Accretion, subduction erosion, and tectonic extrusion during late Paleozoic to Mesozoic orogenesis in NE China

Accretion, subduction erosion, and tectonic extrusion during late Paleozoic to Mesozoic orogenesis in NE China

Journal Pre-proofs Accretion, subduction erosion, and tectonic extrusion during Late Paleozoic to Mesozoic orogenesis in NE China Arthur Aouizerat, We...

1MB Sizes 4 Downloads 99 Views

Journal Pre-proofs Accretion, subduction erosion, and tectonic extrusion during Late Paleozoic to Mesozoic orogenesis in NE China Arthur Aouizerat, Wenjiao Xiao, Karel Schulmann, Brian F. Windley, Jianbo Zhou, Jinjiang Zhang, Songjian Ao, Dongfang Song, Patrick Monie, Kai Liu PII: DOI: Reference:

S1367-9120(20)30039-0 https://doi.org/10.1016/j.jseaes.2020.104258 JAES 104258

To appear in:

Journal of Asian Earth Sciences

Received Date: Revised Date: Accepted Date:

11 December 2019 19 January 2020 29 January 2020

Please cite this article as: Aouizerat, A., Xiao, W., Schulmann, K., Windley, B.F., Zhou, J., Zhang, J., Ao, S., Song, D., Monie, P., Liu, K., Accretion, subduction erosion, and tectonic extrusion during Late Paleozoic to Mesozoic orogenesis in NE China, Journal of Asian Earth Sciences (2020), doi: https://doi.org/10.1016/j.jseaes. 2020.104258

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Elsevier Ltd. All rights reserved.

Accretion, subduction erosion, and tectonic extrusion during Late Paleozoic to Mesozoic orogenesis in NE China Arthur Aouizerata, Wenjiao Xiaoa,b,c,*, Karel Schulmannd,e, Brian F. Windleyf, Jianbo Zhoug, Jinjiang Zhangh, Songjian Aoa,c, Dongfang Song a,c, Patrick Moniei, Kai Liu a a

State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

b

Xinjiang Research Center for Mineral Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China c

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China d Institute

de Physique du Globe de Strasbourg, IPGS – UMR 7516, CNRS et Université de Strasbourg, Strasbourg, France

e Centre

for Lithospheric Research, Czech Geological Survey, Klárov 3, Prague, Czech Republic f

Department of Geology, University of Leicester, Leicester LE1 7RH, UK g College

h

of Earth Sciences, Jilin University, Changchun 130061, China

The Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, China; School of Earth and Space Sciences, Peking University, Beijing 100871, China

i Géosciences

Montpellier UMR‐CNRS 5243, University of Montpellier, Montpellier, France

* Corresponding author. E-mail: [email protected]

1

Abstract The high-pressure Heilongjiang Complex records a long and complicated evolution from the late Paleozoic to Mesozoic in NE China, which is still subject to controversy. In this paper we present a new detailed study including structural, geochemical and geochronological analyses (Ar-Ar dating on metamorphic minerals, U-Pb SIMS dating on zircons). Two main periods of oceanward accretionary growth are identified between 305 Ma and 195 Ma and around 112 Ma-101 Ma. These periods of accretionary growth were associated with the emplacement of voluminous magmatism, slab roll-back with continental back-arc extension, and growth of a forearc accretionary prism. Between these periods of accretionary growth, a major phase of regional subduction erosion took place between 195 Ma and 142 Ma at the eastern edge of the Songliao Block. The main effects of this subduction erosion phase were that regional Jurassic-early Cretaceous extrusion overlapped with

Mesozoic accretion and erosion in NE China, which disturbed the initial orogenic

architecture. With a review of relevant zircon ages of this accretionary orogen, we unravel the complicated geodynamic history of accretion, subduction erosion and tectonic extrusion that shaped NE China from the late Paleozoic to Mesozoic.

Keywords: Accretionary complex; subduction erosion; tectonic extrusion; Heilongjiang complex; NE China

2

1. Introduction Accretionary orogens have long been regarded as important records of the accretionary history of active margins (Şengör et al., 1993; Windley et al., 2007; Isozaki, et al., 2010; Wilhem et al., 2012; Wakita et al., 2013; Xiao et al., 2015). However, the traditional understanding of the uni-directional oceanward growth of accretionary complexes was challenged by the recognition of successive phases of tectonic erosion in the Japanese Islands (Isozaki et al., 2010; Suzuki et al., 2010; Maruyama et al., 2011). This particular tectonic process may be related to the subduction of a mid-oceanic ridge (Windley and Xiao, 2018), which led to the destruction and fragmentation of most peri-Pacific orogens and as consequence it contributed to the removal of much continental crust (Scholl and von Huene, 2009; Yamamoto, 2010). A tectonic erosion process is highlighted by the presence of serpentinite mélange belts, which include fragments of the upper plate and HP rocks from the exhumed subduction channel during landward retreat of the magmatic front. This event led to subduction of huge quantities of upper plate material (fore-arc basins, accretionary complexes, magmatic arcs) into the mantle. A phase of accretionary growth occurred between two events of tectonic erosion marked by oceanward addition of accreted ocean floor material, terrigenous trench sediments, island arcs, and oceanic plateaus (Maruyama et al., 2011; Suzuki et al., 2010), accentuated by episodic arc-arc collisions (Xiao and Santosh, 2014). Another significant process shaping subduction--accretion orogens is “arc-slicing” or “arcshaving” faulting, which cause the repetition of accretionary complexes and magmatic arcs, which clearly change the primary crustal architecture (Natal’in and Şengör, 2005). The subduction-accretion processes of the Paleo-Pacific orogen in NE China are marked by the development of Mesozoic accretionary complexes, magmatic provinces and regional ENE-

3

NE transcurrent faults (Liu et al., 2017; Wu et al., 2011; Xiao et al., 2015). There is a range of conceptual models proposed to explain the geodynamic evolution of this orogen (Ma et al., 2017; M.D. Sun et al., 2018; Zhou et al., 2014), but the mechanisms of subduction-accretion-extrusion remain poorly understood. To fill the gap, we propose to focus on the HP (blueschist) Heilongjiang Complex, which belongs to the Mesozoic accretionary, Jilin-HP Heilongjiang belt, which is bound by the Zhangguancai Range magmatic arc (Songliao Block) to the west and the Jiamusi Block to the east (Wu et al., 2007; Zhou et al., 2009; Zhu et al., 2017d). The high-pressure Heilongjiang Complex is located along the N/S-trending Mudanjiang fault, which is an important suture between the Jiamusi and Songliao Blocks (Zhou et al., 2009, 2013). Its tectonic evolution remains controversial; different studies have suggested that the high-pressure Heilongjiang Complex is an Archean greenstone belt (Liu, 1988; Zhao et al., 1996), a late Proterozoic metamorphic belt (Dang and Li, 1993), or a Triassic northeasterly extension of the Dabie-Sulu-Yanji HP-UHP belt (Ishiwatari and Tsujimori, 2003; Oh, 2006; Zhang, 1997, 2004). Other studies suggested that the Complex is a late Ordovician mélange that formed on the eastern margin of the CAOB, and was followed by mid-Silurian or Carboniferous collision (Li, 2006; Liou et al, 1989a, 1989b; Wang et al., 2016; Zhang, 1992; Zhang et al., 2018). Recent advances, however, indicate that the high-pressure Heilongjiang Complex is a Mesozoic accretionary complex that marks the transition between the closure of the Paleo-Asian Ocean in the west and the start of westward Paleo-Pacific subduction in the east (Wu et al., 2007; Zhou et al., 2009, 2010; Zhou and Li, 2017; Zhou and Wilde, 2013). The Complex represents a narrow seaway that opened between 260 Ma and 210 Ma as a consequence of slab-roll back of the Pacific oceanic plate, which involved a change in orientation of its motion. In this model the closure of the narrow oceanic basin at about 210-180 Ma (Zhou et al., 2009, 2010; Zhou and Wilde, 2013), or even after 140 Ma (Zhu et al., 2015, 2017a, 2017b, 2017c, 2017d) gave rise to the exhumation of the high-pressure 4

Heilongjiang Complex. However, Yang et al. (2017, 2019) considered that the presence of subduction-related mafic rocks in the HP Heilongjiang Complex, the difference of Permian sedimentary sequences, and the crustal difference between the western and eastern margins of the Jiamusi Massif, all mitigate against a Permian rift model between the Jiamusi and Songliao blocks. Ge et al. (2016, 2017, 2018) suggested that a wide ocean named the “Mudanjiang Ocean” existed between the Songliao and Jiamusi Blocks and was closed after 140 Ma from south to north in a scissor-like manner during an oblique convergence, which gave rise to left-lateral movements along the suture zone The direction of amalgamation was considered to be only westward, thereby producing Permian to late Jurassic arc magmatism between 275 Ma and 140 Ma in the Zhangguancai range magmatic arc (Ge et al., 2017, 2018; Zhu et al., 2017d), but an alternative model was proposed with a double-side subduction of the Mudanjiang Ocean between the composite Bureya–Jiamusi–Khanka Block and the Zhangguancai range magmatic arc in the late Palaeozoic-early Mesozoic (Dong et al., 2017a, 2017b, 2018a, 2018b). Finally, Aouizerat et al. (2018) proposed that the HP Heilongjiang Complex developed in an E/W-directed Pacific subduction regime between 190 Ma to 160 Ma, and the final uplift was in the end-Jurassic between 160 Ma and 140 Ma as a result of N-S-directed shortening related to closure of the Mongol-Okhotsk Ocean In this paper we present new geochemical analyses and U-Pb SIMS dating of zircons in volcanic and granitic rocks coupled with

40Ar-39Ar

phengite and SIMS U-Pb zircon dating of

blueschists located in the HP Heilongjiang Complex and on the eastern edge of the Zhangguancai Range magmatic arc. Structural analyses demonstrate the interactions between the HP Heilongjiang Complex and the regional ENE/NE-trending wrench faults. We combine all these data with a review of zircon ages from the whole accretionary orogen in NE China. A spatial grid of intrusive and extrusive ages shows the migration of a magmatic front during the Paleozoic to Mesozoic eras. 5

All the data are critically evaluated to propose an innovative model of tectonic erosion, accretionary growth and extrusion that controlled the evolution of the Paleo-Pacific orogen in NE China from the late Paleozoic to Mesozoic.

2. Geological setting In NE China, three orogenic belts evolved simultaneously in Paleozoic to Mesozoic times: (1) the E-striking Central Asian Orogenic Belt (CAOB), also named eastern Altaids (Mossakowsky et al., 1994; Şengör et al., 1993; 1996; Wilhem et al., 2012); (2) the WSW/W-striking MongolOkhotsk belt in the north (Parvenov et al., 2003) and (3) the N-striking Paleo-Pacific belt in the west (Aouizerat et al., 2018; Wu et al., 2007; Xu et al., 2013; Zhou et al., 2014). The eastern part of NE China was mainly developed during the Mesozoic subduction of the paleo-Pacific plate together with accretion of micro-continents such as the Jiamusi-Khanka-Bureya Blocks and the CAOB blocks to the west (Fig. 1a). Exposed tectonic units include Mesozoic accretionary complexes (Jilin-Heilongjiang HP belt, ophiolitic Nadahanda terrane), which extend from the Russian Far East (Sikhote-Alin terrane) and central Japan (Mino-Tamba terrane) (Liu et al., 2017; Wu et al., 2011; Zhou et al., 2014). The whole orogenic system is divisible into the following units: 1) the Jiamusi block, 2) the Heilongjiang HP complex in the center, and 3) the Zhangguancai Range magmatic arc in the west.

2.1 Blocks The Jiamusi block or massif is a tectonic unit about 36 km thick (Xing et al., 2018) bound by the N-directed Mudanjiang Fault in the west, and the ENE-directed Dunhua-Mishan Fault in the south (Ma et al., 2017; Zhou and Li, 2017). The Khanka and Bureya massifs near the NE ChinaRussian Far East border are considered to be attached to the Jiamusi Massif, and thus have been

6

referred to as a composite Khanka-Jiamusi-Bureya block (Fig. 1b; Wilde et al., 2000, 2003). However, their mutual affinity is questioned based on the similar Paleozoic to Mesozoic magmatic history of the Khanka massif and the arc magmatic complexes of the Zhangguancai Range magmatic arc (K. Liu et al., 2018). The basement rocks of the Jiamusi Massif consist of the Mashan complex, a khondalitic metasedimentary belt composed of felsic granulites, marbles, and graphitic schists that were metamorphosed at around 500 Ma (Wilde, 2001, 2003; Wilde et al., 2000). The Mashan complex is spatially associated with coeval strongly deformed, early Paleozoic granitoids dated by LA-ICP-MS and SHRIMP U-Pb zircon methods between 540 and 488 Ma (Bi et al., 2014; Wilde et al., 1997; 2000, 2003; Yang et al., 2014; Table 1). Permo-Triassic volcanic and granitic rocks intruded the Mashan complex (302 Ma and 204 Ma, U-Pb zircon ages; Bi et al., 2017a; Dong et al., 2017b, Long et al., 2019; Wu et al., 2011, Yang et al., 2017-Table 1). Granitic gneisses located in the western edge of the Jiamusi Massif are dated between 267 and 254 Ma (U-Pb zircon; Wu et al., 2001). A recent spatial analysis of these late Carboniferous to Triassic magmatic rocks highlights a westward younging trend from 275 Ma to 245 Ma (Yang et al., 2019). According to recent studies, the eastern edge of the Jiamusi Block was a passive margin from 380 to 310-305 Ma, while westward subduction started to develop in the Jiamusi Massif and late CarboniferousTriassic magmatic rocks were emplaced around 302 Ma (G.Y. Li et al., 2019; Yang et al., 2019). The tectonic setting of these late Carboniferous-Triassic magmatic rocks could be related to: 1) late Carboniferous to middle Permian Paleo-Pacific subduction (Bi et al., 2015, 2016, 2017a, 2017b; M.D. Sun et al., 2015), 2) Paleo-Asian Ocean-related subduction associated with the collision between the Jiamusi and Khanka blocks (Meng et al., 2008; Xu et al., 2012) or 3) westward-directed subduction of the Mongol-Okhotsk ocean (G.Y. Li et al., 2019; Zhou and Li, 2017).

7

The eastern part of the Songliao Block is bound by the N- to NNE-trending Zhangguancai magmatic arc (Fig. 1b), which is composed of Paleozoic and Mesozoic intrusive rocks, Neoproterozoic–early Paleozoic and late Paleozoic volcano-sedimentary rocks, and voluminous Mesozoic– Cenozoic volcanic units (HBGMR, 1993; Wang et al., 2015; Wang et al., 2017; Wu et al., 2011). The first magmatic rocks are represented by granitoids that have LA-ICP-MS U-Pb zircons ages between 516 Ma and 425 Ma (Wang et al., 2012, Wang et al., 2016, 2017; Wu et al., 2011; Table 3). The second magmatic rocks have LA–ICP–MS zircon U–Pb ages from 366 Ma to 286 Ma (Guo et al., 2018; Meng et al., 2011). The third and youngest magmatic event (271 Ma to 166 Ma event; Table 2) is considered to reflect either the closure of the Paleo-Asian Ocean (Guo et al., 2016; Xu et al., 2009, 2013) or an active margin setting related to subduction of the PaleoPacific ocean (Feng et al., 2018; Ge et al., 2018; K. Liu et al., 2019; Qin et al., 2018; Tang et al., 2011; Wu et al., 2011; Yang et al., 2015, Yu et al., 2012, 2013; Zhao et al., 2018; Zhu et al., 2017d). Recent studies suggest a progressive migration of the Permo-Jurassic magmatic front from the west (201–198 Ma) to the east (186–182 Ma) (Feng et al., 2018), although a westward younging trend from ~200 Ma to ~174 Ma was proposed by Ge et al. (2017).

2.2 Oceanic and accretionary materials The Heilongjiang blueschist belt forms the central part of the Jilin-Heilongjiang-HP belt (Wu et al., 2007; Zhou et al., 2009; Zhou and Li, 2017) (Fig 1b), which is characterized by a blockin-matrix mélange that consists of blueschist and serpentinite blocks within a metasedimentary matrix of metapelites, quartzites and marbles (Wu et al., 2007; Zhou et al., 2009, 2010; Aouizerat et al., 2018). The blocks consists of amphibolite facies meta-gabbros, meta-gabbro-diorites, metadiorites, meta-andesites, granitic gneisses, monzo-granite gneisss, and dioritic gneisses (Cui et al., 2013; Dong et al., 2017a, 2018a, X.P. Li et al., 2010; Wu et al., 2007; Yang et al., 2019; Zhou et

8

al., 2010). The protoliths of the metabasites (blueschists, greenschists, and amphibolites) were alkaline and tholeiitic basalts with E-MORB and OIB affinities, indicative of rift and ocean island settings (Ge et al., 2016, 2017; Zhou et al., 2009, 2010; Zhu et al., 2015, 2017a, 2017b). The protoliths of the micaschists were shales, mudstones and tuffs (Cao et al., 1992; Wu et al., 2007). The serpentinite protoliths were dunites, lherzolites and harzburgites (Wu et al., 2007). The geochemistry of the metamorphosed gabbros, gabbro-diorites, diorites and andesites is interpreted to reflect a volcanic-arc setting (Dong et al., 2017a, 2018a; Yang et al., 2019), whereas from their geochemistry the monzogranitic and alkali-feldspar granitoids were considered to have syncollisional affinities (Cui et al., 2013). In the Mudanjiang area, the peak P–T conditions of the blueschists were estimated at 320– 180°C and 8–16 kbar (Zhao et al., 2011), whereas the peak P–T conditions of the amphibolites were calculated as 10.9 kbar and ~622°C (Ge et al., 2017). Peak P–T conditions of blueschists in the Yilan area are 9–11 kbar at 320–450°C (Zhou et al., 2009,) whereas peak P–T conditions of the amphibolites are 10–13 kbar at 500–580°C (W. Li et al., 2010, 2019; Table 3). Some SHRIMP and LA-ICP-MS U-Pb zircon ages suggest that the protoliths of the blueschists and amphibolites formed between 308 Ma to 195 Ma (Dong et al., 2019; Ge et al., 2016, 2017; Zhou et al., 2009, 2010, 2013; Zhu et al., 2015). However, recent LA-ICP-MS U-Pb zircon dates of mafic blueschists and greenschists in the Yilan area give younger weighted mean U-Pb ages of 162 Ma to 142 Ma (Zhu et al., 2015, 2017a). Most LA-ICP-MS and SHRIMP zircon U-Pb dates of meta-igneous rocks give ages ranging from 263 Ma to 211 Ma (Cui et al., 2013; Dong et al., 2017a, 2018b, Han et al., 2019; X.P. Li et al., 2010; Yang et al., 2019; Zhou et al., 2010) with local early Paleozoic ages of ca, 492 Ma in the gneisses (Han et al., 2019; Zhou et al., 2010; Table 4). These protolith ages can be linked to the regional Permian magmatism and the adjacent Mashan

9

Complex, which indicates incorporation of early Paleozoic granitic components into the accretionary complex (Zhou et al., 2010). The timing of deposition of the metasediments (your use of the word 'formations' is not correct) is constrained by LA-ICP-MS and SHRIMP U-Pb dates on detrital zircons that have a youngest age peak at 200 Ma (Ge et al., 2016; Li et al., 2011; Zhou et al., 2010). However, recent dates of detrital zircons have a youngest peak of 186-167 Ma suggesting that the latest depositional age of these metasediments could not be as young as 180-170 Ma (Dong et al., 2018a; Zhu et al., 2017c; Table 4). The age of metamorphism was determined by numerous radiometric Rb-Sr, ArAr and SIMS U-Pb dating of metamorphic minerals and can be subdivided into two main time ranges: 198–170 Ma and 165–140 Ma (Aouizerat et al., 2018; Dong et al., 2019; Table 5) with most radiometric ages between 180 Ma and 170 Ma.

