A=189 W, Re, Os, Ir, Pt, Au, Hg
Compiled by A. Artna, April 1966
Replacement for pages 5 9 - 2 - 1 1 0 through 5 9 - 2 - 1 1 7 and 6 - 2 , 3 - 3 0 2 and 6 - 2 , 3 - 3 0 3 of Nuclear Data Sheets
Level schemes, compilers' analysis sheets, and data s h e e t s follow immediately. References, explanations of conventions, symbols, and abbreviations are at the back of this issue. P o l i c i e s and b a s e s for spin-parity assignments are described in the front of the first issue of each volume. Explanation of report identifications (BNL, ISC, etc.) and a list of USAEC Depository Libraries in countries outside the USA through which reports may be obtained are given with the reference section of the first i s s u e of each volume. References to reports are not used if a journal reference is available. P l e a s e refer to a specific Nuclear Data Sheet by using the number at the bottom of the page in the following way: Nuclear Data B1-2-69 (1966).
B1-2-85
m
A:189 Drawing
1
~7
188pt + n 9
8
..... ;~w;;:
9 .IB / ' ~
7.t5I0 ."* 188Re + n ..........
tBBlr +
,,.-,.~176176176176
~..L~L ~
"88w + p
1881r+p
~:,.'_
.........................
188Re +
7
p
6.009
6
10m
/~x ';;"g,o,
n
.~176176176176176176 ~ ~176176176176176176176176176176176176 ~176
t89.
4.4
18805 * n
9...oo.o..o..oo,.... . . . . . o... 1880s + p
5
=40m
79/~U110
4 -1[- ~ 1 1 m 3
t89. . 74Wt1,5
P3/2 - - - ~~ 7/2-)
llh
, -~Pt,, t 2
F I See ~176176
iX / / I /,/~/
T
m
o91z~ 8X
o 7926g//
2 2.O ] f 9 0 ~ ,5 9
:_ ~_o_,~_o_
0 7213p ' /
"*Z:o
o,~,,//
_
9~2_~_ I~I/~1-
7 ~>
5,'Z B 3 2 ] ,
( 7,'2)~
~24h
(S/Z}i 1512)+ {1/2)+ \
~89Re \ 75
Z
/,
2.5 I f 10r
,
o"sz7/
(5/2~'
114
(3/2)+ /
B
I
See also Drawing
0 3721~/. /
/
03005 /
/
0 1762p 0 l'l~S
/
00942 0
12.5 ns tS.Sd
§
189ir 77 112
27 /
12
c
_04i
D
\\ \ ~
0 ~14:'
/
/
wwOB
/
//
I Coulomb excitation with: h heavy ions A>4 l Q ligh! ions A_<4
I ww /3-syst.
0.2
B,C,D,F,F Commenfs X ),'s omitted 0
Stable
l
189~ 76UStt3
B1-2-86
Drawing 2 Coulomb excitation with: h heavy ions A>4 l light ions A<_.4 B,C,D Comments X T,s omitted Transitions per tOO decays of ~89Re -~89 Ir a 7"'S placed twice
1.5
1.0
A=189
,w~'~[=02;
189~ 75t~elt4
:
(3/8)+ [402] B
/
0.5
13.3d
I::Irt|2
"2•
(0.69 4%,87)
0.3147~(0.49
O" O" C~"
I I
0-30f
(E21
5'2-
0.72.5(7%,~ . 5 ) ~
--~'-_
"
I I I 0:~'0"0"0"0"
0.2758~(0.52 tO~,~7 }
0"251 (5"2)-
(3,,2|-
0.2336~ (0.%7~ t~,~88)
(712)712~ 0.20
O'Q'O
t
" (a~
=,,.g]f,
t~O12
MJ k-J
0.15
0.I0
\
70 5r
: (0.90 YOZ,~P]/
~---
13;2|-
J 00953/~ 0.6ns
(3/2)-
\ k (0,95 8r ; ' 8 ] / / ~ .
5/2-
5/;'-
0,0696~ I.Tns
.I
.
,8 0.05
,
'~
(t/z}-
(t,"z)-
1.01(5o~, ~ 2 ) / / \ L ~
3/2-
Is,2]
.1
.
9/2-
',--~/i;- ~ ~'z C~0s]
3/2-
m
189~
1
Stable 76us113
B1-2-87
9~ O"
"1,
0.0363 0.030866 h
A= 189
Drawing
:5
E,F Comments 2.C
X 9
(3/2-t 7/2-) t89 .
),~ omitted ),,s placed twice Transitions per t00 decoys of IegPI
tlh
7891111
(1.09 ZS,Z?)
0.912 /
O- 0, O"
~
11.21 2 ~r ZS) (I.24 t~,81)
t,e e
I
3"C,"O"
017926
.
o?~ez (5/2| §
>"0"0"
|1.28 Z6S,6 ?')
p'/
07213 ~'
/(l.45 /(1.46
~, Z6) 8S,,~4)
Q~94 j /
,I t
G5431 J l ~
.
~ (11/2)"/2 [505] 17/2)§
{11/2)-
0.3721 r12 ms
(7/2)§
03177 / 03005
(I.63
6z,~6)
(I.68Z3s,~o)
(1.82 27s, ?0)
(3/2 +)
13/2")
,~ ~
01762
(5,,2) +
(5/2|.~. f (I/2) +
00> ~'~" }"
01138 00942 12.5 ns
13/2)t
[3/2) f
(t/2) § I/2 [400]
IQQIr 77
B1-2-88
112
o 13.3d
A=IS9
C ompi l e rs ' A n a l y s i s , Sheet 1
Comments
Comments
D. C o l l e c t i v e L e v e l s
B. The Decay o f 189Ke
E i t h e r of t h e two l e v e l s a t 0.2168 and 0.2194 ~IeV can have one of t h e f o l l o w i n g t h r e e i n t e r pretations: a) N i l s s o n l e v e l 7 / 2 [ 5 0 4 which i s e x p e c t e d t o be s e e n i n t h i s decay. b) The 3rd member of t h e 3/21512] r o t a t i o n a l band.
The decay scheme proposed i s m a i n l y t h a t o f 63Cr06. The T - r a y i n t e n s i t i e s shown on t h e l e v e l scheme have been c a l c u l a t e d by t h e c o m p i l e r s from t h e measured a b s o l u t e photon i n t e n s i t y o f 0 . 2 4 4 S T a n d c e - i n t e n s i t i e s of 63Cr06, and the t h e o r e t i c a l c o n v e r s i o n c o e f f i c i e n t s f o r t h e adopted m u l t i p o l a r i t i e s as shown on the s h e e t s . T h e / 3 - i n t e n s i t i e s were c a l c u l a t e d from t h e l e v e l scheme. There i s an i n t e n s i t y i m b a l a n c e a t t h e 0.03086l e v e l . This imbalance c o u l d be a c c o u n t e d f o r by assuming t h a t t h e l e v e l i s fed by a ~ - g r o u p w i t h a l o g ft = 7 . 5 ; however, s i n c e i t i s improbable t h a t t h e r e would be a f i r s t - f o r b i d d e n unique /~-group to t h i s l e v e l w i t h such a low l o g ft v a l u e , th e c o m p i l e r s have assumed t h a t the i n t e n s i t y imbalance i s due to t h e u n c e r t a i n t i e s in the c a l c u l a t e d T - r a y i n t e n s i t i e s .
in 1890S c o n t i n u e d
c) K § band which has been lowered b e c a u s e o f band mixing. S i n c e a t l e a s t one o f t h e s e l e v e l s i s Coulomb e x c i t e d , i t i s q u i t e p o s s i b l e t h a t one of t h e two l e v e l s i s a K+2 T - v i b r a t i o n a l l e v e l b u i l t on ground s t a t e .
E.
R o t a t i o n a l Bands i n 189Ir The f o l l o w i n g r o t a t i o n a l equation
band p a r a m e t e r s i n t h e
E(level) =Eo+A~(J41)4a(-I)J*~(J4~)$K ~] C. The L e v e l Scheme of
189Os and Decay o f 189Ir
4 B O ( J + I ) 4 a ( - 1 ) J + ~ ( J + ~ ) $ K I ~] 2 9
The l e v e l scheme o f 1890S deduced from t h e decay o f 189Ir i s t h a t proposed by 62Ha24.
have been c a l c u l a t e d from t h e band members shown on t h e l e v e l scheme.
