nestler Tetrahedron, 26, 2945 (1970). (Received in USA 5 March 1986)
(1979).