3. Field geology 3.1 Heilongjiang complex: metamorphic rocks and structures 100 meter-size serpentinite blocks are mostly observed in the western Yilan area; there are only a few occurrences in the east (Fig. 2a). Locally, quartz and calcite veins occur in tectonic breccias, and serpentinite blocks show multiple cleavage fabrics associated with slicken-fibres. Close to Yilan city massive metagabbros that display textures with weak gneissic fabrics (Dong et al., 2017a) are associated with amphibolitic gneisses (Fig. 2a). There are amphibolite-rich 10 to 100 mete-size blocks and boudins in the western Yilan area and 100-meter-sized amphibolite blocks in the eastern Yilan area (Aouizerat et al., 2018; Fig. 2a). Blueschists mostly occur in the central and eastern Yilan area (Aouizerat et al., 2018; Fig. 2a and 3a). The blueschists form either blocks and thick sheets or thin layers and boudins intercalated with metapelites and mafic greenschists (Aouizerat et al., 2018; Zhou et al., 2009,

10

2010; Zhu et al., 2015, 2017a, 2017b). The metasediments are mostly micaschists alternating with 10-100 meter-wide layers of quartzite and marbles (Aouizerat et al., 2018; Fig. 2a). In the Mudanjiang area 100 meter-long blueschist lenses alternate with micaschist and amphibolite lenses (Fig. 2b) and 10 cm to 1 m-wide (or long?) stretched pillows occur inside blueschist lenses (Zhao et al., 2010; Zhou et al., 2009; Fig. 3b). The amphibolite lenses are intruded by meter-wide granitic and granodioritic veins near the village of Modaoshi. Quartzo-felspathic layers alternate with strongly altered amphiboles, which together define a schistosity within the veins (Fig. 2b; Fig. 3c and d). Structural analysis of metamorphic rocks, poorly exposed in the HP Heilongjiang Complex, were undertaken in order to further constrain the structural correlations between the HP Heilongjiang Complex and the ENE-NE-directed transcurrent faults that cross-cut NE China. For a detailed analysis of the structures in the Yilan area, the reader is referred to Aouizerat et al. (2018). In the southern Yilan area, the foliation mostly strikes E-W and dips moderately south. In the northwest, the foliations strike E-ENE, and dip steeply to the N-NNW. In the northeast Yilan area the trend of the foliation rotates counter-clockwise toward the NE along the NE-trending Yilan-Yitong fault, and it plunges steeply to the NW (Fig 2a; Fig. 3e). Mineral lineations in the blueschists are defined by aligned glaucophane and chlorite-quartz-phengite aggregates. In the Mudanjiang area, the foliation strikes ENE and dips gently NNW. The associated mineral lineation plunges gently north and is defined by aligned glaucophanes and epidotes (Fig 2b; Fig. 3f).

11

3.2 Granitoids and volcanic rocks associated with the Heilongjiang Complex 3.2.1 Granitoids Along the Yilan-Yitong fault in the northwest Yilan area there is a leucogranite, which has a granular texture with subhedral quartz (45-50 %), plagioclase and alkali felspar (45-50%), biotite (<5 %) and minor apatite, titanite and zircon (Fig. 2a; Fig. 4a and b). Close to the leucogranite in the Yilan-Yitong fault is a kilometre-long monzodiorite (Fig. 2a; Fig. 4 b and c), which has a granular texture with subhedral hornblendes (40%), plagioclase feldspar (50 %), biotites (>5%), and rare minute grains of pyroxene (5-%).

3.2.2 Volcanic rocks and dykes In the eastern Yilan area a 10 kilometer-long trachytic lava, which intrudes the HP Heilongjiang Complex, displays a trachytic texture with subhedral to anhedral saussuritized alkali -feldspars (50 %), biotites (20-30 %) and amphiboles (> 15-10 %) (Fig. 2a; Fig. 4e and f). The blueschist blocks in the Heilongjiang mélange in the east Yilan area are intruded by a leucogranitic dike, which displays a porphyritic texture with subhedral feldspars (30 %) and strongly altered biotites (10 %) surrounded by a matrix of feldspars, opaques, quartz and altered biotites (Fig. 2a, Fig. 4g and h).

3.3 Eastern edge of the Zhangguancai Range magmatic arc: gabbros and leucogranites In the south of the Yilan area near Yongshuncun village (Fig. 2c) along the eastern edge of the Zhangguancai Range magmatic arc, gabbros and leucogranites are transected by ESE-, SE- and NW-trending extensional faults. Inside the leucogranites 10 cm-scale stretched lenses of gabbro contain alternating elongate feldspar and amphibole minerals that define an ENE-directed sub12

horizontal foliation plane (Fig. 5a, b and c). The gabbros are composed of plagioclase (50–70%), clinopyroxene (15–25%), amphibole ( ≤ 5%), interstitial Fe-Ti oxides (0–5%), and accessory zircons and apatites (Fig. 5d).

4. Sampling We collected representative magmatic and metamorphic rocks from the Heilongjiang Complex and from the eastern edge of the Zhangguancai Range magmatic arc in order to determine the different periods of accretion and erosion in NE China. We undertook radiometric dating integrated with geochemical analyses of the representative magmatic and metamorphic rocks. Along the eastern edge of the Zhangguancai Range magmatic arc near Yongchunsun village in the south of the Yilan area, a gabbro was sampled for U-Pb SIMS dating of zircons (Yil-GAB16 sample). Trace and major element analyses were also performed on this gabbro sample to help understand its tectonic origin. Inside the HP Heilongjiang complex, U-Pb SIMS dating and trace and major element analyses were undertaken on a blueschist located in the eastern Yilan area (Yil-BLUE-19 sample) and on a leucogranite (YIL-LEU-14 sample) from the northwestern Yilan area in order to constrain their protolith ages, tectonic setting and timing of incorporation in the HP Heilongjiang Complex. To constrain the time of metamorphism that affected the HP Heilongjiang Complex, phengite-bearing-blueschists (MUD-31 and MUD-39), granitic and granodiorite veins that intruded the amphibolitic lenses (MUD-37 and MUD-40) from the Mudanjiang area were dated by Ar-Ar and U-Pb SIMS on zircons respectively. Major and trace element geochemical analyses were carried out on these granitic and granodioritic veins to constrain their source compositions.

13

Different types of post-accretionary magmatic rocks, which intruded the HP Heilongjiang Complex, were further dated by the U-Pb zircon SIMS method. These post-accretionary rocks from the eastern Yilan area include a trachyte (Yil-T-2); and a leucogranitic dike (Yil-LEU-23), which crosscuts (a trachyte, like all lavas, cannot 'intrude' anything) a blueschist. A monzodiorite (YILG-15) in the northwestern Yilan area was included in this data-set. Major and trace element geochemical analyses and U-Pb dating were conducted to better understand the tectonic settings of these rocks.

5. Analytical methods 5.1 Zircon U-Pb Dating U-Pb isotopes of zircon were analyzed on a Cameca 1280 SIMS at the Institute of Geology and Geophysics, Chinese Academy of Sciences in Beijing. The reader is referred to Li. X.H et al (2009) for more detailed instrumental descriptions and analytical procedures. During the analyses, the zircon standard Plesovice (206Pb/238U age = 337 Ma) (Sláma et al., 2008) was used for the Pb/U calibration, and the zircon standard 91500 (Th = 29 ppm, and U = 81 ppm) (Wiedenbeck et al., 1995) was used to calibrate the U and Th concentrations. Thus, a long-term uncertainty equal to 1.5% (1 RSD) for

206Pb/238U

measurements of the standard zircons was propagated to the

unknowns (Q.L. Li et al., 2010). The corrections are considered sufficiently weak to be insensitive to the choice of common Pb composition. Based on the assumption that the common Pb is largely surface contamination introduced during the sample preparation, an average of present-day crustal composition (Stacey and Kramers, 1975) is used for the common Pb. The software Isoplot/Ex v. 2.49 program was used to reduce the data (Ludwig, 2001). Uncertainties of individual analysis are displayed at a 1σ level; Concordia U-Pb ages are quoted with a 95% confidence interval.

14

5.2 Whole-rock major and trace element analyses Major and trace element whole-rock analyses of sampled intrusive and volcanic rocks were performed at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS) of Beijing; the results are presented in Table 7. Major oxide abundances were determined by X-ray fluorescence (XRF) spectrometry using a Shimadzu XRF1500 sequential spectrometer. The analytical uncertainties range from 1% to 5%. Trace-element abundances were measured by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) with a Finnigan MAT Element spectrometer. Based on the Chinese national standards GSR-1and GSR-2, the error was below 5% for trace elements with concentrations above 10 ppm and below 10% for trace elements with concentrations below 10 ppm (Ding et al., 2017). The reader is also referred to Gao et al. (2002) for a more detailed descriptios of the trace element analytical procedure.

5.3 Phengite Ar-Ar dating Phengites were selected from blueschist lenses located near Modaoshi village (i.e Mudanjiang Area, see Fig. 2b for location). 40Ar‐39Ar dating was performed in the Noble Gas laboratory of the School of Earth Sciences at the University of Montpellier 2, France, with a new generation multicollector mass spectrometer (MS). The reader is referred to Wu et al. (2017) for a detailed description of the analytical procedure. The ArArCALC 2.4 software was used to calculate the plateau ages (Koppers et al., 2002) that are reported with a 2σ uncertainty, including an uncertainty in the J-value.

15

6. Results 6.1. Blueschist (YIL-BLUE-19 sample) 6.1.1. Zircon U-Pb dating The zircon SIMS results are presented in Table 6. The zircons show a prismatic shape and they are colorless and transparent. The length/width ratios of the chosen zircons are between 1:1 and 2:1. In cathodoluminescence images a clear oscillatory zoning cannot be observed for most of the zircon grains. The analyzed zircons display uranium contents (2489-287 ppm) different from thorium (2938-117 ppm) and lead (462-24 ppm) contents, with Th/U ratios ranging from 0.17 to 1.86. Accordingly, these Th/U ratios above 0.1 indicate a magmatic origin for all these zircons (Hoskin and Schaltegger, 2003). Seven concordant zircons were analyzed among which the two oldest yield

207Pb/206U

zircon ages of 2489.5±9.3 Ma and 1588.5±15.3 Ma. Additional five

concordant 206 Pb / 238U zircon ages are recorded at 958±13.4 Ma, 919.2±12.9 Ma, 426.6±11.8 Ma, 416.4±6.1 Ma and 355.8±5.2 Ma, respectively. Thus, we interpret the youngest concordant 206Pb/238U

zircon age of 355.8±5.2 Ma as the time when the youngest inherited or xenocrystic

zircon was incorporated into the evolving basaltic magma; accordingly, this basaltic rock was likely emplaced coevally at after 355.8±5.2 Ma. We therefore presume that the 356 Ma zircon age may represent the maximum time of emplacement of the host-rock (Fig. 6a).

6.1.2. Whole-rock geochemistry of major and trace elements The blueschist sample YIL-BLUE-19 has an ultramafic-mafic composition (SiO2 = 43.43 wt. %; TiO2 = 3.53 wt. %; Na2O =2.13 wt. %; Al2O3 =13.34. %; Fe2O3 = 13.88 wt. %; CaO = 8.84 wt. %; K2O = 3.64 wt. %, and MgO = 4.84 wt. % with a Mg# of 33) (Table 7). The contents of Ni, Cr, and Cu are respectively: 52.9 ppm, 34 ppm and 41.4 ppm. The MgO versus SiO2 diagram (Le Bas, 2000) and Zr/TiO2 (×10-4) versus Nb/Y diagram (Winchester and Floyd, 1976) indicate that

16

the blueschist Yil-BUE-19 sample is compositionally an alkali basalt (Fig. 10). The trace element compositions of the basalt indicate a very strong REEs abundance (ΣREEs = 318 ppm) with high LREEs/HREEs (5.6) and (La/Yb)N (26.7) ratios and no Eu anomaly (δEu = 1.0). The chondritenormalized REE diagram (Sun and McDonough, 1989) shows a right-decreasing REE pattern, a strong enrichment in LREEs, and depletion in HREEs (Fig. 12a). The primitive mantle normalized spider diagram (Sun and McDonough, 1989) is characterized by an enrichment in LILEs (e.g. Cs, Rb, Ba) and HFSEs (e.g. Ce, La, Zr, Hf, Ti, Nb, Ta) with a strong positive anomaly in Cs and a weak negative anomaly in Sr (Fig. 11b). The Nb/Yb, Th/Yb and Ta/Yb ratios have respective values of 29.6, 2.7 and 2.0 (Table 7).

6.2. Leucogranite (Yil-LEU-14) 6.2.1. Zircon U-Pb dating The zircon SIMS results are presented in Table 6. The selected zircons are prismatic, colorless and transparent, their length/width ratios are between 3:1 and 2:1, and in cathodoluminescence images most grains show clear oscillatory zones. In analyzed zircons the contents of uranium (2233-1673 ppm) are higher than thorium (214-104 ppm) and lead (71-95 ppm), and their Th/U ratios range from 0.06 to 0.10; accordingly, these low Th/U ratios < 0.1 indicate a metamorphic origin (Hoskin and Schaltegger, 2003). Seven analyzed zircons have concordant

206Pb/238U

zircon ages ranging from 251.23 ± 3.7 Ma to 235.29 ±3.5 Ma with a

weighted mean age of 245.5 ±3.9 Ma. Consequently, the weighted mean 206Pb/238U zircon age of 245.5±3.9 Ma is interpreted as the crystallization time of these metamorphic zircons (Fig 6b). Thus, we consider that these zircons were inherited and incorporated in the magma and crystallized during a 245 Ma metamorphic event. Accordingly, the 245 Ma zircons likely represent the maximum age of the leucogranite.

17

6.2.2. Whole-rock major and trace element geochemistry Major, trace and rare earth element data for the leucogranite (Yil-Leu-14 sample) are given in Table 7. The leucogranite has contents of SiO2 78.52 wt %, Na2O 3.63 wt %, K2O 4.07 wt % and MgO 0.11 wt% and a Mg# of 28. The Ni and Cu values are respectively 2.1 ppm and 2.6 ppm. The K2O versus SiO2 diagram (Pecerrillo and Taylor, 1976) shows that this is high-K calc-alkaline leucogranite (Fig. 11a and c). It has a weak total abundance of REEs (ΣREE = 4.3 ppm), weak LREEs/HREEs (= 4) and (La/Yb)N (=2.6) ratios, a strong positive Eu anomaly (δEu = 11.6), and high concentrations of Sr (325 ppm) and Sr/Y ratio (308). The chondrite-normalized REE pattern (Sun and McDonough, 1989) shows a weak, but prominent, enrichment in LREEs and a depletion in HREEs (Fig. 12c). A primitive mantle-normalized spider diagram (Sun and McDonough, 1989) demonstrates an enrichment in LILEs (e.g. Cs, Rb, Ba, and Sr), a strong depletion in HFSEs (e.g. Nb, Ta, La, Ce, Nd), and strong positive anomalies of Pb, Zr and Hf (Fig. 12d).

6.3. Gabbro (Yil-GAB-16) 6.3.1. Zircon U-Pb dating The zircon SIMS results for this gabbro are presented in Table 6. The chosen zircons are prismatic, colorless and transparent, have length/width ratios between 1:1 and 2:1, and in cathodoluminescence images clear oscillatory zones are not always present. The analyzed zircons have contents of uranium (2611-457 ppm), thorium (2322-319 ppm), and lower lead (116-26 ppm), and Th/U ratios range from 0.33 to 1.00; accordingly, these Th/U ratios > 0.1 indicate these zircons are magmatic (Hoskin and Schaltegger, 2003). 40 analyzed zircons have concordant zircon ages from 215.8±3.2 Ma to 195.5±2.9 Ma with a weighted mean

206Pb/238U

206Pb/238U

age of 211±1

Ma. Consequently, this age of 211±1 Ma is interpreted as the time of crystallization of these magmatic zircons and their host gabbro (Fig. 6c).

18

6.3.2. Whole-rock major and trace element geochemistry Major, trace and rare earth element data for the gabbro are presented in Table 7. The gabbro contains 46.70 wt. % SiO2, 1.09 wt. % Na2O, 0.31 wt. % K2O, and 6.55 wt. % MgO, and has a Mg# of 70. Ni, Cr, and Cu contents are respectively 54.6 ppm, 265 ppm and 18.8 ppm The K2O versus SiO2 diagram (Pecerrillo and Taylor, 1976) shows that this is a calc-alkaline gabbro (Figs. 11a and c). It has a low total REE abundance (ΣREEs = 12.5 ppm), moderate LREEs/HREEs (=5.8), a strong (La/Yb)N (=7.18) ratio, a positive Eu anomaly (δEu = 2.0), a high concentration of Sr (835 ppm) and a high Sr/Y ratio (286). The chondrite-normalized REE diagram (Sun and McDonough, 1989) shows a weak enrichment in LREEs and a depletion in HREEs (Fig. 12e), and the primitivemantle-normalized trace element spidergram (Sun and McDonough, 1989) illustrates an enrichment in LILEs (e.g. Cs, Rb, Ba, U and Sr), a strong depletion in HFSEs (e.g. Nb, Ta, La, Ce, Nd), and positive anomalies of Pb and Sr (Fig. 12f). The Nb/Yb, Th/Yb and Ta/Yb ratios are 7.0, 14.9 and 0.5 respectively (Table 7).

6.4. Ar-Ar dating of blueschist (sample MUD-31 and MUD-39) 40Ar-39Ar

data for phengites are summarized in Table 8 and their respective plateau ages

are shown in Figure 7. The phengites in sample MUD-31 display a flat age spectrum and a plateau age of 178.63 ± 0.93 Ma defined by 8 consecutive heating steps (> 67% of 39Ar released) with a mean standard weighted deviation (MSWD) of 1.69 (11%). Phengites from sample MUD-39 also display a very flat age spectrum and a plateau age of 175.68 ± 0.82 Ma related to 66.1% of 39Ar released (8 heating steps) with a mean standard weighted deviation (MSWD) of 1.34 (22%).