For t h e T-ray i n t e n s i t y c a l c u l a t i o n s t h e c o m p i l e r s have ad opted t h e ce-measuraments of 62Ha24 r a t h e r than t h o s e o f 59K09. I t s h o u l d be n o t e d , however, t h a t t h e v a l u e s of 59K09 a r e c o n s i d e r a b l y l a r g e r than t h o s e of 62Ha24 f o r low energy ~ ' s i n d i c a t i n g t h a t t h e i n t e n s i t i e s g i v e n on the l e v e l scheme (Drawing 2) f o r t h e low energy T ' s a r e p o s s i b l y too s m a l l . The r e l a t i v e i n t e n s i t i e s g i v e n on t h e s h e e t s can be c o n v e r t e d i n t o t r a n s i t i o n s p e r decay as shown on l e v e l scheme (Drawing 2) by u s i n g t h e f o l l o w i n g e q u a l i t y 100t ffi I00" ffi6.61 ~.
K ~ n z A] 3/2~02] 1/2 [400]
40.01868 40.02782
B(MeV) 43,262• 0.00
a
Eo(VeV)
-0.0174
-4).07464 40.07286
-4
P. The Le ve l Scheme o f 189Ir and Decay o f 189pt The l e v e l scheme o f 189Ir shown i s t h a t propos ed by 62Ha24 w i t h a d d i t i o n s by 64Le07. The T - r a y i n t e n s i t i e s have been c a l c u l a t e d by t h e c o m p i l e r s from t h e a dopt e d v a l u e s g i v e n i n t h e s h e e t s . The r e l a t i v e v a l u e s t h u s o b t a i n e d ha ve been n o r m a l i z e d t o t r a n s i t i o n s p e r 100 d e c a y s o f 189pt; however, t h i s r e s u l t s i n t he t o t a l T - r a y i n t e n s i t y of 7 3 - l e a d i n g to g . s . o f 189Ir. The i n t e n s i t y i m b a l a n c e o c c u r s m o s t l y a t t h e 0.09 4 2 l e v e l w i t h 56- coming i n t o and 33- goi ng o u t from t h i s l e v e l .
The e l e c t r o n - c a p t u r e i n t e n s i t i e s have been c a l c u l a t e d from t h e l e v e l scheme i n t e n s i t y b a l a n c e . A 60% g , s . c a p t u r e branch was c a l c u l a t e d from t h e measured K x - r a y i n t e n s i t y of 64Le07. There i s am i n t e n s i t y i m b a l a n c e a t t h e 0.03085 l e v e l w i t h ~ 8 . 6 ~ f e e d i n g i t and o n l y 2 4 deexciting it. A possible explanation for this is t h a t t h e 0.03086)' i n t e n s i t y as g i v e n i s too low.
D. C o l l e c t i v e L e v e l s in
A(MeV)
The e l e c t r o n c a p t u r e branch i n t e n s i t i e s have been c a l c u l a t e d from t h e l e v e l scheme. No g . s . branch ha s been assumed. Should some c a p t u r e go d i r e c t l y t o g . s . , i t i s u n l i k e l y t h a t i t would be s t r o n g e r t ha n = 2 ~ , and would t h u s r e s u l t i n o n l y a s m a l l c h a n g e i n t he l o g f t v a l u e s o f t h e o t h e r groups.
1890s
S i n c e o n l y two members of each of t h e r o t a t i o n a l bands a r e secn, i t i s not p o s s i b l e t o c a l c u l a t e t h e r o t a t i o n a l band p a r a m e t e r s f o r t h e 3/2 [512] and 1/21510] bands. In any c a s e i t i s e x p e c t e d t h a t t h e c l o s e p r o x i m i t y of t h e s e two bands w i l l r e s u l t i n band m i x i n g a s i n 183W.
Continued on n e x t page A. A r t n a
B1-2 -89
1
A=189
C o m p i l e r s ' A n a l y s i s , Sheet 2
Comments
F. The Level Scheme o f 189Ir. and Decay o f 189pt continued
Spin A s s i g n m e n t s
18~Re,,~ ground state 70
L ~ j ~ = (5/2+)
Analogy w i t h 185'187Re N i l s s o n l e v e l 5/21402]
The pro posed l e v e l scheme i s not e n t i r e l y s a t i s factory since the intensity balance requires e l e c t r o n c a p t u r e b r a n c h e s w i t h l o g I t o f 7.0 t o 3/2 + l e v e l and 7 . 6 to a l l / 2 " l e v e l . No s p i n f o r 189pt c o u l d s a t i s f a c t o r i l y e x p l a i n both o f t h e s e log /t values.
189n~ ground s t a t e 76v~113 Nuclear magnetic resonance, J = 3/2 optical spectroscopy 773 Measured m a g n e t i c moment a g r e e s with t h a t expected for the 3/ 2151~ N i l s s o n l e v e l
0.03086 l e v e l JW = 9/ 2"
T~i and L - s u b s h e l l r a t i o s show t h a t t h e 0.03086X i s M3 N i l s s o n l e v e l 9/2 [505] i s e x p e c t e d c l o s e t o t h e 3/21512] l e v e l
0.0363 l e v e l Mass D i f f e r e n c e s
J ~ = (I/2)-
The mass d i f f e r e n c e s sho~n on t h e l e v e l scheme a r e t a k e n from a l e a s t - s q u a r e s a d j u s t m e n t o f masss p e c t r o m e t e r , r e a c t i o n , and decay d a t a in t h i s mass r e g i o n . See A d j u s t e d Mass D i f f e r e n c e s , i m m e d i a t e l y p r e c e d i n g r e f e r e n c e s in t h i s i s s u e , f o r a l i s t o f d a t a used in t h e a d j u s t m e n t .
0.0696 l e v e l Jn = 5/2"
0.0953 l e v e l j ~ = (3/ 2) ~
The 0.0363)/ i s MI§ from L - s u b shell ratios N i l s s o n l e v e l 1/21510] i s e x p e c t e d c l o s e t o t h e 3/2" and 9/ 2" l e v e l s . See Comment D
The 0.0696T i s MI+E2 from L - s u b s h e l l r a t i o s . The l e v e l i s th e l o w e s t Coulomb e x c i t e d l e v e l :. p r o b a b l y t h e 2rid member o f g . s . r o t a t i o n a l band. See Comment D
The 0.0591u i s MI§ from L - s u b s h e l l r a t i o s .~ J = 1/2 o r 3/2. = -. Level d e c a y s p r e d o m i n a n t l y t o 1 / 2 - 0.0363 l e v e l , p r o b a b l y 2nd member o f t h e 1/21510] band. See Comment D
0.2168 l e v e l
J~ =7/2"
0.2194 l e v e l J = (7/2)
The 0.1859 and O. 2168T's a r e MI+E2 and E2. r e s p e c t i v e l y , c e - d a t a . See Comment D
from
The 0.21947 i s E2 from c e - d a t a . however, i t i s p l a c e d t w i c e i n t he l e v e l scheme ~ i t i s unc e r t a i n how much o f t h e i n t e n s i t y b e l o n g s h e r e . See Comment D The 0.1499)/ i s E2 from c e * d a t a A. A r tn a
B1-2-90
C ompi l e rs ' A n a l y s i s , S he e t 3
A--189
Spin A s s i g n m e n t s
Spin A s s i g n m e n t s
| ~ 0 S l l 3 0.2330 l e v e l J" = (3/2)" The 0. 1383 and 0 . 2 3 3 4 T ' s a r e MI§ from c e - d a t a .'. J = 1/2, 3/2 o r 5/2. 7 7 = P o s s i b l y N i l s s o n l e v e l 3/21501]
1 8 9 I r l l 2 0.3177 l e v e l j ~ ~ (5/2) + Le ve l de c a ys m a i n l y t o t h e 2nd member of t h e 1/2 ~ 0 0 ] band t hrough a MI§ T L e v e l d e c a y s t o t h e 1/2 + member o f t h e 1 / 2 h 0 0 ] band t h r o u g h an E2 Probably the 3rd member of the rotational band built on 1/21400] l e v e l . See Comment E
0.2758 l e v e l Jn = 5/2"
189r 77" r 112 ground s t a t e J = (3/2) 77=+
0.0942 l e v e l j~ = (1 /2) +