19

6.5. Granitic vein (MUD-37 sample) 6.5.1. Zircon U-Pb dating The zircons of this sample are prismatic, colorless, transparent, and have length/width ratios 0f 3:1-2:1. Cathodoluminescence images show that most zircons have clear oscillatory zones. The analyzed zircons have very variable uranium (171-3687 ppm), thorium (112-5500 ppm) and lead (8-461 ppm) contents with Th/U ratios ranging from 0.33 to 1.92 (Table 6); ratios above 0.1 indicate a magmatic origin (Hoskin and Schaltegger, 2003). Thirty-six zircons were analyzed for which the oldest concordant 206 Pb / 238 U zircon ages are 882.7±12.4 Ma and 898.6±12.8 Ma, and the youngest are 207.1±3.3 Ma and 174.6±2.7 Ma. Two main age groups are between 519.3±7.5 Ma and 481.6±7.0 Ma (55.6% of the analyzed zircons) and between 277.6±4.4 Ma and 231.8±3.8 Ma (33.3 % of all). Thus, two weighted mean

206Pb/238U

236.0±2.6 Ma. Accordingly, we interpret the concordant

zircon ages are 503.9±3.2 Ma and

206Pb/238U

zircon date of 174.6±2.7 Ma

as the time when the youngest inherited or xenocrystic zircons crystallized in the granitic vein. Therefore, this youngest 175 Ma concordant zircon age probably represents the maximum time when the dyke intruded the amphibolite rocks. On the other hand, the weighted mean

206Pb/238U

zircon ages of 503.9±3.2 Ma and 236.0±2.6 Ma, respectively linked to the concordant 519 Ma-482 Ma and 278 Ma-232 Ma zircon populations, and to the 899-883 Ma and 207 Ma zircon populations, likely represent older xenocrysts or inherited zircons, which were incorporated during the emplacement of the granitic vein (Fig. 8a).

6.5.2. Whole-rock major and trace element geochemistry Major, trace and rare earth element data for the granitic vein (MUD-37) are presented in Table 7. The granitic vein sample has contents of SiO2 70.0 wt. %, Na2O 5.68 wt. %, K2O 2.00 wt. % and MgO 0.89 wt. %, and a Mg# of 33. The contents of Ni, Cr, and Cu are 13.9 ppm, 19.8 ppm

20

and 1.9 ppm respectively. The K2O versus SiO2 diagram (Pecerrillo and Taylor, 1976) indicates that the vein (MUD-37) is a calc-alkaline granite (Figs. 11a and c). It has a high abundance of REEs (ΣREE = 69.1 ppm), very strong LREE/HREE ratios (=11.0) and (La/Yb)N (=11.2) ratios, a weak negative Eu anomaly (δEu =0.8), and a high Sr content (412 ppm) and high Sr/Y ratio (38) (Table 7). The chondrite-normalized REE diagram (Sun and McDonough, 1989) shows a rightdecreasing REE pattern, an enrichment in LREEs and a depletion in HREEs (Fig. 12g). A primitive mantle-normalized spider-diagram (Sun and McDonough, 1989) is characterized by an enrichment in LILEs (e.g. Cs, Rb, Ba, Th, U), a strong depletion in HFSEs (e.g. Nb, Ta, La, Ce, Nd), and positive observed anomalies of Pb and Sr (Fig. 12h).

6.6. Granodioritic vein (sample MUD-40) 6.6.1. Zircon U-Pb dating The zircons of this granodioritic are prismatic, colorless and transparent, and have length/width ratios between 3:1 and 2:1. Cathodoluminescence images of most zircons have clear oscillatory zones. The analyzed zircons display highly variable uranium (195-2790 ppm), thorium (21-2857 ppm) and lead (9-239 ppm) contents, and Th/U ratios that range from 0.14 to 1.59 (Table 6); ratios above 0.1 indicate a magmatic origin. In addition, a single metamorphic zircon has a Th/U ratio of 0.01 (Hoskin and Schaltegger, 2003). Forty-two zircons were analyzed for which the oldest concordant 207Pb / 206Pb age is 2490.7±13.1 Ma and the oldest concordant 206Pb / 238U age is 976.6±11.4 Ma. There are four time groups for the concordant

206Pb/238U

zircons between

511.7±7.4 Ma and 393.5±5.9 Ma (29 % of all analyzed zircons), 277.9±4.2 Ma and 220.4±3.3 Ma (29%), 206.9±3.2 Ma and 176.8±2.7 Ma (29 %) and 165.3±2.5 and 158.8±2.4 Ma (11.9 %), while the metamorphic zircon has a concordant 206 Pb/ 238 U zircon age of 500.6±7.3 Ma. Thus, a weighted mean 206Pb/238U zircon age of 161.4±2.5 Ma for the youngest zircon population can be interpreted

21

as the time when the youngest xenocrysts/inherited zircons were incorporated in the granodioritic magma. Therefore, this 161 Ma weighted mean zircon age closely represents the maximum time of emplacement of the granodiorite vein, whereas the older zircon populations likely represent xenocrystic/inherited zircons picked up by the granodiorite vein (Fig. 8b).

6.6.2. Whole-rock major and trace element geochemistry Major, trace and rare earth element data for this granodiorite vein are given in Table 7. This sample has contents of SiO2 68.59 wt. %, Na2O 4.94. wt. %, K2O 2.76 wt. % and MgO 1.13 wt. %, and a Mg# of 38. Ni, Cr and Cu values are 8.3 ppm, 13.2 ppm and 10.8 ppm respectively. The K2O versus SiO2 diagram (Pecerrillo and Taylor, 1976) indicates that this vein is a calc-alkaline granodiorite (Fig. 11a and c). Trace element analyses show enrichments of REEs (ΣREEs = 79.6 ppm), very strong LREE/HREE (=12.5) and (La/Yb)N (=18.1) ratios, but no Eu anomaly (δEu =1.0), and high values of Sr (1103 ppm) and a high Sr/Y ratio (118) (Table 7). The chondritenormalized REE diagram (Sun and McDonough, 1989) show right-plunging REE patterns, an enrichment in LREEs and a depletion in HREEs (Fig. 12g). The primitive mantle-normalized spider-diagram (Sun and McDonough, 1989) is characterized by an enrichment in LILEs (e.g. Cs, Rb, Ba,Th), a strong depletion in HFSEs (e.g. Nb, Ta, La, Ce, Nd), and positive anomalies in Pb and Sr (Fig. 12h).

6.7. Leucogranite dike (Yil-LEU-23 sample) 6.7.1. Zircon U-Pb dating The zircon SIMS results for this leucogranite dike are presented in Table 6. The zircons are prismatic, colorless and transparent, have length/width ratios between 3:1 and 2:1, and their cathodoluminescence images show that most zircons have clear oscillatory zones. The dated zircons have variable uranium (315–2364 ppm), thorium (53–2073 ppm) and lead (6-193 ppm)

22

contents, and a Th/U ratio between 0.13 and 1.50 (Table 6); ratios above 0.1 indicate a magmatic origin (Hoskin and Schaltegger, 2003). Forty-one zircons were analyzed of which the oldest concordant 206 Pb/238 U age is 505.1±7.3 Ma, whereas the youngest age is 106.9±1.7 Ma. There are four groups of concordant

206

Pb/238 U zircon ages between (1) 505.1±7.3 Ma and 449.6±6.5 Ma

(4.9% of all analyzed zircons), (2) 286.8±5.4 Ma and 260.3±3.8 Ma (7.3%), (3) 168.2±2.7 Ma and 121.4±1.9 Ma (14.6%) and (4) 114.6±1.8 Ma and 106.9±1.7 (73.2%). The youngest and predominant group of concordant zircons at 115 Ma-107 Ma provides a weighted mean 206Pb/238U zircon age of 111.9±0.7 Ma that can be interpreted as the time of intrusion, while the older populations of concordant zircon ages represent xenocrystic or inherited zircons incorporated during the leucogranitic dike intrusion (Fig. 9a).

6.7.2. Whole-rock major and trace element geochemistry Major, trace and rare earth element data for this leucogranitic dike are listed in Table 7. This sample has a SiO2 content of 68.52 wt. %, a Na2O of 4.31 wt. %, a K2O of 2.76 wt. % and a MgO of 0.36 wt. %, and a Mg# of 25. The contents of Ni, Cr, and Cu are 2.1 ppm, 5.6 ppm and 10.4 ppm respectively. The K2O versus SiO2 diagram (Pecerrillo and Taylor, 1976) demonstrates that this dike is a calc-alkaline leucogranite (Fig. 11a and c). It has a moderate REE abundance (ΣREE = 38.9 ppm), very strong LREE/HREE ratios (=11.8) and (La/Yb)N (=20.7) ratios, no Eu anomaly (δEu =1.1), a high concentration of Sr (269 ppm), and a high Sr/Y ratio (61) (Table 7) The chondrite-normalized REE diagram of Sun and McDonough (1989) shows a right-plunging REE pattern, an enrichment in LREEs, and a depletion in HREEs (Fig. 11i). A primitive mantlenormalized spider-diagram (Sun and McDonough, 1989) demonstrates an enrichment in LILEs (e.g. Cs, Rb, Ba, U), a strong depletion in HFSEs (e.g. Ce, La, Zr, Hf, Nb, Ta), and a positive anomaly in Pb (Fig. 11j).

23

6.8. Trachyte (sample Yil-T-2) 6.8.1. Zircon U-Pb dating The zircon SIMS data for this trachyte are listed in Table 6. The zircons are prismatic, colorless and transparent, have length/width ratios between 3:1 and 2:1, and cathodoluminescence images show that most grains have no clear oscillatory zones. The analyzed zircons have slightly variable uranium (638-1083 ppm), thorium (300-822 ppm) and lead (11-23) contents with a Th/U ratio ranging from 0.37 to 0.76 (Table 6); these Th/U ratios above 0.1 indicate a magmatic origin (Hoskin and Schaltegger, 2003). Seven zircons were analyzed for which the concordant 206 Pb/238 U zircon ages range from 106.7±1.7 Ma to103.8±8 Ma and a weighted mean age of 105.1 ±1.2 Ma is interpreted as the time of trachyte crystallization (Fig. 9b).

6.8.2. Whole-rock major and trace element geochemistry Major, trace and rare earth element data for this trachyte are presented in Table 7. It contains 63.59 wt. % SiO2, 3.57 wt. % Na2O, 4.53 wt. % K2O, and 0.66 wt. % MgO, and its Mg# is 19. Cr and Cu values are 2 ppm and 10.7 ppm respectively. The K2O versus SiO2 diagram (Pecerrillo and Taylor, 1976) reveals that this trachyte is shoshonitic (Fig. 10b and c). It has a strong enrichment in REEs (ΣREEs = 121.8 ppm), high LREE/HREE (=9.2) and ((La/Yb)nut=8.1) ratios, but no Eu anomaly (δEu = 0.9). The chondrite-normalized REE diagram (Sun and McDonough, 1989) shows a right-plunging REE pattern, a strong enrichment in LREEs, and a depletion in HREEs (Fig. 12i). The primitive mantle-normalized spider-diagram of Sun and McDonough (1989) shows an enrichment in LILEs (e.g. g. Cs, Rb, Ba, Th, U), a strong depletion in HFSEs (e.g. Ce, La, Zr, Hf, Ti, Nb, Ta), and a positive anomaly in Pb (Fig. 12j).

24

6.9. Monzodiorite (YIL-G-15 sample) 6.9.1. Zircon U-Pb dating The analyzed zircon SIMS data for this monzodiorite are presented in Table 6. The dated zircons are prismatic, colorless and transparent. Their length/width ratios are between 1:1 and 2:1. Cathodoluminescence imaging illustrates clear oscillatory zones in most zircon grains. The analyzed zircons have uranium (210-1690 ppm) and thorium (29-1494 ppm) contents, clearly higher than their lead (12-243 ppm) content. 17 on 18 analyzed zircons have Th/U ratios ranging from 0.12 to 1.12, which indicate a magmatic origin. In addition, one metamorphic zircon has a Th/U ratio of 0.05 (Hoskin and Schaltegger, 2003). 18 zircons were analyzed for which the oldest concordant 206 Pb/207 Pb zircon age is 1441.8±13.5 Ma, while the youngest concordant 206 Pb / 238 U zircon age is 101.2±1.6 Ma. The oldest concordant

206

Pb/207 Pb and

206

Pb/238 U zircon ages

define a first group between (1) 1441.8±13.5 Ma and 822.7±11.8 Ma (22.2% of analyzed zircons). Two younger groups of concordant

206

Pb/238 U zircon ages are between (2) 645.1± 9.5 and

433.5±6.5 Ma (27.8 % of analyzed zircons) and (3) 313.9±4.6 and 178.3±2.8 Ma (44.4 % of analyzed zircons). Within this last age group, the metamorphic zircon has a concordant 206 Pb/ 238 U zircon age of 298.2±8.9 Ma (Fig. 9c). We interpret the youngest concordant

206Pb/238U

zircon

age of 101.2±1.6 Ma as the time when the youngest inherited or xenocrystic zircons were incorporated into the monzodioritic magma. Accordingly, this monzodioritic rock was likely emplaced at or after 101.2±1.6 Ma. It can therefore be argued that this 101 Ma zircon likely represents the maximum age of intrusion of the monzodiorite, and the older populations of concordant zircons are xenocrystic or inherited grains.

25

6.9.2. Whole-rock major and trace element geochemistry Major, trace and rare earth element data for this monzodiorite are given in Table 7. Its contents of SiO2 are 50.75 wt. %, Na2O 3.59 wt.%, K2O 1.75 wt %, and MgO 7.63 wt %, and its Mg# is 54. The measured Ni, Cr, and Cu values are 198.0 ppm, 353.0 ppm and 24.4 ppm respectively. The K2O versus SiO2 diagram (Pecerrillo and Taylor, 1976) reveals that the monzodiorite belongs to the high-K calc-alkaline series (Fig. 11a and c). It has a strong enrichment in total REEs (ΣREE = 141.2 ppm), high LREEs/HREEs (=7.7) and (La/Yb)N (=7.6) ratios, and no negative Eu anomaly (δEu = 0.9). The chrondrite-normalized REE diagram (Sun and McDonough, 1989) shows a right-plunging (re-phrase) REE pattern, a weak enrichment in LREEs, and a depletion in HREEs (Fig. 12i).

The primitive mantle-normalized spider diagram (Sun and

McDonough, 1989) shows an enrichment in LILEs (e.g. Cs, Rb, Ba, Th, U), a strong depletion in HFSEs (e.g. Nb, Ta, La, Ce, Zr, Hf,), and a positive anomaly in Pb (Fig. 12j).

7. Discussion 7.1. Magma genesis 7.1.1 The adakitic leucogranite The leucogranite (Yil-LEU-14) contains an enrichment in lithophile elements (LILEs) and LREEs and a depletion in high field strength elements (HFSEs) (Fig. 12c and d). These trace elements highlight the fact that this leucogranite was emplaced in an active continental margin setting (Gill, 1981; Grove et al., 2003). The observed positive anomaly in Pb indicates upper crustal contamination (Zhu et al., 2017d). The leucogranite has a weak REE abundance, a relatively flat LILEs pattern, low LREEs/HREEs and (La/Yb)N ratios. These trace element values are explicable by the presence of minor garnet in a HP mafic granulite source (Martin, 1999; Yu et al., 2019). The lack of important plagioclase fractionation is highlighted by the heavy positive Eu and Sr

26

anomalies. A residual amphibole in a HP mafic granulite source is also inferred by the heavy positive Zr and Hf and negative Nb and Ta anomalies (Martin, 1999; Hastie et al., 2010). The low Th/U ratios of

< 0.01 measured inside the zircons indicate a metamorphic origin for the

leucogranite. The high concentration of Sr (324 ppm) coupled with high Sr/Y ratios (=308) further reveal an adakitic source (Defant and Drummond, 1990; Martin, 1999; Fig. 14). The high concentrations in K2O (4.07 %) and SiO2 (78.5%) and low concentrations in MgO (0.11%), Ni (2.1) and Cu (2.60 ppm) coupled with low Mg# (28) suggest an absence of interaction between this high-silica adakitic leucogranite and a mantle wedge. Thus, the geochemical features exclude a generation by melting of an oceanic slab or delaminated continental crust, and more likely suggest a derivation from melting of a thickened lower crust (Moyen, 2009; Wang et al., 2005; Yu et al., 2019).

7.1.2. The gabbro The 211 Ma gabbro (Yil-GAB-16 sample) from the eastern edge of the Zhangguancai Range magmatic arc has an enrichment in lithophile elements (LILEs) and LREEs and a depletion in high field strength elements (HFSEs) (Fig 12e and f). These trace elements patterns indicate that this gabbro was emplaced in an active continental margin setting (Gill, 1981; Grove et al., 2003). The Nb/Yb vs Th/Yb and Nb/Yb vs Ta/Yb classification diagrams (Dilek and Furnes, 2014; Pearce, 2014) also support a continental arc-setting for this gabbro (Fig. 13). The observed positive anomaly in Pb argues for upper crustal contamination (Zhu et al., 2017d). The strong positive Sr anomaly indicates an absence of plagioclase fractionation, whereas the slightly fractionated REE pattern and strong Y depletion imply a garnet-bearing source (Martin et al., 1999; Yu et al., 2019; Fig 12e). The strong negative anomalies in Nb and Ta may also indicate the presence of amphibole or rutile in the residue (Hastie et al., 2010). Furthermore, the high concentrations of Sr (835 ppm)

27

and the high Sr/Y ratio (=286) also suggest that this gabbro was derived from an adakitic source (Defant and Drummond, 1990; Martin, 1999; Fig. 14). The strong concentrations in MgO (6.55 wt. %), Ni (54.6 ppm) and Cr (265 ppm) suggest interaction of the original melt with ultramafic rocks of a mantle wedge (Martin, 1999; Moyen, 2009). These geochemical patterns suggest that the gabbro was likely sourced from an adakitic primary melt developed during slab melting. During its ascent, the primary melt interacted with a mantle wedge and was then emplaced into a continental arc (Moyen, 2009).

7.1.3. The adakitic granitic/granodiorite veins The granodiorite (MUD-37) and monzogranitic vein (MUD-40) show enrichments in lithophile elements (LILEs) and LREEs, a depletion in high field strength elements (HFSEs), and a positive anomaly in Pb (Fig. 12g and h). These trace element values provide evidence that these rocks formed in an active continental margin with some upper crustal contamination (Gill, 1981; Grove et al., 2003; Zhu et al., 2017d). Furthermore, the high concentration of Sr (412 ppm-1103 ppm), high Sr/Y (38-118) and La(N)/Yb(N) (=11.1-18.1) ratios reveal that these granitic and granodiorite veins were generated in a thickened adakite magma source (Defant and Drummond, 1990; Martin, 1999; Fig. 14), and emplaced at a maximum age of 175-161 Ma. The highconcentrations in SiO2 (68.6-70.0%) and K2O (2.00-2.78 %) suggest that these granitic and granodiorite veins were sourced from high-silica adakitic fluids (Martin et al., 2005). The high Sr/Y and steep rare earth element (REE) patterns indicate equilibrium with a garnet/clinopyroxenebearing eclogitic residue after melting of subducted oceanic crust (Defant and Drummond, 1990; Stern et al., 2002; Yu et al., 2019). The slight positive Sr and negative Nb-Ta anomalies respectively reveal the absence of plagioclase and the presence of amphibole or rutile in the melt residue (Martin, 1999; Hastie et al., 2010). On the other hand, the relatively low MgO (0.89-1.13

28

wt.%), Ni (8.30-13.90 ppm) and Cr (13.20-19.80 ppm) contents of these granodiorite/granitic rocks highlight the absence of interaction between their melt and ultramafic rocks of a mantle wedge or subduction channel (Martin, 1999; Moyen, 2009; Blanco-Quintero et al., 2011). Thus, these granitic/granodiorite veins were likely sourced from partial melting of a slab (Moyen, 2009).