0.1138 l e v e l j n = (5/2)+
0.1762 l e v e l j ~ ~ ( 3 / 2 +)
0.3005 l e v e l J~ = (7 /2)+
The 0.2757T i s MI§ from c e - d a t a 9". J = 1 / 2 . 3 / 2 o r 5/2,w = The 0.2448Y i s E2 from ce d a t a j= = 5/2 ~ E i t h e r N i l s s o n l e v e l 5 / 2 [ 5 0 3 ] , or K - 2 T - v i b r a t i o n on t h e 9 / 2 [ 5 0 5 ] l e v e l , o r K§ T * v i b r a t i o n on t h e 1/21510] l e v e l
0.3721 l e v e l Jn = ( 1 1 / 2 ) -
0.7213 level j~ = (5/2) +
Analogy with 191Ir and 193Ir Log ft's to excited states in 1890s indicate that they are all flrst-forbidden transitions ..'. An =yes N i l s s o n l e v e l 3/2[402]
0.0942y i s E2 from c e - d a t a :. J ~ 7 / 2 n = + ~A shows i t i s not an enhanced E2 probably a particle level N i l s s o n l e v e l 1/21400] i s e x p e c t e d c l o s e to 3/2[402] l e v e l . See Comment E
0.1138T i s MI+E2 from c e - d a t a 2rid member o f g . s . r o t a t i o n a l band. See Comment E
The 0.2582)' is E3 and the 0.0716)' is M2 from ce-data Nilsson level 11/21505]
Decays t h r o u g h MI§ T ' s to l e v e l s w i t h J n = 3 / 2 + and 5 / 2 + Decays t o 1 / 2 ' l e v e l t h r o u g h 0,6270 E2 T
1 ~ P t 1 1 1 ground s t a t e J" = ( 3 / 2 - , 7 / 2 - ) Log ft = 7 . 0 t o a 3/2 + l e v e l and l o g ft= 7.6 t o a 11/2" l e v e l in 189Ir; t h e s p i n ~hich comes c l o s e s t t o s a t i s f y i n g both o f t h e s e c o n d i t i o n s i s 7/ 2. However, s i n c e even t h i s r e q u i r e s a second-forbidden transition to t h e 11/2" l e v e l , w i t h a v e r y low l o g f t v a l u e , one m i g h t c o n c l u d e t h a t t h e l e v e l scheme as pro p o s ed i s not c o r r e c t , and t h a t t h e r e c a nnot be an e l e c t r o n c a p t u r e branch to t h e I 1 / 2 " l e v e l . In t h a t c a s e one c o u l d propos e a s p i n of 3 / 2 ~ for t h e g . s . o f 189pt from analogy with IS5w, which also has 111 neutrons
Level d e c a y s m a i n l y to t h e I / 2 +, 1/2 h 0 0 ] l e v e l P r o b a b l y t h e 2rid member o f t h e I / 2 h 0 0 ] r o t a t i o n a l band. See Comment E
The 0.3005 and 0.1867 T ' s a r e E2 and MI§ respectively p r o b a b l y 3rd member of g . s . r o t a t i o n a l band
A. A r t n a
BI-2-91
II
189. 74 Wl 15 6 r o u n d - S t a t e Decay
T~
Q" = 2 . 5 2
63F107 65Ka07
11 m 11.5 3 All m
fl
1.4 3 A2. O probably complex
f2
A2.5 2
6 r o u n d - S t a t e Decay
Assignment
a, GM 63F107 s c i n 65Ka07
scin 65Ka07
Q- = E (,~2) Input to Mass Adjustment Output from Mass Adjustment
=2.5 2
=2.5 2
T(189Re)
66Mass 66Mass
s c i n 65Ka07 3t 12t 13t 3t lOOt 10t 96t 28t 20t 17t
x0.094 Xo. 130 x0.178 0.222 0.258 x0.360 x0.417 x0.555 x0.855 x0.955
5 2 2 8
3 8 1o
15 20
Sum peaks at 0.410 and 0.480
X s c i n 65Ka07
fy
NO (2.5~)y
s c i n 65Ka07
T)'
(0.258)')(0.222) ')
scin 65Ka07
No (0.258~/)(0.130, 0.178o 0.417, 0.5557)
scin 65Ka07
continued
B1-2-92
(192)Os(fast n,a)
W chem 63F107. 65Ka07
P 24-h I89Re
65Ka07
Not observed in the Re f r a c t i o n from 19~ n) 192Os(28-MeV d)
63F107
Not produced by W(d, p)
63F107
t89,.. 75Mel t 4 -| firound-State Decay
23.4 h I0 24 24.3 ~ A24 h
(4% 0.69)
Q'= 1.01 2
63Cr06 63FI07 65BI06
6 r o u n d - S t a t e Decay
7(1890S) Tl --5.5"(M)
From level scheme
0,725 30
s c i n f17 63Cr06 From l e v e l scheme
0.030824 MI/M 3 = 0.32 sd ce 63Cr06 0.0308 2 sd ce 65BI06 A0.03086 M3 aL= 2.28xi05 See 1890s M/L~INO = 0.262 See 1890s
")'2 =2.7"(LI)
(7%)
continued
0.03622 ~ 0.0362 2 A0.0363 E2/M1 = 0 . 2 / 9 9 . 8 a L = 15.9 aLl= 13.6
sd ce 63Cr06 sd ce 65B106 See 189Ir-1 See 189Ir-1
~3
/33
(6%
0.79)
From level scheme
~4
(13%
0.79)
From l e v e l scheme
0.780 17 nO.800 20 0.79
s c i n ~y63Cr06 sd 65B106
(10~
0.90)
From l e v e l scheme
/3G
(8~
0.93)
From l e v e l scheme
(50~)
~1.6"
0.09523 15 LI/L 3= 2.0 0.0952 2 AO.O952+AO.0953
sd ce 63Cr06 sd ce 65B106 See 189Ir-2
0.14106 15 sd ce 63Cr06 0.1472 2 sd ce 65B106 AO.14]I E2/MI = 50/50 See 189Ir-2 aK= 0.963 K/L =2.62 See 189Ir-2
s c i n 63Cr06 a, 6M 63F107 sd 65B106 From l e v e l scheme
^l.01 ?
Q-= E (/J7) =1.01 2 = 1.01 ?
0.06959 5 LI:L2:L 3= 79:101:100 63Cr06 L:MI:M2:M3 = 280:11:23:25 sd ce 63Cr06 0.065 scin 63F107 0.0695 1 sd ce 65B106 A0.0696 E2/MI =30/70 See l S 9 I r - 2 aL= 6,13 See 189Ir-2
~445 0.72"(L)
~5
1.00 5 0.8 3 1.015 20
=9.8"(L)
0.54*
0.14988 15 0.1501 2 A0.1499 E2 az= 0.349
sd ce 63Cr06 sd ce 65B106 See 189Ir-2 K / L = 0 . 7 9 9 See 189Ir-2
I n p u t to Mass Adjustment 66Mass Output from Mass Adjustment 66Mass T6+7 0.140
s c i n 63F107
*Relative ceK-intensity (unless otherwise noted) normalized to give aK(O.2448y)= O. lO0, pure E2 value
AAdopted value
BI-2-93
t89Re 75
-2
114
6 r o u n d - S t a t e Decay
y(ISgOs) 78 ~1.5"
Ground-State Decay
continued
T(ia%s)
continued
0.18586 I5
K/LI= 5.2 LI> L2,L 3
sd ce 63Cr06 63Cr06 0.1859 2 sd ce 65BI06 A0.1859 E2/MI =50/50 See 189Ir-3 aK= 0.507 K/L =3.31 See 1891r-3
~O.40"
continued
continued
sd ce 63Cr06 T/fi s c i n 63Cr06 sd ce 65BI06 See 189Ir-4 K/L = 1 . 7 9 See 189Ir-4
0.24503 "20 A4.0t 20
(0.40*)
0.2450 3 A0.2448 E2 aK= 0.100
7~ 0:64"
0,18836 10 sd ce 63Cr06 0.1886 ~ sd ce 65B106 A0.1884 E2/MI = 55/45 See 189Ir-3 aK= 0.459 K/L = 3 . 1 2 See i 8 9 I r - 3
tPhotons per I00 fl's *Relative ceK-intensity (unless otherwise noted), normalized to give aK(0.2448T) ffi0.100, pure E2 value
Y8+9 2 . 5 t 10 0.170 A4.4i
~10
0.3*
(0.78,B)(0.1471§ 0.2168§
0.2064 1 A0.2063 E2 az=0.157
X~ll -0.5*
0.2110 2
(0.72~5)(0.2488y)
T / ~ s c i n 63Cr06 63F107
sd ce 65B106 See 189Ir-3 K/L =2.81 See 189Ir-3
K/L12 = 2 . 4 16
63Cr06 0.1859+0.1884, 63Cr06
Assignment (189)Os(14-MeV n , p ) 19~ n,pn) 192Os(14-MeV n , a ) f i 192Os(28-MeV d , a n ) 186W(42-MeV a , p )
sd ce 65B106
chem chem chem chem chem
Observed T ' s known in decay o f 189Ir
O. 27" (L)
~'13 ~0.54"
0.21683 10 0.2168 t A0,2168 E2 aK= 0.138
sd ce 63Cr06 sd ce 65B106 See 189Ir-3 K / L = 1.51 See 189Ir-3
0,21941 10 0.2194 1 A0.2194 E2 aK= 0.133
sd ce 63Cr06 sd ce 65B106 See 189Ir-3 K/L = 1.54 See 189Ir-3
Not observed in Re fraction from Ir(14-MeV n)
~12413 llt 3
T / f i s c i n 63Cr06
A7.0t
AAdopted v a l u e XNot shown on l e v e l scheme
B1-2-94
63Cr06 63F107 63FI07 63PI07 65BI06 63Cr06, 65B106
63F107
t89 R 75 x189Re? = 120-d S t a t e Decay
120 d 140 20
elt4-3
Other Re , I c t i v i t i e s
62Bl12 65B106
T~
150 d
e"
0,2
(185,187)Re(pile n)
c h e m 51L19 a
This a c t i v i t y i s mainly 165-d 184Re
?/(1890S?)