7.1.4. Magmatic rocks at 112-101 Ma The 112-101 Ma magmatic and volcanic rocks (YIL-LEU-23, YIL-T-2 and Yil-G-15) exhibit an enrichment in lithophile elements (LILEs) and LREEs and a depletion in high field strength elements (HFSEs) (Fig. 12i and j). These trace elements features are evidence that the rocks formed in an active continental margin (Gill, 1981; Grove et al., 2003). The positive anomaly in Pb further indicates an upper crustal contamination (Zhu et al., 2017d). However, the 112 Ma leucogranitic dike (Yil-LEU-23) has a lower REE abundance, a relatively steep LILE patter, and strong LREEs/HREEs and (La/Yb)N ratios compared with the 105 Ma trachyte (Yil-T-2) and 101 Ma dated monzodiorite (Yil-G-15 sample). These differences in trace elements might be explained by the presence of garnet in the source of the 112 Ma leucogranitic dike (Martin, 1999; Yu et al., 2019). The presence of amphibole or rutile in the melt residue might also be indicated by the negative Nb-Ta anomalies (Blanco-Quintero et al., 2011; Hastie et al.,2010). Moreover, the high concentration of Sr (269 ppm), and high Sr/Y (= 61) and La(N)/Yb(N) (=20.7) ratios indicate that this leucogranite dike was sourced from an adakite-type magma (Defant and Drummond, 1990; Martin, 1999; Fig. 14). The high-concentrations in K2O (2.8 %) and SiO2 (68.5 %) and low concentrations in MgO (0.4 %), Ni (2.1 ppm), Cr (5.6 ppm) and Cu (10.4 ppm) coupled with a low Mg# (25) highlight the absence of interaction of the high-silica adakitic rocks with a mantle wedge (Blanco-Quintero et al., 2011; Martin, 1999; Moyen, 2009;). Thus, the geochemical patterns most

29

likely suggest generation by melting of a thickened lower crust instead of a subducted oceanic crust (Moyen, 2009; Wang et al., 2005, Yu et al., 2019).

7.2. New insights for the formation of the HP Heilongjiang Complex 7.2.1. Metabasites The blueschist YIL-BLUE-19 had the protolith composition of an alkali basalt (Fig. 10b). The chondrite-normalized diagram (Sun and McDonough, 1989; Fig. 12a) indicates that it has a REE pattern similar to that of OIBs including a right-plunging REE pattern, a strong enrichment in LREEs, a depletion in HREEs, a very strong REE abundance (ΣREEs = 318 ppm) and high LREEs/HREEs (5.6) and (La/Yb)N (26.7) ratios. The primitive mantle-normalized trace element variation diagram (Sun and McDonough, 1989; Fig. 12b) confirms the trace element pattern compatible with an OIB geo-setting with an enrichment in LILEs (e.g. Rb, Ba, Th, and Sr) and HFSEs (e.g. Nb, Ta, La, Nd). The Nb/Yb vs. Th/Yb and Ta/Yb vs Th/Yb discrimination diagrams (Dilek and Furnes, 2014; Pearce, 2014) supply further evidence of an OIB-type setting for the protolith of this blueschist (Fig. 13). Moreover, an OIB-related formation is in accordance with the geochemical analyses of neighboring blueschists in the Yilan area (Ge et al., 2016; Zhou et al., 2009; Zhu et al., 2015; 2017a). The lack of a positive anomaly in Pb indicates the absence of crustal contamination during the ascent of magma. The weak Mg# value (33) indicates that the magma source underwent clinopyroxene and/or olivine fractionation, while the high LREEs/HREEs (5.6) and (La/Yb)N (26.7) ratios highlight the presence of garnet in the source (Ge et al., 2016; Zhu et al., 2015). Furthermore, the lack of a Eu anomaly (δEu = 1.11) indicates that the plagioclase was not a major fractionating phase in the source and in the evolving magma. Thus, an asthenospheric mantle with no or little crustal contamination is consistent with the magma source of the blueschist. Therefore, we propose that the alkali basalt formed in an oceanic island.

30

The OIB-type trace element pattern suggests that the protolith of the blueschist (YILBLUE-19) was emplaced in an oceanic island setting and derived from an asthenospheric source. The youngest 356 Ma crystallization age of the inherited/xenocrystic zircons indicates that the metabasaltic protolith was emplaced after 356 Ma. With regards to this new age constraint, the compilation of previously published protolith ages of blueschists and amphibolites shows a range from 356 Ma to 142 Ma (Table 4; Fig. 15), with two main peaks at 257 Ma and 142 Ma. Two divergent hypotheses were proposed to explain the setting of the protoliths of these metabasites. One group suggested that the oldest original rocks formed in a Permian continental rift between the Jiamusi and Songliao Blocks. This geodynamical model is notably supported by the presence of old inherited zircons in 307-281 Ma OIB blueschists and amphibolites in the Central Asian Orogenic Belt (CAOB) (Zhou et al., 2009, 2010; Zhu et al., 2015, 2017a; Table 4). A recent study considered that the oldest basaltic rocks in the HP Heilongjiang Complex formed in a back-arc basin, which developed at the eastern edge of the CAOB between 290 Ma and 260 Ma (W. Han et al., 2019). However, others have proposed that inherited zircon grains can result from wind or river transport and considered that a wide ocean was linked to the Paleo-Pacific realm rather than a narrow oceanic basin located at the eastern edge of the CAOB between the Jiamusi and Songliao Blocks (Ge et al., 2016, 2017, 2018). From these points of view, the absence of HFSE depletion in our OIB meta-basalt as well as in the older blueschists (Ge et al., 2016; Zhou et al., 2009, 2010, 2014; Zhu et al., 2015a, 2017a) argues against the idea that the original basalts were emplaced in a back-arc basin where HFSE depletion is a major trace element feature (Pearce and Stern, 2006). Thus, the geochemical analyses coupled with our new zircon ages highlight the fact that the original basalts were likely emplaced in a wide oceanic basin (named the “Mudanjiang Ocean”) 31

from an asthenospheric source instead of a narrow back-arc basin/seaway, as recently proposed by Ge et al. (2016, 2017, 2018). These authors assumed that the large “Mudanjiang” ocean already existed since ca. 288 Ma at least in the early Permian. By integrating previously published 308 Ma281 Ma protolith ages of metabasites with our new 356 Ma, considered to be the maximum age of emplacement of the OIB basalt (Table 4; Fig. 15), we emphasize that these oldest metabasites in the HP Heilongjiang Complex were initially emplaced in a wide oceanic basin that was already open in Carboniferous-early Permian time between the eastern edge of the CAOB and the Jiamusi Block. Thus, these Carboniferous protolith ages reveal that the wide “Mudanjiang” ocean already existed since the Carboniferous time, much older than previously considered. Furthermore, a Carboniferous oceanic basin allows us to explain the differences of the Permian sedimentary sequences as well as the different crustal nature between the western Jiamusi Block and the easternmost Songliao Block, which altogether argue against the Permian rift model for the Jiamusi– Songliao blocks (Yang et al., 2017, 2019). Recent studies considered that the “Mudanjiang” ocean was still open at the end-Jurassic to early Cretaceous as supported by young 161 Ma-142 Ma protolith zircon ages of blueschists and greenschists in the HP Heilongjiang Complex (Zhu et al., 2015, 2017a; Table 4). Thus, it appears that the upper and lower limits of existence of the “Mudanjiang Ocean” span from 356 Ma to 142 Ma, which indicate a long-lived ocean between the Songliao and Jiamusi Blocks.

7.2.2. Igneous rocks A compilation of published protolith zircon ages indicates that the granitic and volcanic rocks located inside the HP Heilongjiang Complex exhibit two main zircon populations respectively around 262 Ma and 211 Ma with minor older components (Fig. 15; Table 4). The 245 Ma maximum protolith age of our dated Yil-LEU-14 leucogranite sample is in accordance with the

32

262 Ma prominent peak of protolith zircon ages for the granitic and volcanic rocks in the HP Heilongjiang Complex (Fig. 15). The Permian granitoids and early Paleozoic rocks of the Mashan Complex in the Jiamusi Block were until recently considered to be the main source of the protoliths of these early Paleozoic and Permo-Triassic magmatic rocks, and later incorporated into the HP Heilongjiang Complex (Zhou et al., 2010). Nevertheless, recent studies also suggest a provenance from the Zhangguancai Range magmatic arc in addition to the Jiamusi Block (Dong et al., 2017a, 2017b, 2018a, 2018b, 2019). Our review of zircon ages of the whole orogenic system (Table 1, 2, 4 and 5; Fig. 15) shows that granitic and volcanic rocks inside the HP Heilongjiang Complex apparently had a 262 Ma peak protolith zircon age similar to the peak zircon ages at 258 Ma in the Jiamusi Block. However, no late Triassic magmatic activity is recorded in the Jiamusi Block, whereas a 211 Ma peak protolith zircon age is clearly distinguished for the granitic and volcanic rocks incorporated into the HP Heilongjiang complex. On the other hand, a late Triassic 211 Ma zircon age peak in magmatic activity is also observed in the Zhangguancai Range magmatic arc. In addition, magmatic activity with zircon age peaks at 241 Ma, 261 Ma and 271 Ma was additionally recorded in the Zhangguancai Range magmatic arc, and well correlates with the 262 Ma peak of protolith zircon ages of granitic rocks inside the HP Heilongjiang Complex. Furthermore, the older 492 Ma and 436 peaks of protolith zircon ages of the granitic and volcanic rocks in the HP Heilongjiang Complex may be correlated with the zircon age peaks at 491 Ma, 451 Ma and 425 Ma in the Zhangguancai Range magmatic arc (Table 2; Fig. 15). Accordingly, we assume that the granitic and volcanic rocks inside the HP Heilongjiang Complex were likely sourced from the neighboring Zhangguancai Range magmatic arc (i.e in the eastern Songliao Block) rather than the Jiamusi Block. 33

7.2.3. Metasediments Concerning the zircon age populations in metasediments of the HP Heilongjiang Complex, three main peaks were recorded at 494 Ma, 255 Ma, and 228-200 Ma with minor components, which were continuous from 600 Ma to 160 Ma (see Table 4 and references therein). By comparing with the main 505 Ma-490 Ma, 389 Ma and 258 Ma-290 Ma zircon age populations of the Jiamusi Block as well as the 491 Ma-451 Ma, 317 Ma, 271 Ma-241 Ma and 211 Ma-200 Ma zircon age populations of the Zhangguancai Range magmatic arc, we infer that the zircon age populations in the metasediments confidently overlap those of the Jiamusi Block as well as the Zhangguancai Range magmatic arc (Fig. 15). The newly dated xenocrysts and inherited zircons in the 175-161 Ma granitic and granodiorites veins (MUD-37 and MUD-40 samples) and in the 112-101 Ma igneous rocks (YILLEU-23, Yil-T-2 and YIL-G-15 samples) in the HP Heilongjiang Complex, exhibit zircon age peaks at 507 Ma, 260-238 Ma and 205 Ma with some minor populations between these age spans. These new dates are also consistent with the main 505 Ma-490 Ma, 389 Ma and 258 Ma-290 Ma zircon age populations of the Jiamusi Block as well as the 491-451 Ma, 317 Ma, 271-241 Ma and 211-200 Ma zircon populations of the Zhangguancai Range magmatic arc (Fig. 15). In addition, a younger 185 Ma zircon age peak recorded in the Zhangguancai Range magmatic arc is consistent with the 185 Ma and 167 Ma zircon age peaks of xenocrysts and inherited zircons in the 175-161 Ma granitic and granodiorites veins (MUD-37 and MUD-40 samples) and the 112-101 Ma igneous rocks (YIL-LEU-23, Yil-T-2 and YIL-G-15 samples) (Fig. 15). Moreover, there is a significant 200-167 Ma zircon age population in the histogram of detrital zircon ages of metasedimentary rocks in the HP Heilongjiang Complex (Table 4 and references

34

therein; Fig. 15). This young zircon age population manifestly matches the 185 Ma zircon age peak described in the Zhangguancai Range magmatic arc. With regard to all the presented data above, eroded sediments either sourced from magmatic rocks of the Zhangguancai Range magmatic arc or the Jiamusi Block were both deposited during formation of the HP Heilongiang Complex, as suggested by Dong et al. (2018a).

7.3. Evidence for subduction in the eastern Songliao Block during the Late Triassic Our new weighted mean 206Pb/238U SIMS zircon age of 211±1 Ma on deformed gabbro near Yongshuncun village provides useful information about the subduction process, which occurred on the eastern margin of the Songliao Block in the Zhangguancai Range magmatic arc. Some studies recently considered that the geochemistry of these late Triassic igneous rocks suggests an extensional tectonic setting related to the closure of the Paleo-Asian Ocean (Guo et al., 2016; Xu et al., 2009, 2013). In contrast, these late Triassic igneous rocks have also been linked to an active margin related to the subduction of the Paleo-Pacific Ocean (Ge et al., 2018, Zhao et al., 2018; Zhu et al., 2017d). Moreover, these authors have opined that the Triassic to early Jurassic protolith ages of metabasalts with OIB and E-MORB affinities and metasedimentary rocks provide strong evidence that an ocean still existed, and was subducted below the eastern edge of the Songliao Block (Table 4). The continental adakitic arc-type geochemical character (see part 7.1.3) of our sampled gabbro clearly indicates that an active continental margin was still in existence in the eastern Songliao Block in the Zhangguancai Range magmatic arc at the end of Triassic time. However, the absence of coeval late Triassic igneous rock located on the western edge of the Jiamusi Block

35

challenges the double-sided subduction model to explain the tectonic evolution of the Mudanjiang Ocean, as proposed by Dong et al. (2017a, 2017b, 2018a, 2018b).

7.4. HP metamorphic event and implications for the subduction process The age of the HP metamorphism of the HP Heilongjiang Complex remains controversial with proposed times in the Paleozoic (Wang et al., 2012; Zhang et al., 2018), late Triassic to early Jurassic, (Wu et al., 2007; Zhou et al., 2009; 2010; 2013; Zhou and Li, 2017) or late Triassic to early Cretaceous (Ge et al., 2016, 2017, 2018; Zhu et al., 2015, 2017a, 2017b, 2017c, 2017d). Our new geochronological Ar-Ar dates on blueschists in the Mudanjiang area give Ar-Ar phengite plateau ages at 178.6 ± 0.9 Ma and 175.7 ± 0.8 Ma. These new robust 179 Ma-176 Ma Ar-Ar ages provide evidence that most radiometric ages on metamorphic minerals from the HP Heilongjiang Complex are between 198 Ma and 164 Ma (Table 5; Fig. 15). On the other hand, the 175-161 Ma maximum ages for the emplacement of the granodiorite and granitic veins that intruded the HP Heilongjiang Complex can constrain the lower limit of the HP metamorphic event in the Mudanjiang area. Notably, the 161 Ma maximum age of the intruded granodiorite vein can be regarded as the lower limit of the HP metamorphism in the Mudanjiang area. From this point of view, the lower limit of the HP metamorphism of the HP Heilongjiang Complex at the Mudanjiang area may likely be at 164 Ma-161 Ma. The oldest radiometric Ar-Ar metamorphic ages in the Mudanjiang area are between 198 Ma and 195 Ma on Ca-amphiboles and biotites (Ge et al., 2017; Zhou et al., 2013; Table 5), 197190 Ma in the Luobei area by LA-ICP-MS dating on zircons and Rb-Sr dating on biotites (Han et al., 2019; Wu et al., 2007; Table 4 and 190 Ma in the Yilan area by Ar-Ar dating on phengite (Li et al., 2011; Table 5). Accordingly, the upper limit of the HP metamorphism, which initially

36

affected the HP Heilongjiang Complex in the Luobei and Mudanjiang area, is ca. 198 Ma-195 Ma, while the HP metamorphism is slightly later in the Yilan area at ca.190 Ma (Table 5). Furthermore, correlation between the metamorphic grade and the radiometric ages shows that the oldest 198-190 Ma ages are recorded in gneisses and amphibolites, while blueschists and neighboring micaschists yield 185 Ma to 145 Ma radiometric ages (Table 5). Based on these data, it can be assumed that the metamorphic event in the HP Heilongjiang complex started in a relatively hot subduction environment, which cooled through a time span of 53-13 Ma. As demonstrated in recent studies (Agard et al., 2016), it can be proposed that fluids released throughout the subduction channel might play a significant role in this transition of the metamorphic grade in the HP Heilongjiang Complex. In the eastern Yilan area new 161-159 Ar-Ar ages on glaucophanes (Zhu et al., 2017b; Table 5) and 146-145 Ma Ar-Ar on phengites (Li et al., 2009; Table 5) from metamorphic rocks might be considered as the lower limit of the HP metamorphic event, which affected the whole HP Heilongjiang Complex (Ge et al., 2016; Zhu et al., 2017b). Thus, these youngest late Jurassic radiometric ages indicate that the HP metamorphic event related to a subduction process was still in operation in the HP Heilongjiang area in the Jurassic (Zhu et al., 2017b).

7.5. Evidence for ridge subduction in the Early Jurassic A major tectonic control in the formation of accretionary orogens is ridge–trench interaction (Windley et al. 2007). This particular process can notably be recognized in ancient accretionary orogens by the presence of adakite dykes, which intrude a fore-arc accretionary complex near the trench (Windley and Xiao, 2018). In the Mudanjiang area granitic adakite and granodiorites veins that intruded the HP Heilongjiang Complex originated by partial melting of dehydrated subducted oceanic crust (see

37

part 7.1.4). Thus, these granitic/granodiorite veins in the HP Heilongjiang complex can be regarded as adakite fluids sourced from ridge-generated magmas, which later rose through the accretionary complex. Complementary to these specific geochemical patterns presented above, the E-MORBsourced metabasites together with mudstones, tuffs, and meta-chert protoliths of the metasedimentary rocks (Cao et al., 1992; Wu et al., 2007, Zhou et al., 2009) supply further major evidence of a subducted mid-oceanic ridge. Former ocean plate stratigraphy (mid-oceanic ridge basalt, pelagic chert/limestone, hemipelagic mudstone and trench clastic sediments (Kusky et al., 2013; Wakita et al., 2013) can be inferred from the different lithologies in the HP Heilongjiang Complex. We therefore assume that these accreted and mixed materials were initially generated near a mid-oceanic ridge, which was subducted into the mantle when these ocean floor sediments were added to the accretionary complex (Windley and Xiao, 2018). Thence, the 175-161 Ma maximum age of the intruded adakitic fluids in the HP Heilongjiang Complex is useful to constrain the time of entry of the mid-oceanic ridge into the subduction zone. Taking into account the fact that a hot subducting lithospheric slab younger than 25-30 Myr was required to enhance the production of the adakitic fluids by slab melting (Defant and Drummond, 1990; Martin, 1999), we can infer that subduction of the mid-oceanic ridge started after 205-200 Ma near the Triassic-Jurassic transition.