51L19 63Cr06
TI 0.211 3
s c i n 62Bl12 T~
~5 y
(185,187)Re(pile n)
chem
51L19
a
51L19
chem
51T09
T2 0.568 5
s c i n 62BI12
0.671 5
s c i n 62Bl12
e~
0.75
T3 T~ 200 to 300 d
77
(0.2117)(0.568,
W(44-MeVa, pxn) o r W(22-MeV d, xn)
62BI12
0.671T)
No (K x - r a y ) ( 0 . 2 1 1 , 0.568. 0.671T) No (0.2117)(0.2117)
62Bl12 62BI12
T~
<5 d o r >100 y
No a c t i v i t y d e t e c t e d ( 1 8 s ' 1 8 7 ) R e ( p i l e n)
56S86
I f T89
56S86
d, then ~ [ 1 8 8 R e ( n , T ) ] ~ 2
Assignment ]86w(42-MeV a)
Re chem
65B106
XNot shown on level scheme
B1-2 -95
56S86
t89_ 760S115 6round S t a t e
3/2 +0.6566 40.8
65FuCo 65FuCo 651~Co
R e a c t i o n Data
Abunflance ~nA
16. 1% >0.008
Coulomb E x c i t a t i o n lagos(x,x'7)
59F ul l 65Sigm
0.0696 l e v e l T~= 1.7 ns J
I f B(E2)? = 1 . 0 . a T = 8 . 2 a n d $2 = 0 . 4 3 and t r a n s i t i o n c r o s s o v e r / c a s c a d e = 16 See Spin A s s i g n m e n t s
= 5/2
6-h, O.O3086-MeV M e t a s t a b l e - S t a t e Decay s 6 h
50C11 58S30 63Pr12
I 6.0 I A6 h 5.7
E~
CeLM 1.02
(0.0696) (0.0696)
B(E2)T
x
Ex
1.2 c 0.63
a p,a
3.5
sd 61Re2 s c l n 63Mc18
0.0953 l e v e l T ~ = 0 . 6 ns 7(1890s)
0.0308 s~ ce 58D44 a 0.0300 s c i n , s l ce 58S30 0.03094 3 sd ce 59K09a 0.03081 3 N/O = 4 s~ ce 60Ne4 M1/M3 = 0 . 2 1 NI/N 3 = 0 . 2 5 60Ne4 0.0313 4 slce 61Kr2 a 0.0308 I s'u ce 62Ha24 a 0.03682 4 M/M 3 = 0 . 3 2 5 sd ce 63Cr06 b O.030B 2 sd ce 65B106 b A0.03080
1
LI
aL > 3000
2.28•
:
--25 30 18 17.5
L2
:
2
1.14
No o t h e r T ' s
L3 I00 100 100
:
M 53 40 53
100
:
J
= 3/ 2
See Spin A s s i g n m en ts E7
B(E2)I
x
O. 20
p,a
Ey
B(E2)I
x
-
1.10
Poa
(0.0953)
N 15 15 14
I f B(E2)I = 0 . 2 0 , aT(0.09537) = 6 . 5 , $2(0.0953~) =0.087 and transition crossover/cascade = I/3
scin
63Mc18
0.2168+0.2194 l e v e l s 58S30 60Ne4 62Ha24 a
s c i n 63Mc18
M3 Theory
-scin.
s l ce
58S30
Assignment (188)Os(d,n)e
chem
58S30 M a s s - S p e c t r o m e t e r Data
13.3-d 189Ir Not by ( 1 9 1 ) I r ( n , 2 n )
63Pr12 chem
Mass-Doublet Measurements
58S30
aMeasured in the decay of 13.3od 1891r bMeasured in the decay of 24-h 189Re Clf aT(O.O696y) = 8. 2. t r a n s i t i o n c r o s s o v e r / c a s c a d e = 16 AAdopted v a l u e
B1-2-96
57J08, 59D36 See 66Mass
t89 77 Ir112 -1 6round-State
11 d 13.8 12,5 13.3 13,3 13.3 1O. 5 A13.3
Decay
~wq+ __0.8
2 7
Ground-State
T(1890S)
55S42 59K09 60Po7 62Le20 63Gr22 64Le07 65QaO1
1 2 I
0.0564
1 . 3 " (M3) 3 4 . 4 " (L)
%
KLL Auger
Ll
1314t
4.08 42. I 4.26
STZ ce 62Ha24
K x-rays + T5 t o t s
scin 64Le07
T6
:
L2
I)
0. 0 2 5 7 0 5
L 1 >L 2
A40*(L)
sTz c e 62Ha24
61*(M3) A22*(L)
T~ 14*(h)
a L = 579
T4 -~ 224"(L) A42*(L)
%
0.0308 0.03094 3 0.0313 4 0.0308 1 L1/L 3 =0.18 L:M:N ~ 1 0 0 : 4 5 : 1 2 A0.03086 M3 a L = 2 . 2 8 x 1 0 5
s n c e 58D44 s d ce 59K09 slce 61Kr2 sw c e 62Ha24 62Ha24 See 1890S
0.0333 0.033355 Ao. o333
s-rr
L1 100 100
15;1 379 15.9
100 100 100
3.59 34.0 3.74
4
E2
sw sd sl s~ sd sd
NI/O 1 = 5 . 4
4 5 2
:
M 26
M1 T h e o r y E2 T h e o r y 52 ~ 0 . 5 / 9 9 . 5
I0.1 1.13 5560 5700 13.0 4.03
:
L2
100 100
12.4 13
100 100 100
10.1 5120 12.7
62Ha24
su sd sl sn
:
L3
:
M
< 10
59K09 62Ha24
31 1.12 5210 3.77
MI T h e o r y E2 T h e o r y 52 = 0 . 5 / 9 9 . 5
0.0593
L;/L2= 5
srr ce 62H324
Theory
c e 58D44 c e 59K09 ce 61Kr2 c e 62Ha24 ce 63Cr06 a ce 6 5 B I 0 6 a
tRelative photon intensity *Relative ceK-intensity (unless otherwise noted), normallzed to I0" for T26 The photon intensities have been normalized to give pure E2 a K ( 0 . 2 4 4 8 T ) =0. I00 (for the data of 64Le07). 100t = 100* = 6 . 6 1 4 on level scheme,
:
h2 11 I4
:
L3
:
3.4 3.6
I0. I I. 19 8460 9060 12.8 4.06
M 39 39
:
N 6.6 13
ce 58D44 ce 59K09 ce 6 1 K r 2 c e 62H324
T~
58D44 62Ha24
= 3 . 6 " (L)
LI:L2:L 3 =1.13:92.0:100
0.0362 0.03644 0.0361 0.03623 0.03622 0.0362 A0.0363
ce
L2:L3:M ~ 8 7 : 1 0 0 : 6 7
L3
13
100 100 I00
L1
aL
T2
:
0.0590 0.05918 6 0.0584 3 0.0591 1 A0.0591
T(ISg0s) =1.5"(L
s n ce 58D44 s d c e 59K09 s w c e 62Ha24
0.05663 6 0.0565 1 A0.0566
100
23*
continued
continued
T._~
d
Decay
59K09 62Ha24