7.6. ENE/NE-strike-slip faulting The whole accretionary system (accretionary complex, basement and magmatic arc) was dissected by the ENE-trending Dunhua-Mishan and NE-trending Yilan-Yitong transcurrent faults, which are the northerly extension of the Tan-Lu Fault. A major effect of these regional strike-slip movements was the northeasterly shift of the Khanka Lake granitoids, which were displaced by

38

about 150-200 km from the southern edge of the Zhangguangcai Range Magmatic arc, alongside the ENE-oriented Dunhua-Mishan transcurrent fault (K. Liu et al., 2018). A recent study by Zhao et al. (2019) endorses sinistral northward displacement of the Khanka-Jiamusi-Bureya Block to its present position after Mesozoic subduction of the paleo-Pacific Ocean. Until recently, these regional NE/ENE-oriented wrench faults were considered to reflect the late Permian to late Triassic-early Jurassic NE-directed extrusion of NE China during the closure of the Paleo-Asian Ocean (Şengör and Natal’in, 1996; Şengör et al., 2014; Xiao et al., 2015). However, recent structural data coupled with U-Pb dating of syn and post-tectonic magmatic intrusions have recently demonstrated that these NE-ENE regional strike-slip faults were also active in Jurassic and Cretaceous times (C. Liu et al., 2018). In detail, these new 223-161 Ma UPb zircon dates of deformed granites and dykes constrain the age of the first phase of sinistral, transpressional, ductile movements from the late Triassic to late Jurassic (Table 2). In addition, the Dunhua-Mishan transcurrent fault was still active through the early Cretaceous until 129 Ma. (C. Liu et al., 2018; K. Liu et al., 2018). This first late Jurassic - early Cretaceous transpressional phase was either linked to the final closure of the Mongol-Okhotsk Ocean or to the NNW-directed subduction of the Izanagi Plate, which moved at 30 cm/year through this period (Maruyama et al., 1997). Previous structural and geochronological analyses of the HP Heilongjiang Complex and Dunhua-Mishan transcurrent fault are tentatively integrated with this study in order to present a suitable time-frame for the interaction between the HP Heilongjiang Complex and these ENE/NEtrending transcurrent faults. Recent structural and U-Pb dating of ductily deformed magmatic rocks located in the transpressional ENE-trending Dunhua-Mishan transcurrent fault demonstrate there was activity from 223 Ma to 161 Ma (C. Liu et al., 2018; Table 2). These authors also suggested that this 39

deformation phase continued until 129 Ma in the middle Cretaceous. On the other hand, the 198145 Ma HP metamorphic event that affected the HP Heilongjiang Complex was associated with the development of a NS-striking primary foliation during the exhumation of the HP Heilongjiang Complex, which shifted locally towards EW at ~160 Ma (Aouizerat et al., 2018). In addition, the the fact that the new NE-ENE foliation affected the inner HP Heilongjiang Complex along the ENE-trending Dunhua-Mishan and NE-trending Yilan-Yitong transcurrent faults (see Part 3.1.3) highlights the N to ENE/E-trending shift of the foliation. Accordingly, the original N-striking foliation has been largely overprinted by these regional NE-ENE transcurrent faults. Concerning the time-frame, the 223-161 Ma zircon age peaks associated with the ENEtrending Dunhua-Mishan transcurrent fault encroaches the 198 Ma upper age limit of HP metamorphism, while the youngest 129 Ma time of the Dunhua-Mishan transcurrent fault activity overlaps the 145 Ma lower limit of HP metamorphism (Table 2 and 5; Fig. 15). Consequently, the development of the regional network of sinistral ENE/NE-trending transcurrent faults must be considered to be coeval with the subduction process, which triggered the HP metamorphism of the high-pressure Heilongjiang complex.

7.7. 112-101 Ma post-accretionary event At the beginning of the late Cretaceous, the regional NE/ENE-trending strike-slip faults were reworked as a consequence of north-directed paleo-Pacific subduction. This second brittle transpressional phase was between 102 Ma and 96 Ma and it affected older magmatic rocks emplaced between 115 and 102 Ma (C. Liu et al., 2018). Cretaceous accretionary complexes developed along the eastern margin of the CAOB because of the trench retreat and slab-roll back of the Paleo-Pacific Ocean (Ma et al., 2017; Zhou et al., 2014). As a response, widespread, late early Cretaceous, intra-continental volcanism started

40

in the back-arc area, and the bordering Zhangguancai Range magmatic arc, Jiamusi Block and HP Heilongjiang Complex were subject to igneous intrusions from 124 Ma to 100 Ma, as dated by SHRIMP and LA-ICP-MS on zircons (K. Liu et al., 2019; M.D. Sun et al., 2018; Wu et al., 2011; Xu et al., 2013; Tables 1 and 2). The 112-101 Ma granitoids and volcanic rocks in the HP Heilongjiang Complex constrain the upper limit of the accretionary process that formed the HP Heilongjiang Complex (Fig. 15). These post-accretionary igneous rocks can be linked with the regional early Cretaceous back-arc magmatism in NE China, which marks a transition from the earlier continental arc and its eastward migration at ca. 124-100 Ma (K. Liu et al., 2019; M.D. Sun et al., 2018). As discussed above (see part 7.1.5), a metasomatized lithospheric mantle with local adakitic fluids can explain the geochemical patterns associated with the volcanic arc.

7.8. Jurassic tectonic erosion in NE China Even if the timing and circumstance of formation of the HP Heilongjiang Complex remain contentious (Dong et al., 2017, 2018; Ge et al., 2016, 2017, 2018; Han et al., 2019; Zhou et al., 2009, 2010; Zhou and Li, 2017; Zhu et al., 2015, 2017a, b, c, d), most previous studies considered that NE China was affected by unidirectional oceanward extension during west-directed PaleoPacific subduction in the Mesozoic (Zhou et al., 2014; Zhou and Li, 2017). It is commonly accepted that Pacific-type-orogeny comprises the following crustal features from ocean to continent: (1) an accretionary complex including a HP metamorphic belt, (2) a forearc basin, (3) a major magmatic arc (Maruyama, 1997). However, such a crustal architecture is not present along the HP Heilongjiang Complex, which is directly juxtaposed against the eastern edge of the Zhangguancai Range magmatic arc, but without a forearc basin and accretionary wedge.

41

As a result of recent studies, it is now envisioned that the HP Heilongjiang Complex is a subduction mélange, which mainly developed during the Jurassic epoch (Wu et al., 2007; Zhou et al., 2009). As presented above (see part 7.2), the youngest protolith ages of meta-basalts are dated as 162-142 Ma, and the 211 Ma granitic rocks, which originated in the neighboring Zhangguancai Range magmatic arc (i.e in the eastern Songliao Block), may be considered as the youngest granitic rocks incorporated in the subduction mélange. Moreover, most of the youngest age peaks are based on 200 Ma to 167 Ma detrital zircons, which are interpreted as the youngest ages of deposition of sediments during formation of the HP Heilongjiang Complex (Dong et al., 2018a; Ge et al., 2016; Li et al., 2011; Zhou et al., 2010; Zhu et al., 2017c; Table 4). Thus, we can conclude that the subduction mélange developed in a subduction channel from 211 Ma to 142 Ma. Simultaneously, the HP Heilongjiang Complex underwent HP metamorphism and was exhumed up the subduction channel between 198 Ma and 161-145 Ma, as supported by our new 179-176 Ma Ar-Ar phengite ages and the 175-161 Ma maximum ages for the emplacement of the adakitic granodiorite and granitic veins in the HP Heilongjiang Complex. In the same period a westward migration of a magmatic front by 60 -80 kilometers after 195 Ma is indicated by a spatial analysis of earlier Permian to Jurassic U-Pb zircon ages of granitoids and volcanic rocks that formed the Zhangguancai Range magmatic arc (Table 2; Fig. 16). Specifically, most youngest zircons ages (195 Ma to 166 Ma) are located in the east Zhangguancai Range magmatic arc, whereas the older zircons ages (266 Ma to 195 Ma) predominantly occur in the east Zhangguancai Range magmatic arc near the HP Heilongjiang Complex, as pointed out by Ge et al. (2017). In addition, we can infer that a mid-oceanic ridge started to subduct beneath the Zhangguancai Range magmatic arc at about 205 – 200 Ma (see Part 7.5). The above points provide information on: (1) the missing forearc basin, basement and accretionary wedge, (2) the coeval emplacement and exhumation of the subduction mélange during 42

HP metamorphism, (3) the presence of granitic blocks, sourced from a neighboring magmatic arc, and (4) the continent-ward migration of a magmatic front, which together point to an episode of subduction/tectonic erosion (Clift et al., 2005; Isozaki et al., 2010, 2011; Key (NB Kay in the references) et al., 2005; Maruyama et al., 2011; Suzuki et al., 2010). In a similar manner to the Japanese Islands, this episode of subduction/tectonic erosion may have been triggered at about195 Ma as a result of the entry into the subduction zone of a mid-oceanic ridge beneath the Songliao Block at 205 – 200 Ma. As a consequence, the eastern edge of the Songliao Block was eroded from the former trench to form the subduction mélange, which was juxtaposed with an older Triassic magmatic arc located along the Zhangguancai Range magmatic arc, whilst the arc front coevally migrated towards the Asian continent. Moreover, we note that the subduction erosion occurred in the period 60-50 Myr, which was a long time-span for a single tectonic erosional event. During the Mesozoic tectonic evolution of the Japanese Islands, the Sangabawa and Shimanto HP metamorphic belts were respectively exhumed from 140 Ma to 110 Ma and from 80 Ma to 60 Ma by two distinct tectonic erosion events (Aoki et al., 2012; Isozaki et al., 2010; Maruyama et al., 2011). By comparing the tectonic evolution of the HP Heilongjiang Complex with the tectonic evolution of the Japenese islands, we suggest there were two distinct episodes of tectonic erosion during the formation and exhumation of the HP Heilongjiang Complex. Nevertheless, further studies are required to decide if multiple rather single HP metamorphic belts were exhumed during the formation and evolution of the HP Heilongjiang Complex.

7.9. Accretionary processes in NE China Here we shall integrate our new data and ideas with all previous relevant research in order to propose a new tectonic evolutionary model for the discontinuous accretionary processes in NE

43

China from the Carboniferous to Cretaceous, which may be similar to the recent syntheses and tectonic evolution of the Japanese Islands (Isozaki et al., 2010, 2011; Maruyama et al., 2011; Fig. 17). The previously published 308-281 Ma protolith ages of metabasites and our new 356 Ma maximum age for the OIB basalt (see. Part 7.2.1) support the concept that a wide oceanic basin named “the Mudanjiang ocean” (Ge et al., 2016, 2017, 2018) located at the eastern edge of the CAOB, was already in existence in Carboniferous time between the Songliao and Jiamusi Blocks. At about 305 Ma the eastern boundary of the Jiamusi Block changed from a passive to active margin with the emplacement of voluminous calc-alkaline magmatism around 310-305 Ma when there was a 275-245 Ma westward younging of the magmatic arc (G.Y. Li et al., 2019; Yang et al., 2019). This transition from a passive to active continental margin is now considered to be more likely related to the subduction and accretion of the Mongol-Okhotsk Ocean or Panthalassa Ocean, than the Paleo-Pacific Ocean or the Paleo-Asian Ocean, as previously considered by G.Y. Li et al. (2019). This ocean between the Songliao and Jiamusi Blocks started to close in the end-Paleozoic to late Jurassic as a result of west-directed subduction beneath the Songliao Block and the Zhangguancai Range magmatic arc, which marked a new 305-195 Ma period of accretionary growth. Throughout this period innumerable magmatic plutons were emplaced in the Zhangguancai Range magmatic arc from 294 Ma to 195 Ma (Table 2), as marked by our 245 Ma leucogranite and 211 Ma gabbro (see Parts 7.2.2 and 7.3). Later tectonic erosion of arcs in the Jurassic enabled some sediment to be accreted and some to be removed and subducted to the mantle (see Part 7.8), causing removal of an accretionary wedge and forearc. This process and situation would be similar to the identification of a substantial magmatic arc in Japan, which is now missing, but is identified from eroded and accreted sedimentary molasse (Isozaki et al., 2010, 2011; Maruyama et al., 2011). 44

Similarly, it is well established that there is a paucity of magmatic arcs preserved today in the European Alps, but their former presence may be identified by evaluation of the exhumation and erosion history of the resultant flysch and molasse (e.g. Fox et al., 2016). Moreover, in the Japanese Islands, there is no evidence, as there is in the Swiss Alps, of an oceanward retreat or roll-back of the subduction zone, as recorded in the Zhangguancai Range magmatic arc from an analysis of Permian-Jurassic U-Pb zircon ages of former granitoids and volcanic rocks (Table 2; Fig. 16b). The third phase of this discontinuous accretionary process took place between 195 Ma and 142 Ma, corresponding to an extensive regional episode of tectonic erosion in NE China. The entry into the subduction zone of mid-oceanic ridge at the eastern margin of the Songliao Block after 205-200 Ma may have been triggered by or was a response to the episode of tectonic erosion. Throughout this period the positions of both the trench and magmatic arc front along the Zhangguancai Range magmatic arc retreated together toward the continent for a distance of at least 80-60 Km (Fig. 16a). Simultaneously, a subduction mélange developed at the trench site of tectonic erosion (Isozaki et al., 2011; Maruyama et al., 2011; Suzuki et al., 2010), when subducted Carboniferous Jurassic oceanic rocks and overlying serpentinized mantle and incorporated Cambrian to PermoTriassic fragments of the Songliao Block were off-scrapped with sediments/metasediments sourced from magmatic rocks from either the Jiamusi and Songliao Blocks (see Parts 7.2.2 and 7.2.3; Dong et al., 2018a); this process follows the principles of off-scraping or peeling of oceanic crust in subduction zones such as the extant Nankai Trough in Japan (Kimura and Ludden, 1995). During the subduction-exhumation in the subduction channel the mélange underwent HP metamorphism between 198 Ma and 145 Ma, and following the exhumation it was juxtaposed against the eastern margin of the Zhangguancai Range magmatic arc (see part 7.8).

45

The final amalgamation of the Jiamusi and Songliao Blocks marks a new phase of continental construction either from 180 Ma (Zhou et al., 2009, 2010) or after 140 Ma (Zhu et al., 2015). As recently recorded by Zhu et al. (2015, 2017a, 2017b, 2017c), few protolith ages of metabasalts are dated at 162-142 Ma. Accordingly, the youngest protolith ages suggest that the Mudanjiang Ocean was still open at the end-Jurassic to early Cretaceous, when oceanic material was being accreted and metamorphosed in the subduction mélange. Moreover, the presence of significant age populations of detrital zircons linked to the Zhangguancai Range magmatic arc and the Jiamusi Block, highlight the bi-directional source for the sedimentary materials (see Part 7.2.3; Dong et al., 2018a). The mélange formed during the episode of Jurassic tectonic erosion when these two magmatic terranes were already juxtaposed (Xiao et al., 2017), and ready to provide sediments to the HP Heilongjiang Complex. Thus, the provenance analysis of detrital zircons in the HP Heilongjiang Complex may indicate that the Songliao and Jiamusi Blocks were already on the way to their amalgamation at the end-Jurassic when the “Mudanjiang ocean” was still subducting at 142 Ma. From this view-point, the final closure of the “Mudanjiang ocean” and the arc-arc collision between the Jiamusi and Songliao Blocks was likely at the Jurassic-Cretaceous boundary between 140 Ma and 130 Ma (Ge et al., 2016, 2017, 2018; Zhu et al., 2015, 2017a, 2017b, 2017c, 2017d). The last phase of the accretionary process was linked to a new phase of regional accretionary growth during the Cretaceous, which affected much of NE Asia. This new phase of regional accretionary growth is marked by 112-101 Ma intrusions of subduction-generated granitic and volcanic rocks in the HP Heilongjiang Complex. These post-accretionary 112-101 Ma intrusions can be linked to the eastward regional migration of the arc front between 131 Ma and 100 Ma during the roll-back of the subducted Pacific Plate. This roll-back process gave rise to widespread back-arc volcanism in NE China (Ma et al., 2017; M.D. Sun et al., 2018; Xu et al., 46

2013), which built new accretionary wedges in forearcs (e.g. in the Nadanhanda and Sikhote-Alin terranes) (Khanchuk et al., 2016; Zhou et al., 2014).

7.10. Mesozoic regional extrusion of NE China Northeast-directed extrusion in NE China is documented by several paleogeographic reconstructions, which proposed an early Permian (299 Ma) to late Jurassic-early Cretaceous timespan (Natal’in, 1993; Şengör et al., 2014; 2018; Şengör and Natal’in, 1996). The main mechanism to explain this northeast-ward extrusion was the development of regional ENE/NE-trending transcurrent faults, which transected much of NE China. The structural and geochronological data reported in this paper provide strong evidence that HP Heilongjiang Complex was reworked by sinistral shearing along the ENE/NE-trending network of transcurrent faults (see Part 7.6). In addition, the histogram of the accretionary systems highlights the fact that the sinistral 223-161 Ma and 105-96 Ma movements of the Dunhua-Mishan fault overlap the Mesozoic accretionary and erosion processes linked to the Paleo-Pacific subduction (see parts 7.8 and 7.9; Fig. 15). Notably, the 195 Ma magmatic arc front exhibits 2D sinuous folded patterns that link with the 223-161 Ma sinistral movement on the Dunhua-Mishan fault (Table 2; Fig 16a). With regard to all the above presented geological data, we emphasize that the regional ENE/NE-trending transcurrent faults transected and dissected the whole crustal architecture of the accretionary system. The onset of this process was between 223 Ma and 161 Ma when the sinistral ENE/NE-trending transcurrent faults sliced through the magmatic arc, and may have continued until 96 Ma (C. Liu et al., 2018; Table 2). During the 195-142 Ma emplacement of the HP Heilongjiang Complex as a subduction mélange, regional sinistral transcurrent faults cross-cut the whole accretionary orogen including the accretionary complex and magmatic arc. As a result, the

47

late Triassic to Cretaceous “arc-slice strike-slip process” (Natal’in and Şengör, 2005) duplicated the original crustal structure of the accretionary orogen and likely caused successive repetitions of accretionary complex-magmatic arc fragments along the transcurrent faults (Fig. 18). Notably, the Khanka Block, which corresponds to the southern edge of the Zhangguancai Range magmatic arc was juxtaposed with the Jiamusi Block during this “strike-slip arc slicing” (K. Liu et al., 2018). This scenario plausibly took place when NE China was highly stressed between the North China and Siberian craton during the final closure of the Paleo-Asian and Mongol-Okhotsk Oceans (Natal’in, 1993; Şengör et al., 2014 ; 2018 ; Şengör and Natal’in, 1996). As a response to this final closure of the Paleo-Asian and Mongol-Okhotsk Oceans in the late Triassic (Xiao et al., 2015), part of the segmented accretionary system was forced to extrude toward the northeast between the two major continental cratons from the late Permian to early Cretaceous, when the westward subduction of the Paleo-Pacific Ocean was already operating in NE China (Şengör and Natal’in, 1996; Zhou et al., 2009; Xiao et al., 2015). Before 160-140 Ma, NE China ended its extrusion at the Jurassic-Cretaceous boundary, and collided with the Siberian Craton along the Mongol ‐ Okhotsk suture (Şengör and Natal’in, 1996; Tomurtogoo et al. 2005; Aouizerat et al., 2018).

8. Conclusions •

Structural, geochronological and geochemical analyses were performed on the high-pressure Heilongjiang Complex and on the eastern margin of the Zhanguancai Range Magmatic arc in NE China. Two main periods of oceanward accretionary growth are highlighted between 305 Ma and 195 Ma and around 112-101 Ma, and a regional tectonic erosion affected NE China from 195 Ma to 142 Ma.

48



The whole accretionary system was transected and dissected by regional sinistral ENE/NEtrending transcurrent faults from Triassic to Cretaceous time. This regional deformation was linked to Mesozoic northeast-directed extrusion and exhumation in NE China that formed in response to the final closure of the Paleo-Asian and Mongol-Okhotsk oceans (Şengör and Natal’in, 1996; Xiao et al., 2015).



Complementary to the published 308-281 Ma protolith ages on metabasites (Table 4; Fig. 15), a new 356 Ma maximum age of an OIB basalt suggests that the “Mudanjiang ocean” was already in existence in Carboniferous-early Permian time between the Jiamusi and Songliao Blocks, and that is much older than previously proposed.