M1 T h e o r y E2 T h e o r y 52 = 0 . 2 / 9 9 . 8 aMeasured in the decay of 24-h 189Re hAdop ted value
B1-2-97
Drawing
2
1
189
771ri12-2 Ground-State
T(1890s)
Ground-State
continued
continued
T8 600"(L) A2IO*(L)
aL
T(1890s)
0.0695 0.06964 0.0693 0.0696 0.06959 0.0695 A0.0696 L1
2.23 15.2 6.13
I. 5"
:
L2
:
L3
105 6 106 I01 5
i00 I00 I00
9170 917 2.80 I00 64.8 106
:
M
:
0.1383 2 az
1.86 0.422 1.47
N 59K09 62Ha24 63Cr06 a
- - 8 3 - -
73 23 59 10
I00 100 I00
Tl__fi4 -1.6" al.3*
MI T h e o r y E2 T h e o r y 52 ~ 30/70
0. 0952
aK
s w c e 62Ha24
LI
2.4
I00
5,99 0.673 3.72
100 100 100
0.1471 0.1472 1 0.1471 2 0.14706 15 0.1472 2 A0.1471
TI___~o
aL
0.0953 I
M/N f 3
K/L
L1
=1.1 0.898 3.47 1.10
:
53
6.05 0.239 4.60
sTz ce 62Ha24
K/L
K/L
946 0.68 56.0
L2
swce :
L3
:
62Ha24
1.56 0.366 0.963
M
15
I0
19
93 11.3 16.0
1010 10
M1 E2
:
5.99 0.769 2.62
L2
:
L3
50
30
62Ha24
9.61 1 . 0 2 MI T h e o r y 672 525 E2 T h e o r y 49.4 3 2 . 5 32 = 2 7 / 7 3
s ~ c e 58D44 s d c e 59K09 s w c e 62Iia24 sd ce 63Cr06a sd ce 65BI06a
L/M=2
L1
1.3 4 =2
6.7"(L)
continued
continued
Ti=~3 1.3"
s-~ce 58D44 s d c e 59K09 slce 61Kr2 1 s r r c e 62Ha24 5 MI :M2:M 3 = 4 5 : 9 4 : 1 0 0 63Cr06 a 1 s d c e 65B106 a
Decay
3
53 6 63 79 5
=
Decay
:
L2. :
L3
- - 4 8 - =17 =13
10 10
996 2.24 14.6
lO.O I0.0 I0.0
95.8 13.0 14.1
59K09 62Ha24 MI T h e o r y E2 T h e o r y 82 = 5 0 / 5 0
62Ha24
Yl_~5
Theory Theory 5 2 = 8/92
0,1499 0.1498 0.1499 0.14988 0.1501 A0.1499
0.62* ~0.6"
2 2
L:M:N=32:IO:l.9 L/M=2.7 15
2
STT c e 58D44 s d c e 59K09 s ~ c e 62Ha24 sd c e 63Cr06 a sd ce 65BI06
~9410 7.9"(L)
6.8t
0.0952 0 . 0 9 5 2 3 10 0.0954 3 0 . 0 9 5 2 3 15 0.0952 2
s w c e 58D44 MI/M 3 ~ 5 sd ce 59K09 L12:L3:M= 73:10:21 59K09 s l ce 61Kr2 s c i n 62Le20 LI/L 3 = 2.0
aK
sd c e 6 3 C r 0 6 a s d c e 65B106 a
0.349
K/L
L1
:
L2
:
L3
0 , 9 1 19 - - 2 7 1.0 - - 1 5 - -
I0 10
0.799
10.0
2.35
13,1
59K09 62Ha24 E2
Theory
~14415 YI___A O . 1 6 * ( L 1)
3.4t ~Relative photon i n t e n s i t y 0.0978 I
sw ce 62Ha24
scin 62Le20
9Relative ceK-Intensity (unless otherwise noted). normalized to I0" for T26 The photon intensities have been normalized to give pure E2 aK(0.2448T) =0.100 (for the data of 62Le20 and 64Le07) 100t = 100" =6.61-- on level scheme, Drawing 2
")/9410411
0,9t
X•I2
0.095
O. 1050
-
0.098
scin
sd ce
64Le07
59K09
aMeasured in the decay of 24-h 189Re AAdopted value XNot shown on level scheme
B1-2-98
t89
- 71rI 2-5
G r o u n d - S t a t e Decay
T(1890s)
continued
G r o u n d - S t a t e Decay
continued
T(laOos)
continued
xy2,
~13+14+15 6.0~
continued
scin 64Le07
0.138 - 0.150
0.43*
0.1993
sd c e 59K09 s c i n 62Le20
0.2062 0.2061 2 O. 2063 3
s~ ce sd ce
4.1~ ~16
:
0.1640 sw ce 0.1640 2 K/L>5.3 K/M<4.5 sd ce
~I.I* AI.I*
0.1640 2
2.6t
a K = 1.15 =0.281 : 0.716
A0"1640
K/L l = 7 . 3
~22
58D44 59K09
s ~ c e 62Ha24
O. 46*
scin 62Le20 aK =0"42 ( I . I * / 2 , 6 t )
K/L = 6 . 0 4 =0.951 ~ 2.94
K/h 1 = 6 . 7 0 =8.60 : 6.99
K/L 2 = 2 . 6
s ~ c e 62Ha24
0.2064 2 AO.2063 a K = 0.157
M1 T h e o r y E2 T h e o r y ~2 = 5 0 / 5 0
58D44 59K09
sd ce 65BI06a
K/L ~ 1 . 4 0
K/L 2 = 2 . 8 1
E2
Theory
~23 0.2166 0.2167 3 0 . 2 1 6 8 3 I0 0.2168 1 A0.2168
1.5" 0.32*
0.1805 3
s ~ c e 62Ha24
Y,__~8 O. 1859 0.1858 2 0 . 1 8 5 8 5 20 0 . 1 8 5 8 6 15
1,9" al.8*
svv c e 58D44 sd c e 59K09 K/L 1 = 7 . 2 s ~ c e 62Ha24 K/L 1 = 5 . 2 + 3 " 9 - 1 . 8 63Cr06 a
LI >L2.L3
63Cr06a sd ce 65B106a
K/L 1 = 6 . 7 5 8.45 7.03
MI T h e o r y E2 T h e o r y ~2 =50/50
0.1859 2 A0.1859 a K =0.809 =0,205 =0.507
K/L = 6 . 0 8 1.19 3.31
aK
0.138
0.1886 0 , 1 8 8 5 2 K/L 3 > 1 5 0 . 1 8 8 6 3 K/L 3 = 1 0 0 . 1 8 8 3 6 I0 0.1886 ~ A0.1884
a K = 0.779 =0.198 = 0.459
K/L ~ 6 . 0 9 =1.21 = 3.12
K/L 3 = 683 = 3.46 = 14.3
2.9t
0.85* a z =0.683 =0.175 =0.287
L1
:
2.0
--14.5~
1.51
5.73
L2
:
L3 10
15.4
62Ha24
lO.O
0.2193 1.2" 0,2194 (~9.8t) A1.3* 0.21935 4,6t 0.2194I 0.2194 A0.2194
s 7 7 c e * 58044 sd c e 59K09 s ~ c e 62Ha24 sd ce 63Cr06 a s d e e 65BI06 a
aK
K/L
2
L3/M=I
30
1,54
L/M=4
10 1
LI