Coupled with a review of the zircon ages from the whole accretionary system, a 245 Ma maximum protolith age on a leucogranite (YIL-LEU-14 sample) and xenocryst population ages in granitic and volcanic rocks in the HP Heilongjiong Complex supply conclusive evidence that the Zhangguancai Range magmatic arc constitutes the main source for early Paleozoic and Permo-Triassic granitic and volcanic rocks within the HP Heilongjiang Complex. The sedimentary rocks within the HP Heilongjiang Complex were sourced either from the Zhangguancai Range magmatic arc or the Jiamusi Block.



A deformed adakite-gabbro from the eastern edge of the Zhangguancai Range magmatic arc (YIL-GAB-16 sample) has a weighted mean

206Pb/238U

SIMS zircon age of 211±1 Ma. This

211 Ma gabbro indicates that subduction on the eastern margin of the Songliao Block in the Zhangguancai Range magmatic arc was in operation in the end-Triassic. •

Combined with previous radiometric dating of metamorphic minerals, new 179-76 Ma 40Ar‐ 39Ar

phengite ages from blueschists lenses in the Mudanjiang area (MUD-31 and 39 samples)

49

support a 198-145 Ma time-span of the HP metamorphism that was associated with the exhumation of the HP Heilongjiang Complex. •

175-161 Ma maximum ages of intrusions were obtained on an adakite granitic vein (MUD-37 sample) and an adakitic granodiorite vein (MUD-40 sample), both of which trandsect the HP Heilongiang Complex. The trace element patterns of adakite melts indicate generation by slab melting, which was likely facilitated by the entry of a mid-oceanic ridge into the subduction zone after 205-200 Ma.



The 198-145 Ma HP metamorphism was coincident with a regional 195-142 Ma tectonic erosion event, which was triggered by a slightly older entry of a mid-oceanic ridge into a subduction zone at the Triassic-Jurassic transition. During this event numerous components from the eroded Songliao Block were incorporated into the mélange and exhumed with the HP metamorphic rocks (metabasites, metasediments) within the subduction-exhumation channel. In this same period, the magmatic front moved westwards between 195 Ma and 166 Ma as a consequence of the advancing subduction front.



The HP Heilongjiang Complex was intruded by a younger arc-generated adakitic leucogranitic dike (YIL-LEU-23), and a monzodiorite (YIL-G-15), and an associated trachyte (YIL-T-2) at ca. 112-101 Ma; these post-accretionary magmatic intrusions and extrusions highlight a new period of regional accretionary growth in the Paleo-Pacific orogenic belt.

50

Acknowledgements We dedicate this contribution to the late Academician Shu Sun who encouraged our team to investigate the anatomy and evolution of the accretionary Altaid orogen. We thank Rui Li, Rasoul Esmaeili, and Yongchen Li for assistance in the field and laboratory. This study was financially supported by the National Natural Science Foundation of China (41888101, 41730210), the National Key Research and Development Program of China (2017YFC0601201), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18020203), and the Key Research Program of Frontier Sciences, CAS (QYZDJ-SSW-SYS012). This is a contribution to IGCP 622.

51

References Anonymous., 1972. Geological map of the Yilan Region, China, 1:200,000. The Regional Geological Team of the Heilongjiang Bureau of Geology (in Chinese). Agard, P., Yamato, P., Soret, M., Prigent, C., Guillot, S., Plunder, A., Dubacq. B, Chauvete. A., Monié, P., 2016. Plate interface rheological switches during subduction infancy: Control on slab penetration and metamorphic sole formation. Earth and Planetary Science Letters 451, 208-220. Aoki, K., Isozaki, Y., Yamamoto, S., Maki, K., Yokoyama, T., Hirata, T., 2012. Tectonic erosion in a Pacific-type orogen: Detrital zircon response to Cretaceous tectonics in Japan. Geology 40 (12), 1087-1090. Aouizerat. A., Xiao, W., Schulmann, K., Jeřábek, P., Monie, P., Zhou, J, B., Zhang, J., Ao, S., Li, R., Li, Y., Esmaeli, R., 2018. Structures, strain analysis and

40Ar/39Ar

ages of blueschist-

bearing Heilongjiang Complex (NE China): implication for the Mesozoic tectonic evolution of NE China. Geological Journal 54, 716-745. Bas, M.L., Maitre, R.L., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of petrology 27, 745-750. Bi, J.H., Ge, W.C., Yang, H., Zhao, G.C., Yu, J.J., Zhang, Y.L., Wang, Z.H., Tian, D.X., 2014. Petrogenesis and tectonic implications of early Paleozoic granitic magmatism in the Jiamusi Massif, NE China: geochronological, geochemical and Hf isotopic evidence. Journal of Asian Earth Sciences 96, 308–331. Bi, J.H., Ge, W.C., Yang, H., Zhao, G.C., Xu, W.L., Wang, Z.H., 2015. Geochronology, geochemistry and zircon Hf isotopes of the Dongfanghong gabbroic complex at the eastern

52

margin of the Jiamusi Massif, NE China: petrogenesis and tectonic implications. Lithos 234, 27–46. Bi, J.H., Ge, W.C., Yang, H., Wang, Z.H., Xu, W.L., Yang, J.H., Xing, D.H., Chen, H.J., 2016. Geochronology and geochemistry of late Carboniferous-middle Permian I- and A-type granites and gabbro-diorites in the eastern Jiamusi Massif, NE China: implications for petrogenesis and tectonic setting. Lithos 266, 213–232. Bi, J.H., Ge, W.C., Yang, H., Wang, Z.H., Dong, Y., Liu, X.W., Ji, Z., 2017a. Age, petrogenesis, and tectonic setting of the Permian bimodal volcanic rocks in the eastern Jiamusi Massif, NE China. Journal of Asian Earth Sciences 134, 160–175. Bi, J. H., Ge, W. C., Yang, H., Wang, Z. H., Tian, D. X., Liu, X. W., Xu, W.L., Xing, D. H., 2017b. Geochemistry of MORB and OIB in the Yuejinshan Complex, NE China: Implications for petrogenesis and tectonic setting. Journal of Asian Earth Sciences 145, 475-493. Blanco-Quintero, I. F., Rojas-Agramonte, Y., García-Casco, A., Kröner, A., Mertz, D. F., Lázaro, C., Blanco-Moreno, J., Renne, P. R., 2011. Timing of subduction and exhumation in a subduction channel: Evidence from slab melts from La Corea Mélange (eastern Cuba). Lithos 127 (1-2), 86-100. Cao, X., Dang, Z.X., Zhang, X.Z., Jiang, J.S., Wang, H.D., 1992. The composite Jiamusi terrane. Jilin Pub House Sci. Technol. 1–126 (in Chinese with English abstract). Cui, P. L., Sun, J. G., Han, S. J., Zhang, P., Zhang, Y., Bai, L. A., Gu, A. L., 2013. Zircon U–Pb– Hf isotopes and bulk-rock geochemistry of gneissic granites in the northern Jiamusi Massif, Central Asian Orogenic Belt: implications for Middle Permian collisional orogeny and Mesoproterozoic crustal evolution. International Geology Review 55 (9), 1109-1125.

53

Clift, P. D., Pavlis, T., DeBari, S. M., Draut, A. E., Rioux, M., Kelemen, P. B., 2005. Subduction erosion of the Jurassic Talkeetna-Bonanza arc and the Mesozoic accretionary tectonics of western North America. Geology 33 (11), 881-884. Dang, Y., Li, D., 1993. Discussion on isotope geochronology of Precambrian Jiamusi Block. J. Changchun Univ. Earth Sci. 23, 318–332 (in Chinese with English abstract). Defant, M.J., Drummond, M.S., 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347 (6294), 662. Dilek, Y., Furnes, H., 2014. Ophiolites and their origins. Elements 10 (2), 93-100. Ding, J., Han, C., Xiao, W., Wang, Z., Song, D., 2017. Geochronology, geochemistry and Sr-Nd isotopes of the granitic rocks associated with tungsten deposits in Beishan district, NW China, Central Asian Orogenic Belt: Petrogenesis, metallogenic and tectonic implications. Ore Geology Reviews 89, 441-462. Dong, Y., Ge, W. C., Yang, H., Xu, W.-L., Bi, J. H., Wang, Z. H., 2017a. Geochemistry and geochronology of the Late Permian mafic intrusions along the boundary area of Jiamusi and Songnen-Zhangguangcai Range massifs and adjacent regions, northeastern China: Petrogenesis and implications for the tectonic evolution of the Mudanjiang Ocean. Tectonophysics 694, 356–367. Dong, Y., Ge, W.C., Yang, H., Bi, J.H., Wang, Z.H., Xu, W.L., 2017b. Permian tectonic evolution of the Mudanjiang Ocean: Evidence from zircon U-Pb-Hf isotopes and geochemistry of a NS trending granitoids belt in the Jiamusi Massif, NE China. Gondwana Research 49, 147–163. Dong, Y., Ge, W. C., Yang, H., Ji, Z., He, Y., Zhao, D., Xu, W., 2018a. Convergence history of the Jiamusi and Songnen-Zhangguangcai Range massifs: Insights from detrital zircon U-Pb

54

geochronology of the Yilan Heilongjiang Complex, NE China. Gondwana Research 56, 5168. Dong, Y., He, Z. H., Ren, Z. H., Ge, W. C., Yang, H., Ji, Z., He, Y., 2018b. Formation of the Permian Taipinggou igneous rocks, north of Luobei (Northeast China): implications for the subduction of the Mudanjiang Ocean beneath the Bureya–Jiamusi Massif. International Geology Review 60 (10), 1195-1212. Dong, Y., Ge, W. C., Yang, H., Liu, X. W., Bi, J. H., Ji, Z., Xu, W. L., 2019. Geochemical and SIMS U-Pb rutile and LA–ICP–MS U-Pb zircon geochronological evidence of the tectonic evolution of the Mudanjiang Ocean from amphibolites of the Heilongjiang Complex, NE China. Gondwana Research 69, 25-44. Feng, G., Dilek, Y., Niu, X., Liu, F., Yang, J., 2018. Geochemistry and geochronology of OIBtype, Early Jurassic magmatism in the Zhangguangcai range, NE China, as a result of continental back-arc extension. Geological Magazine, 1-15 (give the volume number) Fox, M., Herman, F., Willett, S.D., Schmid, S.M., 2016. The exhumation history of the European Alps inferred from linear inversion of thermochronometric data. American Journal of Science 316, 505-541. Gao, S., Liu, X., Yuan, H., Hattendorf, B., Günther, D., Chen, L., Hu, S., 2002. Determination of forty-two major and trace elements in USGS and NIST SRM glasses by laser ablation inductively coupled plasma mass spectrometry. Geostandards Newsletter 26 (2), 181-196. Ge, M. H., Zhang, J. J., Liu, K., Ling, Y. Y., Wang, M., Wang, J. M., 2016. Geochemistry and geochronology of the blueschist in the Heilongjiang Complex and its implications in the late Paleozoic tectonics of eastern NE China. Lithos 261, 232–249.

55

Ge, M. H., Zhang, J. J., Liu, K., Ling, Y. Y., Wang, M., Wang, J. M., 2017. Geochronology and geochemistry of the Heilongjiang Complex and the granitoids from the Lesser Xing'anZhangguangcai Range: Implications for the late Paleozoic-Mesozoic tectonics of eastern NE China. Tectonophysics 717, 565–584. Ge, M. H., Zhang, J. J., Li, L., Liu, K., 2018. A Triassic-Jurassic westward scissor-like subduction history of the Mudanjiang Ocean and amalgamation of the Jiamusi Block in NE China: Constraints from whole‐rock geochemistry and zircon U‐Pb and Lu‐Hf isotopes of the Lesser Xing'an-Zhangguangcai Range granitoids. Lithos 302, 263–277. Gill, J.B., 1981, Orogenic andesites and plate tectonics: New York, Springer, p. 385–389 Grove, T.L., Elkins-Tanton, L.T., Parman, S.W., Chatterjee, N., Müntener, O., Gaetani, G.A., 2003. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contributions to Mineralogy and Petrology 145, 515-533. Guo, P., Xu, W. L., Yu, J. J., Wang, F., Tang, J., Li, Y., 2016. Geochronology and geochemistry of Late Triassic bimodal igneous rocks at the eastern margin of the Songnen–Zhangguangcai Range Massif, Northeast China: petrogenesis and tectonic implications. International Geology Review 58 (2), 196-215. Guo, P., Xu, W. L., Wang, Z. W., Wang, F., Luan, J. P., 2018. Geochronology and geochemistry of Late Devonian-Carboniferous igneous rocks in the Songnen-Zhangguangcai Range Massif, NE China: Constraints on the late Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt. Gondwana Research 57, 119-132. Han, W., Zhou, J. B., Wilde, S. A., Li, L., 2019. LA-ICPMS zircon U-Pb dating of the Heilongjiang Complex in the Luobei area: New constraints for the late Palaeozoic ‐ Mesozoic tectonic evolution of Jiamusi Block, NE China. Geological Journal, in press.

56

Hastie, A. R., Kerr, A. C., McDonald, I., Mitchell, S. F., Pearce, J. A., Millar, I. L., Barfod, D., Mark, D. F., 2010. Geochronology, geochemistry and petrogenesis of rhyodacite lavas in eastern Jamaica: A new adakite subgroup analogous to early Archaean continental crust? Chemical Geology 276 (3-4), 344-359. HBGMR (Heilongjiang Bureau of Geology and Mineral Resources), 1993. Regional Geology of Heilongjiang Province. Geological Publishing House, Beijing, pp. 347–418 (in Chinese with English abstract). Hoskin, P.W., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry 53 (1), 27–62. Ishiwatari, A., Tsujimori, T., 2003. Paleozoic ophiolites and blueschists in Japan and Russian Primorye in the tectonic framework of East Asia: A synthesis. Island Arc 12, 190–206. Isozaki, Y., Aoki, K., Nakama, T., Yanai, S., 2010. New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Research 18, 82-105. Isozaki, Y., Maruyama, S., Nakama, T., Yamamoto, S., Yanai, S., 2011. Alternating growth and shrink of an active continental margin: Updated geotectonic history of the Japanese Islands. Journal of Geography (Chigaku Zasshi) 120 (1), 65-99. Kay, S. M., Godoy, E., Kurtz, A., 2005. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geological Society of America Bulletin, 117 (1-2), 67-88. Khanchuk, A, I., Kemkin, I. V., Kruk, N. N., 2016. The Sikhote-Alin orogenic belt, Russian South East: Terranes and the formation of continental lithosphere based on geological and isotopic data. Journal of Asian Earth Sciences 120, 117-138. Kimura, G., Ludden, J., 1995. Peeling oceanic crust in subduction zones. Geology 23, 217-220. 57

Koppers, A. A., 2002. ArArCALC—Software for 40Ar/39Ar age calculations. Computers and Geosciences 28 (5), 605–619. Kusky, T.M., Windley, B.F., Safonova, I., Wakita, K., Wakabayashi, J., Polat, A., 2013. Recognition of ocean plate stratigraphy in accretionary orogens through Earth history: A record of 3.8 billion years of sea floor spreading, subduction, and accretion. Gondwana Research 24, 501-547. Li, G. Y., Zhou, J. B., Wilde, S. A., Li, L., 2019. The transition from a passive to an active continental margin in the Jiamusi Block: Constraints from Late Paleozoic sedimentary rocks. Journal of Geodynamics 129, 131-148. Li, J.Y., Niu, B.G., Song, B., Xu, W.X., Zhang, Y.H., Zhao, Z.R., 1999. Crustal Formation and Evolution of Northern Changbai Mountains, Northeast China. Geological Publishing House, Beijing, pp. 1–137 (in Chinese with English abstract). Li, J.Y., 2006. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo‐Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences 26, 207–224. Li, Q. L., Li, X. H., Liu, Y., Tang, G. Q., Yang, J. H., Zhu, W. G., 2010. Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. Journal of Analytical Atomic Spectrometry 25(7), 1107-1113 Li, W. M., Takasu, A., Liu, Y. J., Genser, J., Neubauer, F., Guo, X. Z., 2009. 40Ar/39Ar ages of the high ‐ P/T metamorphic rocks of the Heilongjiang Complex in the Jiamusi Massif, northeastern China. Journal of Mineralogical and Petrological Sciences 104, 110–116.

58

Li, W. M., Takasu, A., Liu, Y. J., Guo, X. Z., 2010. Newly discovered garnet-barroisite schists from the Heilongjiang Complex in the Jiamusi Massif, northeastern China. Journal of Mineralogical and Petrological Sciences 105, 86–91. Li, W. M., Takasu, A., Liu, Y. J., Genser, J., Zhao, Y. L., Han, G. Q., Guo, X. Z., 2011. U–Pb and 40Ar/39Ar age constrains on protolith and high‐P/T type metamorphism of the Heilongjiang Complex in the Jiamusi Massif, NE China. Journal of Mineralogical and Petrological Sciences 106, 326–331. Li, W., Liu, Y., Takasu, A., Zhao, Y., Fazle, K. M., Wen, Q., Liang, C., Feng, Y., Zhang, L., 2019. Metamorphic evolution of the Heilongjiang glaucophanic rocks, NE China: Constraints from the P–T pseudosections in the NCKFMASHTO system. Geological Journal 54, 698–715. Li, X. H., Liu, Y., Li, Q. L., Guo, C. H., Chamberlain, K. R., 2009. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization. Geochemistry, Geophysics, Geosystems 10 (4). Li, X. P., Kong, F. M., Zheng, Q. D., Dong, X., Yang, Z. Y., 2010. Geochronological study on the Heilongjiang complex at Luobei area, Heilongjiang Province. Acta Petrologica Sinica 26 (7), 2015–2014. Li, X. P., Jiao., L.X., Zheng Q.D., Dong, X., Kong, F.M., Song, Z.J., 2009. U-Pb zircon dating of the Heilongjiang complex at Hunan, Heilongjiang Province. Acta Petrologica Sinica 25 (8), 1909-1916. Liou, J.G., Graham, S.A., Maruyama, S., Wang, X., Xiao, X., Carroll, A.R., Chu, J., Feng, Y., Hendrix, M.S., Liang, Y.H., McKnight, C.L., Tang, Y., Wang, Z.X., Zhao, M., Zhu, B., 1989a. Proterozoic blueschist belt in western China: best documented Precambrian blueschists in the world. Geology 17, 1127–1131.

59

Liou, J., Wang, X., Coleman, R. G., Zhang, Z. M., Maruyama, S., 1989. Blueschists in major suture zones of China. Tectonics 8 (3), 609–619. Liu, C., Zhu, G., Zhang, S., Gu, C., Li, Y., Su, N., Xiao, S., 2018. Mesozoic strike-slip movement of the Dunhua–Mishan Fault Zone in NE China: A response to oceanic plate subduction. Tectonophysics 723, 201-222. Liu, J., 1988. Precambrian Geology of the Jiamusi Massif. Heilongjiang Geology 1, 148–156 (in Chinese with English abstract). Liu, K., Wilde, S. A., Zhang, J., Xiao, W., Wang, M., Ge, M., 2019. Zircon U–Pb dating and whole‐rock geochemistry of volcanic rocks in eastern Heilongjiang Province, NE China: Implications for the tectonic evolution of the Mudanjiang and Paleo-Pacific oceans from the Jurassic to Cretaceous. Geological Journal, in press. Liu, K., Zhang, J., Wilde, S.A., Zhou, J., Wang, M., Ge, M., Wang, J., Ling, Y., 2018. Initial subduction of the Paleo-Pacific Oceanic plate in NE China: constraints from whole-rock geochemistry and zircon U–Pb and Lu–Hf isotopes of the Khanka Lake granitoids. Lithos 274, 254–270. Liu, Y., Li, W., Feng, Z., Wen, Q., Neubauer, F., Liang, C., 2017. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Research 43, 123-148. Long, X. Y., Xu, W. L., Guo, P., Sun, C. Y., Luan, J. P., 2019. Was Permian magmatism in the eastern Songnen and western Jiamusi massifs, NE China, related to the subduction of the Mudanjiang oceanic plate?. Geological Journal, in press Ludwig, K. R., 2001. Isoplot/Ex version 2.49: A geochronology toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 55.