>1.2 3 1,6 ~6 A0.133 ( 1 . 3 " / 9 . 8 t )
M1 T h e o r y E2 T h e o r y ~2 = 5 5 / 4 5
0.133 )'18+19
sd c e 63Cr06 a s d ce 65B106 a
E2
Theory
~24
Y,__99 0.60* A0.63"
K/L
ST~ c e 58D44 s w c e 62Ha24
L/M=3.8
:
L2
<28
5.90
:
S~ ce
58D44
sd ce sd pe s~ ce scin sd c e s d ce
59K09 59K09 62Ha24 62Le20 63Cr00 a 65B106 a
L3
19
lO 10
15.6
10.0
59K09 62tia24
E2
Theory
s c i n 62Le20
0.1974 3
K/L 2 = 5 . 3
K/L=6.10 =1.31 ~2.08
aMeasured in tile d e c a y of 2 4 - h AAdopted v a l u e XNot shown on l e v e l scheme
K/L 2 = 7 1 . 3 = 2.60 = 5.25
s r T c e 62Ha24 )Relative photon intensity * R e l a t i v e c e K - i n t e n s i t y , n o r m a l i z e d to 10 ~ f o r T26 The r e l a t i v e i n t e n s i t i e s h a v e been n o r m a l i z e d to g i v e p u r e E2 a K ( 0 . 2 1 9 4 y ) = 0 . 1 3 3 ( f o r t h e d a t a o f 59K02) and p u r e E2 a K ( 0 . 2 4 4 8 T ) = 0 . 1 0 0 ( f o r t h e d a t a o f 62Le20 and 64LEO7), 100~ = 100 ~ = 6 , 6 1 4 on l e v e l scheme, Drawing 2
M1 T h e o r y E2 T h e o r y ~2 = 7 8 / 2 2
189Re
BI-2-99
189
771r112-4 G r o u n d - S t a t e Decay ~(1890S )
continued
G r o u n d - S t a t e Decay
continued
~T
No (CeLO. O 6 9 6 y ) ( c e 0.24889/) No (CeLO. O696"/)(O.2488Y )
Y2___t5 0.2336 0.2333 2
1.5"
sTzce K/L=2.2 5 sd c e L I 2 / L 3 < 1 2 . 5 s d ce, pe
^4.4t A1.3,
0.2335 3 ~0.2334
clK = 0 . 4 2 9 = 0.113 = 0.221
K/L 3 = 700 = 5.49 = 16.0
T2___~s -I0" < 7 5 t
0.2450 0.24477 12 0.2447 10 ~ 0.2450 ~ lOOt 0.24503 20 lOOt 0 . 2 4 5 0.2450 3 ~0.2448
I
ax
K/L 1.85 13 1.73
0. I00
1.79
M/N =3.5
LI
:
L2
:
~22-14
~8
7.62
16.5
L3
Assignment
187Re(a,2n) 19~
MI T h e o r y E2 T h e o r y 52 = 66/34
$77 c e sd c e , p e slce s n ce scin sd ce scin s d ce
d ll-h
58D44 59K09 61Kr2 62Ha24 62Le20 63Cr06 a 64Le07 65B106 s
I0 10
10 10
59K09 62t[a24
10.0
E2
Theory
~(1890S) 2 7 ' (L) 15'0,3) 50'(I,) 14,(LI) 33,(Li) II*(LI) 190"(L) 7" {
: ~
0.2758 0.2756 3 25t
AI.4*
0.2758 4 4.Or Alot ^0.2757 aK
K/L
3 . 8 11 2.9 0.14 (I.4*/lOt) 0.271 0.0734 0.133
6.01 2.08 3.48
L/M=4.8
L1
34
1060 I0. I 28.3
:
L2
4" 5" 5" 2'
swce 58D44 s d c e 59K09 s d pe 59K09 sTT c e 62Ha24 s c i n 62Le20 :
1.2"
1.0" 6" 0.8" 1.4" 0.9" 1.3" 1.2" 0.6' 10"
L3
~16
I0
I01 17.5 19.0
I0.0 I0.0 10.0
59K09 62Ha24
MI T h e o r y E2 T h e o r y 52 = 7 0 / 3 0
~Relatlve photon intensity *Relative ceK-Intensity , normalized to I0" for T26 The relative intensities have been normalized to g i v e p u r e E2 aK(0.2194T) = 0 , 1 3 3 ( f o r the d a t a of 59K09) and pure E2 aKf0.2448T) = 0 . ] 0 0 ( f o r t h e d a t a of 62Le20 and 64Le07). 1 0 0 t =100 *= 6 . 6 1 4 on l e v e l scheme, Drawing 2 aMeasured In the decay of 24-h 189Re AAdopted v a l u e
B1-2-100
12 < Eo < 22 189pt
chem chem
59K09 62Ha24
55S42,60Po7,63Gr22
Added in P r o o f
T27 I.I*
s l 63Cr06 s l , s c i n 64Kr03
58D44 59K09 59K09
K / L 3 = 16 sTr ce 62Ha24 a K = 0.30(1.3"/4.4t)
K/L = 6 . 0 6 = 1.68 =3.21
continued
O. 0308 0.0333 0.0362
s d c e 66Sy01 L I / L 3 = 0 . 6 L/M = I 0 0 / 3 0 L3/M= 100/65 Li:Ls:L3:M:N =I00:67:61:76;15
0.0564 0.0590
0.0593 0.0695 0.0952 0.0953 0.1358 0.1383 0,147 0.1499 0,164 0.1805 0.1859 0.1886 0.1974 0.2062 0.2167 0.2194 0.2335
0.246
L12:L3:M:N = 200: 1 0 0 : 6 8 : 2 1
K/L12 = 8 . 0 K/L = 7.3
K/L = 1.1 K/L = 6.1 K/L > 0 . 7
K/L : 0 . 5 K/L = 1 . 0 K/L = 1.6
L2/L 3 = 1 . 3
L/M = 4 . 7
L I : L 2 : L 3 =8: 1 3 : I 0
t89
771r112-'5
12-ms, 0.3721-MeV M c t a s t a b l e - S t a t e Decay I0.0 ms 6 14 I AI2 ms
60Mo19 63Re13
T(189Ir) 71
0.120 5 A0. I138
scin 63Re13 See 189pt-1
"Y2
0.180 10 A0.1867
scin 63Re13 See 189pt-2
0.32 0.300 10 A0.3005
scin 60Mo19 scin 63Re13 See 189pt-3
Assignment
Os(19-MeV p, xn) 19~ p.2n) d ll-h 189pt
excit.
60~Io19 63Re13
chem
65Qaol
B1-2-101
1
t89_ 78Pt111-I G r o u n d - S t a t e Decay
10.5 h 11.5 II.1 10.9 10.87 All h
~wQ+ = 2 . 0
G r o u n d - S t a t e Decay
T(189Ir)
55S42 60Po7 61An2 63Th07 64Le07
10
5 I0 12
continued
Ys ---~
sd c e sTr c e sl ce scin sTLsd c e scin
0.09394
368"(L) 59t =335"(L)
0 . 0 9 4 2 5 I~ 0.0940 2 0.094 0.09424 7
M/N=3.9.