60

Ma, X. H., Zhu, W. P., Zhou, Z. H., Qiao, S. L., 2017. Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction: new constraints from granitoids in the eastern Jilin– Heilongjiang Belt, NE China. Journal of Asian Earth Sciences 144, 261-286. Martin, H., 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46, 411429. Martin, H., Smithies, R. H., Rapp, R., Moyen, J. F., Champion, D., 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79 (1-2), 1-24. Maruyama, S., 1997. Pacific-type orogeny revisited: Miyashiro-type orogeny proposed. Island Arc 6 (1), 91-120. Maruyama, S., Isozaki, Y., Kimura, G., Terabayashi, M., 1997. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island arc 6 (1), 121142. Maruyama, S., Omori, S., Senshu, H., Kawai, K., Windley, B. F., 2011. Pacific-type orogens: new concepts and variations in space and time from present to past. Journal of Geography (Chigaku Zasshi) 120 (1), 115-223. Meng, E., Xu, W.L., Yang, D.B., Pei, F.P., Yu, Y., Zhang, X.Z., 2008. Permian volcanisms in eastern and southeastern margins of the Jiamusi Massif, northeastern China: zircon U-Pb chronology, geochemistry and its tectonic implications. Chinese Science Bulletin 53, 1231– 1245. Meng, E., Xu, W.L., Pei, F.P., Yang, D.B., Wang, F., Zhang, X.Z., 2011. Permian bimodal volcanism in the Zhangguangcai Range of eastern Heilongjiang Province, NE China: Zircon U-Pb-Hf isotopes and geochemical evidence. Journal of Asian Earth Sciences 41, 119–132.

61

Middlemost, E. A., 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews 37 (3-4), 215-224. Mossakovsky, A.A., Ruzhentsev, S.V., Samygin, S.G., Kheraskova, T.N., 1994. Central Asian fold belt; geodynamic evolution and formation history. Geotectonics 27, 445–474. Moyen, J. F., 2009. High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos, 112 (3-4), 556-574. Natal'in, B., 1993. History and modes of Mesozoic accretion in southeastern Russia. Island Arc 2 (1), 15-34. Natal'in, B. A., Şengör, A. C., 2005. Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: the pre-history of the Palaeo-Tethyan closure. Tectonophysics 404 (3-4), 175-202. Oh, C. W., 2006. A new concept on tectonic correlation between Korea, China and Japan: Histories from the late Proterozoic to Cretaceous. Gondwana Research 9, 47–61. Parfenov, L. M., Berzin, N. A., Khanchuk, A. I., Badarch, G., Belichenko, V. G., Bulgatov, A. N., Dril, S. I., Kirillova, G. L., Kuzmin, M. I., Nokleberg, W. J., Prokopiev, A. V., Timofeev, V. F., Tomurtogoo, O., Yang, H., 2003. A model for the formation of orogenic belts in Central and Northeast Asia. Tikhookeanskaya geologiya, 22 (6), 7-41 (in Russian). Pearce, J.A., 2014. Ophiolites: immobile elements fingerprinting of ophiolites. Elements 10 (2), 101-108. Pearce, J. A., Stern, R. J., 2006. Origin of back-arc basin magmas: trace element and isotope perspectives. Geophysical Monograph-American Geophysical Union 166, 63-86. Peccerillo, A., Taylor, S.R., 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology 58, 63-81.

62

Qin, J. F., Lai, S. C., Li, Y. F., Ju, Y. J., Zhu, R. Z., Zhao, S. W., 2016. Early Jurassic monzogranitetonalite association from the southern Zhangguangcai Range: Implications for paleo–Pacific plate subduction along northeastern China. Lithosphere 8 (4), 396-411. Sengör, A.M.C., Natal’in, B.A., 1996. Paleotectonics of Asia: fragments of a synthesis. In: Yin, A., Harrison, M. (Eds.), The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, pp. 486–640. Şengör, A. M. C., Natal’in, B.A., Burtman. V.S., 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia, Nature 364, 299–307. Şengör, A. M. C., Natal’in, B.A., Van der Voo, R. Sunal, G., 2014. A new look at the Altaids: a superorogenic complex in northern and central Asia as a factory of continental crust. Part II: palaeomagnetic data, reconstructions, crustal growth and global sea-level. Austrian Journal of Earth Sciences 107 (2), 131–181. Şengör, A. C., Natal'in, B. A., Sunal, G., Van der Voo, R., 2018. The tectonics of the Altaids: crustal growth during the construction of the continental lithosphere of Central Asia between∼ 750 and∼ 130 Ma ago. Annual Review of Earth and Planetary Sciences 46, 439-494. Scholl, D.W., von Huene, R., 2009. Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens. Geological Society of London, Special Publications 318 (1), pp. 105–125. Sun, C.Y., Long, X.Y., Xu., W.L., Wang, F., Ge, W.C., Guo, P., Liu, X.Y., 2018. Zircon U-Pb ages and Hf Isotopic compositions of the Heilongjiang Complex from Jiayin, Heilongjiang Province and Kundur, Russian Far East and their geological implications. Acta Petrologica Sinica 34, 2901-2916.

63

Sun, M.D., Xu, Y.G., Wilde, S.A., Chen, H.L., Yang, S.F., 2015. The Permian Dongfanghong island arc gabbro of the Wandashan Orogen, NE China: implications for Paleo-Pacific subduction. Tectonophysics 659, 122–136 Sun, M.D, Chen, H., Milan, L. A., Wilde, S. A., Jourdan, F., Xu, Y., 2018. Continental arc and back-arc migration in eastern NE China: New constraints on Cretaceous Paleo-Pacific subduction and rollback. Tectonics 37 (10), 3893–3915. Sun, S. S., McDonough, W. F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications 42(1), pp. 313-345. Shao, J. A., K. D. Tang., 1995. Terranes in Northeast China and Evolution of Northeast Asia Continental Margin. pp. 185, Seismic Press, Beijing (in Chinese). Suzuki, K., Maruyama, S., Yamamoto, S., Omori, S., 2010. Have the Japanese Islands grown? : Five “Japans” were born, and four “Japans” subducted into the mantle. Journal of Geography Chigaku Zasshi 119 (6), 1173-1196 (in Japanese with English abstract). Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S., Morris, G.A., Nasdala, L and Norberg, N., 2008. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249 (1-2), 1-35. Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a twostage model. Earth and Planetary Science Letters 26 (2), 207-221. Tang, J., Xu, W. L., Wang, F., Gao, F. H., Cao, H. H., 2011. Petrogenesis of bimodal volcanic rocks from Maoershan Formation in Zhangguangcai Range: Evidence from geochronology and geochemistry. Global Geology 30 (4), 508-520. Tomurtogoo, O., Windley, B.F., Kröner, A., Badarch, G., Liu, D.Y., 2005. Zircon age and occurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints on 64

the evolution of the Mongol-Okhotsk ocean, suture and orogen. Journal of Geological Society of London 162, 125-134. Wakita, K., Pubellier, M., Windley, B. F., 2013. Tectonic processes, from rifting to collision via subduction, in SE Asia and the western Pacific: A key to understanding the architecture of the Central Asian Orogenic Belt. Lithosphere 5 (3), 265-276. Wang, F., Xu, W.L., Meng, E., Cao, H.H., Gao, F.H., 2012. Early Paleozoic amalgamation of the Songnen–Zhangguangcai Range and Jiamusi massifs in the eastern segment of the Central Asian Orogenic Belt: geochronological and geochemical evidence from granitoids and rhyolites. Journal of Asian Earth Sciences 49, 234–248. Wang, F., Xu, W.L., Xu, Y.G., Gao, F.H., Ge, W.C., 2015. Late Triassic bimodal igneous rocks in eastern Heilongjiang Province, NE China: implications for the initiation of subduction of the Paleo-Pacific Plate beneath Eurasia. Journal of Asian Earth Sciences 97, 406–423. Wang, Q., McDermott, F., Xu, J. F., Bellon, H., Zhu, Y. T., 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology 33 (6), 465-468. Wang, Z.W, Xu, W., Pei, F., Guo, P., Wang, F., Li, Y., 2017. Geochronology and geochemistry of early Paleozoic igneous rocks from the Zhangguangcai Range, northeastern China: constraints on tectonic evolution of the eastern Central Asian Orogenic Belt. Lithosphere 9 (5), 803–827. Wang, Z.W., Xu, W.L., Pei, F.P., Wang, F., Guo, P., 2016. Geochronology and geochemistry of early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China: implications for the tectonic evolution of the eastern Central Asian Orogenic Belt. Lithos 261, 144–163. Wei, H.Y., 2012. Geochronology and Petrogenesis of Granitoids in Yichun-Hegang Area, Heilongjiang Province. Jilin University (in Chinese with English abstract).

65

Winchester, J. A., Floyd, P. A., 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters 28 (3), 459-469. Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Vonquadt, A., Roddick., J.C., Speigel, W., 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses. Geostandards Newsletter 19 (1), 1-23. Wilde, S.A., Zhang, X.Z., Wu, F.Y., 2000. Extension of a newly-identified 500 Ma metamorphic terrain in Northeast China: further U–Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China. Tectonophysics 328 (1-2), 115–130 Wilde, S.A., Wu, F.Y., Zhang, X.Z., 2001. The Mashan complex: SHRIMP U–Pb zircon evidence for a Late Pan-African metamorphic event in NE China and its implications for global continental reconstructions. Geochimica 30 (1), 35–50 (in Chinese with English abstract) Wilde, S. A., Wu, F. Y., Zhang, X. Z., 2003. Late Pan-African magmatism in Northeastern China: SHRIMP U‐Pb zircon evidence for igneous ages from the Mashan Complex. Precambrian Research 122(1-4), 311-327. Wilde, S. A., Zhou, J., 2015. The late Paleozoic to Mesozoic evolution of the eastern margin of the Central Asian Orogenic Belt in China. Journal of Asian Earth Sciences, 113, 909-921. Wilhem, C., Windley, B.F., Stampfli, G.M., 2012. The Altaids of Central Asia: A tectonic and evolutionary innovative review. Earth-Science Reviews 113, 303-341. Windley, B. F., Xiao, W.J., 2018. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen. Gondwana Research 61, 73-87.

66

Windley, B.F., Alexeiev, D., Xiao, W.J., Kröner, A., Badarch, G., 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, London 164 (1), pp. 31–47. Wu, F.Y., Jahn, B.M., Wilde, S., Sun, D.Y., 2000. Phanerozoic continental crustal growth: Sr–Nd isotopic evidence from the granites in northeastern China. Tectonophysics 328 (1-2), 89–113. Wu, F.Y., Wilde, S.A., Sun, D.Y., 2001. Zircon SHRIMP ages of gneissic granites in Jiamusi Massif, northeastern China. Acta Petrol. Sin. 17, 443–452 (in Chinese with English abstract). Wu, F.Y., Yang, J.H., Lo, C.H., Wilde, S.A., Sun, D.Y., Jahn, B.M., 2007. The Heilongjiang Group: a Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China. Island Arc 16 (1), 156–172. Wu, F.Y., Sun, D.Y., Ge, W.C., Zhang, Y.B., Grant, M.L., Wilde, S.A., Jahn, B.M., 2011. Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian Earth Sciences 41 (1), 1–30. Wu, L., Monié, P., Wang, F., Lin, W., Ji, W., Yang, L., 2017. Multi-phase cooling of Early Cretaceous granites on the Jiaodong Peninsula, East China: Evidence from 40Ar/39Ar and (U ‐Th)/He thermochronology. Journal of Asian Earth Sciences 160, 334–347. Xiao, W.J., Santosh, M., 2014. The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Research 25 (4), 1429-1444. Xiao, W. J., Windley, B. F., Sun, S., Li, J. L., Huang, B. C., Han, C. M., Chen, H. L., 2015. A tale of amalgamation of three collage systems in the Permian-Middle Triassic in Central Asia: Oroclines, sutures and terminal accretion. Annual Review of Earth and Planetary Sciences 43 (1), 477–507.

67

Xiao, W.J., Ao, S., Yang, L., Han, C., Wan, B., Zhang, J. E, Zhang Z.Y., Li, R., Chen. Z., Song, S., 2017. Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision. Science China Earth Sciences 60 (6), 10151039. Xie, H., Mang, F., Miao, L., Chen, F., Liu, D., 2008. Zircon SHRIMP U ‐ Pb dating of the amphibolite from “Heilongjiang Group” and the granite in Mudanjiang area, NE China, and its geological significance. Acta Petrologica Sinica 24, 1237–1250 (in Chinese with English abstract). Xing-Zhou, Z., Zhen, Z., Rui, G., He-Sheng, H., Ye, G., Jian-Bin, P., Qiu-Lin, F., 2015. The evidence from the deep seismic reflection profile on the subduction and collision of the Jiamusi and Songnen massifs in the northeastern China. Chinese Journal of GeophysicsChinese Edition 58 (12), 4415-4424. Xu, W. L., Ji, W. Q., Pei, F. P., Meng, E., Yu, Y., Yang, D. B., Zhang, X. Z., 2009. Triassic volcanism in eastern Heilongjiang and Jilin Provinces, NE China: Chronology, geochemistry, and tectonic implications. Journal of Asian Earth Sciences 34 (3), 392–402. Xu, W. L., Wang, F., Meng, E., Gao, F. H., Pei, F. P., Yu, J. J., Tang, J., 2012. Paleozoic-Early Mesozoic tectonic evolution in the eastern Heilongjiang Province, NE China: Evidence from igneous rock association and U-Pb geochronology of detrital zircons. Journal of Jilin University (Earth Science Edition) 42 (5), 1378-1389. Xu, W., Pei, F.P., Wang, F., Meng, E., Ji, W.Q., Yang, D.B., Wang, W., 2013. Spatial–temporal relationships of Mesozoic volcanic rocks in NE China: Constraints on tectonic overprinting and transformations between multiple tectonic regimes. Journal of Asian Earth Sciences 74, 167–193.

68

Yamamoto, S., 2010. Tectonic erosion: New perspectives on Pacific-type orogeny and continental growth models. Journal of Geography (Chigaku Zasshi) 119 (6), 963-998. Yang, H., Ge, W.C., Zhao, G.C., Dong, Y., Bi, J.H., Wang, Z.H., Yu, J.J., Zhang, Y.L., 2014. Geochronology and geochemistry of Late Pan-African intrusive rocks in the Jiamusi- Khanka Block, NE China: petrogenesis and geodynamic implications. Lithos 208, 220–236. Yang, H., Ge, W.C., Zhao, G.C., Yu, J.J., Zhang, Y.L., 2015. Early Permian-Late Triassic granitic magmatism in the Jiamusi-Khanka Massif, eastern segment of the Central Asian Orogenic Belt and its implications. Gondwana Research 27 (4), 1509–1533. Yang, H., Ge, W.C., Dong, Y., Bi, J.H., Wang, Z.H., Ji, Z., 2017. Record of Permian–early Triassic continental arc magmatism in the western margin of the Jiamusi Block, NE China: petrogenesis and implications for Paleo-Pacific subduction. International Journal of Earth Sciences 106, 1919–1942. Yang, H., Ge, W.C., Dong, Y., Bi, J.H., Ji, Z., He, Y., Jing, Y., Xu, W.L., 2019. Permian subduction of the Paleo-Pacific (Panthalassic) oceanic lithosphere beneath the Jiamusi Block: Geochronological and geochemical evidence from the Luobei mafic intrusions in Northeast China. Lithos 332, 207-225. Yu, J. J., Wang, F., Xu, W. L., Gao, F. H., Pei, F. P., 2012. Early Jurassic mafic magmatism in the Lesser Xing'an–Zhangguangcai Range, NE China, and its tectonic implications: constraints from zircon U–Pb chronology and geochemistry. Lithos 142, 256-266. Yu, J.J., Wang, F., Xu, W.L., Gao, F.H., Tang, J., 2013. Late Permian tectonic evolution at the southeastern margin of the Songnen-Zhangguangcai Range Massif, NE China: constraints from geochronology and geochemistry of granitoids. Gondwana Research 24 (2), 635-647. Yu, S., Zhang, J., Li, S., Santosh, M., Li, Y., Liu, Y., Li, X., Peng, Y., Sun, D., Wang, Z., Lv, P., 2019. TTG‐adakitic-like (tonalitic-trondhjemitic) magmas resulting from partial melting of 69

metagabbro under high-pressure conditions during continental collision in the North Qaidam UHP terrane, Western China. Tectonics 38 (3), 791-822. Zhang, D., Huang, B. C., Zhao, J., Meert, J. G., Zhang, Y., Liang, Y., 2018. Permian paleogeography of the Eastern CAOB: Paleomagnetic constraints from volcanic rocks in Central Eastern Inner Mongolia, NE China. Journal of Geophysical Research: Solid Earth 123 (4), 2559–2582. Zhang, K.J., 1997. North and South China collision along the eastern and southern North China margins. Tectonophysics 270, 145–156. Zhang, K.J., 2004. Granulite xenoliths from Cenozoic basalts in SE China provide geochemical fingerprints to distinguish lower crust terranes from the North and South China tectonic blocks: comment. Lithos 73, 127–134. Zhang, X., 1992. Heilongjiang mélange: The evidence of Caledonian suture zone of the Jiamusi massif. Journal of Changchun University of Earth Sciences 22, 94–101. Zhao, C.J., Peng, Y.J., Dang, Z.X., 1996. The Formation and Evolution of Crust in Eastern Jilin and Heilongjiang Provinces. Liaoning University Press, Shenyang, pp. 1–226 (in Chinese with English abstract). Zhao, D., Ge, W., Yang, H., Dong, Y., Bi, J. H., He, Y., 2018. Petrology, geochemistry, and zircon U–Pb–Hf isotopes of Late Triassic enclaves and host granitoids at the southeastern margin of the Songnen–Zhangguangcai Range Massif, Northeast China: Evidence for magma mixing during subduction of the Mudanjiang oceanic plate. Lithos 312, 358-374. Zhao, L., Zhang, X., 2011. Petrological and geochronological evidence of tectonic exhumation of Heilongjiang complex in the eastern part of Heilongjiang Province, China. Acta Petrologica Sinica 27 (4), 1227-1234.