Al20t
A350*(L) x/3+ 53t
X-rays
950t
observed 0.511 T • not observed
aL
s c i n 63Th07 s c i n 63Th07 s c i n 64Le07
0.065
71
0.0716 1 0.0708 2 0.07162 6 A0.0716
--78"(L) 76"(L) A77*(L)
55.6
:
L2
:
L3
L2
:
L3
: M
I00
51
62Ha24
114
I00
44
64Le07
3.99
104
100
E2
Theory
aL LI
:
0.196
6.07
0 . 1 1 3 7 5 17 0.1133 2 0.111 0 . 1 1 3 8 2 10
svr c e sl ce soin sTz, s d c e scin
40t 50*(L) A61t A51*(L) A0.1138
sTr c e 62Ha24 s l c e 62Kr4 s ~ . s d c e 64Le07
aL
L1
K/L
~0.053 ~36 2.9 (350"/120t)
~4 ~---52"(L)
~(189Ir)
62Gr27 62Ha24 62Kr4 63Th07 64Le07 64Le07
A0.0942
--104--
s c i n 63Th07
continued
K/L
L1
:
L2
:
L3
: MI2
21 28
72
62Ha24 62Kr4 63Th07 64Le07 64Le07
: MI2
I00 100
20 11
32 38
90
62Ha24 64Le07
100
10.3
30.6
M2
Theory
>1.8 1.4 0.84 (51"/61t)
100 100
0.592 1.65 0.741
I00 100 100
5.91 0.368 4.17
33 30
62Ha24 64Le07
9.95 1.01 M1 Theory 1160 949 E2 Theory 35.6 2 2 . 2 ~2 = 1 4 / 8 6
89 --~--71*(LI) 44,(L1) A57*(L1) aL
0 . 0 8 2 1 5 12 0.0814 2 0 . 0 8 2 0 6 15 a0.0821 K/L
1.52 7.60 2.04
L1
6.17 0,111 3,34
~Relative photon for 0 . 2 4 3 5 T *Relative The
s-u c e 62Ha24 s l c e 62Kr4 sTLsd ce 64Le07
:
L2
:
L3
: M3
~75
35
I00
g190
I00 100 I00
I0.0 1.04 MI T h e o r y 2590 2400 E2 T h e o r y 125 108 52 = 3 0 / 7 0
intensity,
normalized
c e K - i n t e n s i t y , unless
relative
intensities
0.140 0.1411 0.1402 0.140 0.14106
86t 22.4"(L1) A124t A22.4" AO. 1411
64Le07
aLl
to 100t
otherwise
have been
~5 = 2 2 . 4 " ( L 1)
K/L I
M/N=3.4
6
LI/N=22
LI
~13
1.91 0.396 1.87
100 I00 I00
I0. I 672 13.0
noted AAdopted
value
XNot shown on l e v e l scheme
B1-2-102
L2
100 100
normalized
to give aK(O.2435T) = 0 . 1 0 2 . the theoretical pure E2 value. 100~ = 5.08 ~ on the level scheme. Drawing 3
:
5.0 4.9 1.8 (22.4"/124t) 6.56 8.43 6.57
scin sTrce sl ce scin sTr, sd c e scin
10
2 3
:
L3
55S42 62Ha24 62Kr4 63Th07 64Le07 64Le07
: M 25
62Ha24 64Le07
1.01MI Theory 525 E2 Theory 3 , 5 8 b2 = 3 / 9 7
t89_
78Pt111-2
Ground-State
Decay
continued
Ground-State
w(lS9Ir)
T(189Ir) continued ~6 AI.8*(LI) 0.1764 3 0.1758 3 <32' O. 1763 3 A0.1762
K / L I 2 < 17
0.2235 3 0 . 2 2 3 3 3 18 A0.2234 aK
a K = 1.02 =0.234
X•7 ~1.9'
K/L = 5 . 9 9 =0.979
K/LI2 = 6.04 =1.52
M1 E2
Theory Theory
0.128 0.1812 3 0 . 1 8 1 3 3 15
4.5*
25" 24*
0.1867 3 0.1867 2 A137t A25. A0.1867 az
0.18
K/L
sw c e 62tta24 sw, s d c e 64Le07 s c i n 64Le07
= 6 , 0 (K/L I ) ~2.1 I00 (25"/137t) 100 100 100
:
L2
:
.~-49
~14 10.2"
62Ha24 64Le07
I0
lOOt 9.61 0.95 404 260 23.3 9.95
nll T h e o r y E2 T h e o r y 52=16/84
K/L12 = 3 . 6
0.1909 3 0.1908 A0.1908
a K ffi 0 . 6 7 5 =0.161 ~8 to 11 - - 5 1 ~
0.2040 3 0.205 0.2037 4 A0.2039
K/L = 6 . 0 0 = 1 . I1
L3 10 10
5.86
16.7
10.0
62Ha24 64Le07 E2
Theory
O. 191
s n c e 62Ha24 s n , s d ce 64Le07
K/L 1 = 2
K/L=6.00 =1.46
MI E2
K/L 1 = 6 . 6 1 =8.09
nll E2
scin
0.2436 0.238 0.2434 2
K/L 1.2 1.4
s ~ c e 64Le07
K/L 1 = 6 , 6 2 =8.03
M1 E2
Theory Theory
swce scin sn, sd ce scin
62Ha24 63Th07 64Le07 64Le07
M12/N = 0 . 9 4
1.65
LI
- -
:
L2
:
41 18
7.14
17.0
L3
: M12
10 10
62Ha24 1 . 8 64Le07
10.0
E2
Theory
~'l 5
Theory Theory
sw c e 62Ha24 s c i n 63Th07 K/L 1 = 4 . 4 sw, sd c e 64Le07 a K =0.55 (22"/40t)
K/L = 6 . 0 0 =1.24
AAdopted v a l u e XNot shown on l e v e l
:
A0.2435
s n c e 62Ha24 s r r c e 64Le07
a z = 0.813 =0.191
1.O*(L 1) A40t A22"
L2
lOOt
0.102 ~1o 1.4" 2.6* ^2.0*
- - 1 6 - - 2 1
:
s~7 ce 6211a24 srr. s d c e 64Le07
L3
~9 0.1890 3
1.3 1.9
0.2259 3 A0.2256 2 A0.2257
aK
--2.6*
L1
a z = 0.509 = 0.125 LI
6.00 1.08 5.02
K/L
1.44
TI_~3 0.06* 1.6" A=I*
10.2" 0.664 0.202 0.758
L/M=2.9
s n c e 62Ha24 s n , s d c e 64Le07
~8 =
continued
continued
W12 3.0* 4.5" A4.0*
sTr c e 62Ha24 s l c e 62Kr4 s n , s d c e 64Le07
Decay
0.7*
0.2520 5
~16 1.1" <3.8" A=2*
0.2583 4 0.2582 P n0.2582 aK
K/L 0.58 40.19
Theory Theory
0.247
0.502
K/L12 = 2 . 1
s n , sd c e 64Le07
s n c e 62Ha24 sw, sd c e 64Le07
L1
:
L2
- - 2 2 - ~2 21 3.40
22.2
:
L3 10 10 I0.0
62Ha24 64Le07 E3
Theory
tRelative photon intensity, n o r m a l i z e d to 100t for 0.2435T 9R e l a t i v e c e K - l n t e n s i t y . u n l e s s o t h e r w i s e n o t e d The r e l a t i v e intensities h a v e been n o r m a l i z e d to g i v e a K ( O . 2 4 3 5 T ) = 0 . 1 0 2 . t h e t h e o r e t i c a l p u r e E2 v a l u e , l O 0 t = 5 . 0 8 4 on l e v e l s c h e m e , Drawing 3
63Th07
scheme
BI-2-I03
189-
78 P tlI 1-3 G r o u n d - S t a t e Decay
T(189Ir)
continued
6 r o u n d - S t a t e Decay
continued
3.4*
0.3000 5 0.3058 2 3.4* A54t 0.3004 2 A3.4. A0.3005 aK
K/L
s~ ce 62Ha24 s l c e 62Kr4 sein, s~,sd ce 64Le07
LI
:
L2
:
aK
10 10
0.0600 2.21
10.0
18.4
0.3178 5 0.3176 2 a4 2t
A8.7"
A0.3177
K/L
0.0427
E2 Theory
~21+22 - -
K/LI2=5.7 s77 ce 62Ha24 K/LI2 = 6 . 7 S~T.sd ce 64Le07 L/M~ 5 s c i n 64Le07 a K = 0.21 ( 8 . 7 " / 4 2 t )
1
K/L=5.99
K/L12 = 6 . 0 4
MI
")/23
~17+18 A4.0*
2.1 "
0.4038 5 A32t
A2.4"
A0.4040
a K = 0.105 = 0.0290 =0.0 749 ~2o -<1.5" AI*
K/LI2 =5.2 K/LI2 = 5 . 5
s ~ c e 62Ha24 s ~ . s d ce 64Le07 s c i n 64Le07 a K =0.075 ( 2 . 4 " / 3 2 i )
K / L = 6.00 = 3.00 =5.20
0.5418 8 0.5423 8 A0.5420
K/LI2 = 6 . 0 0 =3.75 = 5.50
K:LI2:L3=1:1:3
a K =0.0484 =0.0148
M1 Theory E2 Theory $2 ~ 4 0 / 6 0
-
=0.55 scin 4.4* 0.5455 8 s~ ce 0.544 I s l ce (134t) 0.550 scin 4.7" 0.5448 4 K:L12:L 3 = 1 0 : 1 1 : 0 . 5 5 A134t scin A4:6" A0.5450 a K=0.034 (4.6"/134t) a K =0.0477 =0.0147 =0.0345
K/L = 6 . 0 0 =3.92 =5.50
~24 =1.0" 1.0"
0.6275 i 0 0.6269 ~ ATlt
M1 Theory E2 Theory
A0.6270
a K =0.0109
T2___! -
K/L
0.0360 6.00
STTCe 62Ha24 sd ce 64Le07
55S42 62Ha24 62Kr4 63Gr22 64Le07 64Le07
L3 62Ha24 64Le07
~3
0.079
MI
Theory
scin 63Th07
L1
6.5 (K/L1) 5.5 0.035 (4.0"/I14T)
A1.0* K/L ffi 6.00 =3.91
0.917
:
s~ ce s l ce scin sw, sd ce scin
62Ha24 62Kr4 63Th07 64Le07 64Le07
A0.6076 a K
0.4042 6
10
All4t
s c i n 63Th07
~19
2.7*
L2
0.6081 9 0.607 I 0.610 0.6072 7 L/M f4.1
Theory 144t
0.306
:
140t 0.569
4.2" 96t
L1
6.00
~4" a K =0.201
s7T ce 62Ha24 s l ce 62Kr4 L / M ~ 3 . 9 s c i n , sn. sd ce 64Le07
6.6 (K/L I) 4.6 - - I I - 0.045 ( 4 . 4 " / 9 8 t )
62Ha24 64Le07
~18 =8.4" 9.0 "
continued
0.5693 9 0.568 I 4 . 1 " A98t 0.5688 ~ A4.4. A0.5690
L3
1.8 20-2.1 - - 2 4 - 0.063 ( 3 . 4 " / 5 4 t ) 11.6
T(189Ir) ~22 4.7*
continued
~25 0.40"
L2
11--
I0.0
0.918
L3 62Ha24 64Le07
~I
0.079 M1 Theory
s ~ c e 62Ha24 s~,sd ce 64Le07 scin 64Le07 a K = 0.014 ( l . 0 * / 7 1 t ) K/L12=4.8
K/L = 4 . 3 0
0.6441 6
:
K/LI2 = 4.85
E2
Theory
s~,sd ce 64Le07
t R e l a t i v e photon i n t e n s i t y , n o r m a l i z e d to 100t for 0,2435T *Relative ceK-intenslty The r e l a t i v e i n t e n s i t i e s have been n o r m a l i z e d to g i v e aK(O.2435T) =0.102. the t h e o r e t i c a l pure E2 v a l u e . 100t = 5.08-- on l e v e l scheme, Drawing 3
L12/L 3 =137 M1 Theory ffi 6.85 E2 Theory 26.8 $2 = 4 0 / 6 0
AAdopted value
BI-2-104
t89_ 78Pf111-4 6 r o u n d - S t a t e Decay
continued
6 r o u n d - S t a t e Decay 7~
T(189_Ir) continued 726
=0.70 0.7217 11 0.7200 15
2.8* 75t 121t
0.720 0.720 0.7209 5
2.8*
s c i n 63Th07 s ~ . s d ce 64Le07 s c i n 64Le07
L/~=3.6
h156t
A0.7210
A2.8. aK
K/L
L1
5.4 (K/L1) 4.5 0.018 (2.8"/1561) 0.0231 0.00812
727 =0.15" 0.13" AO. 14*
6.00 4.60
L2
:
39--
1280 76
0.7363 11 0.7355 7 A0.7357
:
118 30.0
K/LI2 =1.25
62Ha24 64Le07
~I0
s c i n 63Th07
0.1138, 0.1411, 0.2435. 0.3005+0.3177y, 0.191 peak) s e i n 63Th07
(ceL0.0716Z)(0.30057)
sl,scin
(CeLO. 08217)(0.545OY)
s l . s c i n 64Kr03
(CeL0.09427)(0.1411,0.54507)
s l , s c i n 64Kr03
(0.1138T)(0.191 peak) (ceKO. 11387)(0.1867+0.1908,
L3
10.0 10.0
(K x - r a y s ) ( a l l T ' s ) (7•
scin 55S42 ~ ce 62Ha24 sl ce 62Kr4 scin 630r22
continued
(0.1138)')(0.6076y)
64Kr03
s c i n 63Th07 0.60767) s l , s e i n 64Kr03 s c i n 65Th01
(0.24357)(0.5450+0. 5690"/)
s c i n 63Th07
No (0.30057)(0. 7210"/)
Scin 65Th01
M1 Theory E2 Theory
s~r ce 62I[a24 sw. sd ce 64Le07
TT-delay a K = 0.0078
0.48* 0.38* A0.43.
K/L = 4.71
0.7932 12 0.7924 7 A0.7926
K/LI2 =5.11
K/L = 12
E2
Theory
(E~=0.60)(ceL0.0942Y) T~ =13 ns 2 (0.6270"/)(0.0942y) 12 1 (0.141 ~ E y ~ 0 . 2 2 3 ) ( 0 . 0 9 4 2 y ) 12 t
sw ce 62Ha24 s ~ . s d ce 64Le07
a12.5 ns I0
65Ja12 65Ja12 65Ja12 65Ja12
Y2~ =0.14" 0.10" A0.12*
T28§
0.8020 t2 0.7981 15 A0.800
s ~ c e 62tta24 s ~ , s d ce 64Le07
Assignment (191)Ir(p, 3n) 8
47t 27t
0.805 -
s c i n 63Th07 s c i n 64Le07
ion chem chem
55S42 55S42 630r22 63Th07 65Qa01
P 13.3-d 189Ir chem 55S42,64Le07,65Qa01 d~ 40-m 189Au chem 55S42,60Po7
t R e l a t t v e photon i n t e n s i t y , normalized to 100t for 0.2435y 9Relative e e K - i n t e n s i t y The r e l a t i v e i n t e n s i t i e s have been normalized to give aK(O.2435y) = 0.102. the t h e o r e t i c a l pure E2 value. 100t =5.084 on level scheme, Drawing 3 -
AAdopted value
B1-2-I05
i89 79/4UII0 Ground-State Decay
T~
40-m Au A c t i v i t y
42 m 5 30 A=40 m
55S42 60Po7
=40=m 189Au activity not found: 197Au(l10-MeV p, 9n)189Hg ms,chem
61An2
No 189Au conversion lines found in the region of 20 to 150 keV (sd)
No a
<3x I0"5%
ic 63Ka17
Pt(70-MeV p, xn)
atomic beam
64Li06
No =40-m activity observed among the odd-mass Au nuclei. Looked for resonances for all half-integral spins from 1/2 to 11/2. Started experiment = 40 m after irradiation xT(189pt ) scin 55S42
semieond ce 65Ki06
10t 0.135 I0 100t 0.290 10 > 0.80
0.0394~
I
0.0457 0.0886 0.159
0.1666 0.2159 0.440 0.446
Added in Proof ~i
66Na01
29.7 m 8
T(189pt) ~Relative photon intensity
=20 T ' s observed
s c i n , semicond 66NaO1
Assignment
Pb(3-GeV p) Assignment (181)Ta(12C, 4n ) Pt(130-MeV p, xn) Pt(80-MeV p) P ll-h 189pt d 10-m 189Hg
55S42 55S42 65Ki06
chem chem ms
chem
55S42,
60Po7 60Po7
AAdopted value • shown on level scheme BI-2-I06
ms, chem
66Na01
189 H 80 g109 6 r o u n d - S t a t e Decay
T,/,
No a
20 m t 0 23 2 9 9.6 5 (9.5) AIO m
55S42 57C34 60Po7 61An2 63Ka17
<0.1% < 3 x 1 0 -5%
Added in Proof
s c i n 57C34 ic 63Ka17
T,, 7z
66Na01
8.5 m 2
Assignment XT(189Au) 71
Pb(3-GeV p) 0.165
scin
60Po7
T2
0.240 0.2339
scin sd ce
60Po7 61An2
73
0.320
sein
60Po7
74
0.500
scin
60Po7
No c e - l i n e s
0.020 ~E e ~0.150
61An2
Assignment 197Au(120-MeV p.9n) chem 55S42 197Au(155-MeV p.9n) e x e i t , ms 60Po7 197Au(110 to 125-MeV p.9n) ms 61An2.63Ka17 (181)Ta(60-MeV 14N.6n) Genetics
p = 40-m I89Au
chem
57C34
55S42,57C34,60Po7
AAdopted
value XNot shown on level scheme
B1-2-107
ms, chem
66Na01