70

Zhao, L., Guo, F., Fan, W., Huang, M., 2019. Roles of subducted pelagic and terrigenous sediments in Early Jurassic mafic magmatism in NE China: Constraints on the architecture of PaleoPacific subduction zone. Journal of Geophysical Research: Solid Earth 124 (3), 2525-2550. Zhao, Y. L., Liu, Y. J., Li, W. M., Wen, Q. B., Han, G., 2010. High-pressure metamorphism in the Mudanjiang area, southern Jiamusi massif: Petrological and geochronological characteristics of the Heilongjiang complex. Geological Bulletin of China 29 (2-3), 243-253. Zhou, J.B., Wilde, S.A., Zhang, X.Z., Zhao, G.C., Zheng, C.Q., Wang, Y.J., Zhang, X.H., 2009. The onset of Pacific margin accretion in NE China: Evidence from the Heilongjiang highpressure metamorphic belt. Tectonophysics 478 (3-4), 230-246. Zhou, J.B., Wilde, S.A., Zhao, G.-C., Zhang, X.Z., Zheng, C.Q., Wang, H., 2010. New SHRIMP U-Pb zircon ages from the Heilongjiang high-pressure belt: Constraints on the Mesozoic evolution of NE China. American Journal of Science 310(9), 1024-1053. Zhou, J.B., Han, J., Wilde, S., Guo, X., Zeng, W., Cao, J., 2013. A primary study of the JilinHeilongjiang high-pressure metamorphic belt: Evidence and tectonic implications. Acta Petrologica Sinica 29 (2), 386-398. Zhou, J.B., Wilde, S.A., 2013. The crustal accretion history and tectonic evolution of the NE China segment of the Central Asian Orogenic Belt. Gondwana Research 23 (4), 1365-1377. Zhou, J.B., Cao, J.L., Wilde, S.A., Zhao, G.C., Zhang, J.J., Wang, B., 2014. Paleo-Pacific subduction-accretion: Evidence from geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics 33 (12), 2444-2466. Zhou, J.B., Li, L., 2017. The Mesozoic accretionary complex in Northeast China: Evidence for the accretion history of Paleo-Pacific subduction. Journal of Asian Earth Sciences 145, 91-100.

71

Zhu, C.Y., Zhao, G., Sun, M., Liu, Q., Han, Y., Hou, W., Zhang, X., Eizenhofer, P.R., 2015. Geochronology and geochemistry of the Yilan blueschists in the Heilongjiang Complex, northeastern China and tectonic implications. Lithos 216, 241-253. Zhu, C.Y., Zhao, G., Sun, M., Eizenhöfer, P.R., Liu, Q., Zhang, X., Han, Y., Hou, W., 2017a. Geochronology and geochemistry of the Yilan greenschists and amphibolites in the Heilongjiang complex, northeastern China and tectonic implications. Gondwana Research 43, 213-228. Zhu, C. Y., Zhao, G., Ji, J., Sun, M., Han, Y., Liu, Q., Eizenhöfer, P.R., Zhang, X., Hou, W., 2017b. Subduction between the Jiamusi and Songliao blocks: Geological, geochronological and geochemical constraints from the Heilongjiang Complex. Lithos 282, 128-144. Zhu, C.Y., Zhao, G., Sun, M., Han, Y., Liu, Q., Eizenhöfer, P.R., Zhang, X., Hou, W., 2017c. Detrital zircon U–Pb and Hf isotopic data for meta-sedimentary rocks from the Heilongjiang Complex, northeastern China and tectonic implications. Lithos 282, 23-3. Zhu, C.Y., Zhao, G., Sun, M., Eizenhöfer, P.R., Han, Y., Liu, Q., Liu, D.X., 2017d. Subduction between the Jiamusi and Songliao blocks: Geochronological and geochemical constraints from granitoids within the Zhangguangcailing orogen, northeastern China. Lithosphere 9 (4), 515-533.

72

Figure Captions Figure 1. (a) Major tectonic units in Northeast China. Remodified from Zhou and Wilde. (2013) and Zhou and Li. (2017). (b) Simplified geological map of the Jiamusi–Khanka block, emphasizing the distribution of the Heilongjiang Complex. From Liu et al. (2018) and Wilde and Zhou. (2015). Abbreviations: P-T: Permo-Triassic; T-J: Triassic-Jurassic; C-P: Cretaceous-Paleocene, HP Hei Belt: Jilin-HP Heilongjiang belt. DMF: Dunhua-Mishan Fault; JYF: Jiamusi-Yitong Fault; MF: Mudanjiang Fault; YF: Yuejinshan Fault.

Figure 2. Simplified geological map of the Heilongjiang complex in (a) Yilan area (modified from Anonymous, 1972; Aouizerat et al., 2018), (b) Mudanjiang area (modified from Zhou et al., 2010) (c) South Yilan (modified from Guo et al., 2016) showing the different geological units in the HP Heilongjiang complex.

Figure 3: Sampled lithologies in the metamorphic high-pressure Heilongjiang Complex in the Yilan area. (a) 10 meter-scale blueschist block in the eastern Yilan area (YIL-BLUE-19 sample). (b) 10 meter-scale blueschist lenses in the Mudanjiang area (MUD-31/39 sample); (c and d) granodiorite and granitic veins (MUD-37 and MUD-40 samples) crosscutting amphibolite host rocks near Moadaoshi village. Synthetic structural data (foliation and mineral/stretching lineation for metamorphic rocks are represented by lower-hemisphere equal projectios for (e) the Yilan and (f) Mudanjiang areas. See photo location in figures 2a and b.

73

Figure 4. Outcrop photos showing the main observed sampled magmatic rocks in the Yilan area (left) and related thin-section photomicrographs (right). (a) and (b) leucogranite (YIL-LEU14); (c) and (d) monzodiorite (YIL-G-15; (e) and (f) Leucogranitic dike intruding blueschists in the eastern Yilan area (YIL-LEU-23). (g) and (h) Trachyte (YIL-T-2). Abbreviations: Hbl: Hornblende; Feld: feldspar, Bio: biotite; Ma: matrix; Cpx: Clinopyroxene; Ep: Epidote. See photo and samples locations in figure 2a.

Figure 5. (a) and (b): Outcrop photos showing gabbro and leucogranite near Yongshuncun village (south of the Yilan area), crosscut by ESE- and NW-trending extensional normal faults and shears. (c) Structural data (fault and shear planes, slickenlines) for gabbro and leucogranites. (d) Thin-section photomicrograph of gabbro. (See photo and samples locations in figure 2c.

Figure 6. Representative cathodoluminescence (CL) images of zircons and plots of lead isotopic ratios for (a) Yil-BLUE-19 blueschist; (b) Yil-LEU-14 leucogranite; (c) YIL-GAB-16 gabbro. Isotopic compositions of three geochemistry end-members are given in Table 6.

Figure 7. 40Ar-39Ar laser-step heating age-plateau for the MUD-31 and MUD-39 blueschist samples. See sample locations in Fig. 2b.

Figure 8. Representative cathodoluminescence (CL) images of zircons and plots of lead isotopic ratios for (a) MUD-37 granitic vein and (b) MUD-40 granodiorite vein. Isotopic compositions of three geochemistry end-member are given in Table 6.

74

Figure 9. Representative cathodoluminescence (CL) images of zircons and plots of lead isotopic ratios for (a) Yil-LEU-23 leucogranite, (b) YIL-T-2 trachyte and (c) Yil-G-15 monzodiorite. Isotopic compositions of three geochemistry end-member are given in Table 6.

Figure. 10. Geochemical classification of the meta-basaltic rocks in the Heilongjiang Complex in the Yilan area. (a)MgO vs. SiO2 diagram (Le Bas, 2000); (b) Zr/TiO2 (×10−4) vs. Nb/Y diagram (Winchester and Floyd, 1976).

Figure 11. (a) Na2O + K2O vs SiO2 for classification of plutonic rocks (Middlemost, 1994); (b) Na2O + K2O vs SiO2 for classification of volcanic rocks (Le Bas et al., 1986); (c) K2O versus SiO2 diagram (Pecerrillo and Taylor, 1976).

Figure 12. Chondrite-normalized REE diagram (Sun and McDonough, 1989) and Primitive mantle normalized-trace element diagram (Sun and McDonough, 1989) for dated magmatic rocks in the Yilan area. (a,b) 356 Ma YIL-BLUE-19 blueschist sample; (b,c) 245 Ma YIL-LEU14 leucogranite, (e,f) 211 Ma YIL-GAB-16 gabbro sample ; (g,h) 175 Ma MUD-37-granitic and 161 Ma MUD-40 granodioritic vein samples; (i,j) 112 Ma YIL-LEU-23 leucogranitic dike sample, 105 Ma YIL-T-2 trachyte sample and 101 Ma YIL-G-15 monzodiorite sample. OIB, N-Morb and E-Morb trace element data from Sun and McDonough. (1989).

Figure 13. Discrimination diagrams used for the geochemical classification and discrimination of tectonic settings of ophiolitic crustal units. (a) Th/Yb vs Nb/Yb. From Pearce. (2014), Nb/Yb vs Ta/Yb. Modified from Dilek and Furnes (2014). 75

Figure 14. (a) Sr/Y versus Y discrimination diagram for adakites. (b) (LaYb)N versus YbN discrimination diagram for adakites (Martin, 1999).

Figure 15. Relative probability density plots of zircons from the Jiamusi Massif/Block, Zhangguancai Range magmatic arc, and Heilongjiang HP Complex (detrital zircons, protolith granitoids, protolith metabasites, metamorphic ages, syn- and post-accretionary intrusion zircon ages) as well as for the Dunhua-Mishan Fault. Blue and yellow tapes respectively represent the time-span of metamorphism and post-accretionary intrusions. References for the Jiamusi Massif/Block; Zhangguancai Range magmatic arc and DunhuaMishan Fault are respectively in Tables 1 and 2. References for the High-Pressure Heilongjiang Complex are in Tables 4, 5, 6, and 8.

Figure 16. Spatial grid of emplacement times of the Zhangguancai Range magmatic arc in ArcGIS Software. Data are from previous reported radiometric ages from the Zhangguancai Range magmatic arc (Table 2). (a) 266-166 Ma magmatic rocks. (b) 195-225 Ma magmatic rocks. LXR: Lesser Xing’an Range SZR: Songren-Zhangguancai Range, KB: Khanka Block, HC: Heilongjiang Complex YYF: Yilan-Yitong fault, DMF: Dunhua-Mishan fault. Contours of the Songren-Zhangguangcai and Lesser Xing’an ranges are from Wu et al. (2011). Locations of the HP Heilongjiang Complex are from Zhou et al. (2009).

Figure 17. Tectonic evolution model of the accretionary orogeny from the end-Paleozoic to Mesozoic. See text for discussion and references. Positions of the Zhangguancai range magmatic arc, Jiamusi Block and Nadahanda/ Sikhote-Alin terranes and related magmatism 76

are after Ge et al. (2018), Sun et al. (2018), Zhou and al. (2014), K. Liu et al. (2019) and Yang et al. (2017, 2019). AC?: presumed accretionary complex.

Figure 18. 2D idealized sketch showing the interaction between the ENE/NE-trending wrench faults and the accretionary orogens at the end of the Jurassic and the tectonic evolution model. See text for discussion and references. Positions of Lesser Xing’an Range, SongrenZhangguancai Range, Khanka Block from K. Liu et al. (2018). Movement of the DunhuaMishan Fault from C. Liu et al. (2018).

77

Tables Table 1. Previous early Paleozoic to Cretaceous U-Pb ages giving the times of emplacement of granitic and volcanic rocks in the Jiamusi Block.

Table 2. Previous early Paleozoic to Cretaceous U-Pb ages giving the times of emplacement of granitic and volcanic rocks in the Zhangguancai Range magmatic arc (Songliao Block) and zircons ages of the regional Dunhua-Mishan strike-slip fault. Data and respective locations of Wei (2012) are from Dong et al (2018b).

Table 3. PT conditions of the Heilongjiang Complex in the Yilan and Mudanjiang areas.

Table 4. Previous and new protolith ages of the Heilongjiang Complex.

Table 5. Metamorphic ages of the Heilongjiang Complex.

Table 6. U-Pb data for igneous and volcanic units in the Yilan area.

Table 7. Major and trace element compositions of igneous and volcanic units in the Yilan area.

Table 8.

40Ar-39Ar

dating results.

78

Latitude

Longitude

Rocks

Method

age

σ

References

47°12′17.00″N 45°12′35.00″N 45°12′35.00″N 45°58′20.00″N 45°59′52.00″N 45°15′48.00″N 45°15′48.00″N 45°15′48.00″N 45°15′48.00″N

129°59′35.00″E 130°28′30.00″E 130°28′30.00″E 133°39′55.00″E 133°39′55.00″E 130°48′12.00″E 130°48′12.00″E 130°48′12.00″E 130°48′12.00″E

Monzogranite Gt granite Granulite Monzogranite Monzogranite Granulite Felsic dyke Pegmatite Metadiorite Granitic gneiss

SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP LA-ICPMS

515 507 500 518 491 502 502 501 498 504

8 12 9 7 4 8 10 18 7 2

Wilde et al. (2003), Wu et al (2011) Wilde et al. (2000); Wu et al (2011) Wilde et al. (2000); Wu et al (2011) Wilde et al. (2010); Wu et al (2011) Wilde et al. (2010); Wu et al (2011) Wilde et al. (1997);Wu et al (2011) Wilde et al. (1997); Wu et al (2011) Wilde et al. (2003); Wu et al (2011) Wilde et al. (1997); Wu et al (2011) Wu et al (2011)

45°25′58.60"N 46°18′10.00"N 45°35′04.70"N 45°31′11.70"N 46°33′00.40"N 45°30′41.10"N

131°10′48.90″E 131°53′11.50″E 131°48′54.40″E 131°28′53.50″E 131°43′17.40″E 131°43′41.30″E

Syenogranite Granodiorite Quartz monzonite Quartz monzonite Monzogranite Monzogranite

LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS

541 530 516 513 506 498

7 5 7 6 3 3

Yang et al. (2014), Dong et al (2017b) Bi et al. (2014a); Dong et al (2017b) Yang et al. (2014); Dong et al (2017b) Yang et al. (2014); Dong et al (2017b) Bi et al. (2014a); Dong et al (2017b) Yang et al. (2014); Dong et al (2017b)

46°15′14.50"N

131°47′01.90″E

Syenogranite

LA-ICPMS

490

3

Bi et al. (2014a); Dong et al (2017b)

46°09′07.30"N 46°13′30.80"N

131°57′35.20″E 131°51′02.80″E

Monzogranite Monzogranite

LA-ICPMS LA-ICPMS

488 488

3 3

Bi et al. (2014a); Dong et al (2017b) Bi et al. (2014a); Dong et al (2017b)

SHRIMP

254

4

Wu et al. (2001b); Wu et al (2011)

SHRIMP

256

5

Wu et al. (2001b); Wu et al (2011)

SHRIMP

270

4

Wu et al. (2001b); Wu et al (2011)

Early Paleozoic

LatePaleozoicJurassic 44°41′40.00″N

129°41′39.00″E

45°07′27.00″N

130°02′30.00″E

45°28′52.00″N

130°34′26.00″E

45°09′46.00″N

130°41′14.00″E

46°25'58.38"N, 45°59'27.77"N, 45°51′54.40″E

131°07'05.36"E 130°40'11.33"E 130°09′04.80″E

Gneissic monzogranite Gneissic granodiorite Gneissic granodiorite Gneissic granodiorite Granodiorite

SHRIMP

267

2

Wu et al. (2001b); Wu et al (2011)

LA-ICPMS

259

4

Wu et al. (2001b); Wu et al (2011)

granodiorite Granodiorite granodiorite

LA-ICP-MS LA-ICP-MS LA-ICP-MS

265 259 249

1 4 4

Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin

79

45°42′54.10″E 45°41′32.70″E 45°51′54.60″E

129°59′52.20″E 130°01′22.50″E 130°17′11.80″E

Syenogranite Syenogranite granodiorite

LA-ICP-MS LA-ICP-MS LA-ICP-MS

246 250 256

2 2 2

Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin

45°51′22.10″E

130°15′23.40″E

Syenogranit

LA-ICP-MS

254

2

Yang et al (2017) and references therin

45°51′51.00″E 45°41′49.40″E 45°25′10.30″E 45°30′33.50″E 45°30′33.60″E

130°07′37.80″E 130°00′11.50″E 130°06′58.70″E 130°36′48.50″E 130°36′48.50″E

granodiorite granodiorite granodiorite granodiorite granodiorite

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

258 253 258 275 274

2 3 2 2 2

Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin

47°55'11.00''N 47°56'48.31"N 46°58'10.76"N 45°32'26.03"N, 45°22'08.23"N 46°22'28.00''N 46°26'09.00''N 46°26'39.00''N

133°04'09.00"N 133°01'54.23"E 131°39'50.45"E 131°44'38.68"E 131°19'53.17"E 132°06'43.00''E 132°00'30.00''E 131°51'30.00''E

Granodiorite Hornblende gabbro Monzogranite Diorite Monzogranite Rhyolite Dacite Basaltic andesite

284 278 278 295 296 291 286 293

2 2 3 3 2 2 3 2

46°04'48.00''N 46°08'31.00''N 46°16'54.00''N 45°42'37.00''N 45°39'20.00''N 46°11'47.97"N 46°11'47.97"N 46°12'18.82"N 46°12'18.82"N 46°12'18.82"N 46°11'07.00''N, 46°11'07.00''N,

132°01'00.00''E 132°04'25.00''E 132°02'34.00''E 132°06'25.00''E 131°54'00.00''E 133°00'42.24"E 133°00'42.24"E 133°03'55.58"E 133°03'55.58"E 133°03'55.58"E 133°01'07.00"E 133°01'07.00"E

Rhyolitic tuff Dacite Dacite Rhyolite Rhyolite Gabbro Plagiogranite Gabbro Hornblende gabbro Hornblende gabbro Hornblende gabbro Hornblende gabbro

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS SHRIMP SHRIMP

263 263 288 264 268 274 277 290 286 282 274 276

2 5 2 7 2 2 2 3 2 2 4 3

Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin

46°26′08.40″N

130°30′25.70″N

LA-ICPMS

278

2

Dong et al (2017b), Long X.Y et al (2019)

46°14′20.80″N

130°45′56.90″N

LA-ICPMS

276

3

Dong et al (2017b), Long X.Y et al (2019)

46°23′44.90″N 46°37′58.40″N 46°30′46.30″N 46°31′57.00″N 47°05′00.20″N 47°02′02.50″N 45°13′39.60″N 46°20′19.10″N

130°39′08.50″N 130°37′40.60″N 130°38′31.80″N 130°38′44.40″N 131°42′32.90''E 131°43′12.70''E 131°34′30.30''E 131°57′30.80''E

Granodiorite Alkali feldspar granite Monzogranite Monzogranite Monzogranite Monzogranite Monzogranite Granodiorite Granite porphyry Granodiorite

LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS

272 267 266 263 261 260 258 257

2 3 2 3 3 8 2 2

Dong et al (2017b), Long X.Y et al (2019) Dong et al (2017b), Long X.Y et al (2019) Dong et al (2017b), Long X.Y et al (2019) Dong et al (2017b), Long X.Y et al (2019) Dong et al (2017b), Long X.Y et al (2019) Dong et al (2017b), Long X.Y et al (2019) Dong et al (2017b), Long X.Y et al (2019) Dong et al (2017b), Long X.Y et al (2019)

80

Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin Yang et al (2017) and references therin

LA-ICPMS LA-ICPMS

279 279

2 5

Bi et al. (2017) Bi et al. (2017)

LA-ICPMS

290

2

Bi et al. (2017)

LA-ICPMS LA-ICPMS

275 267

3 5

Bi et al. (2017) Bi et al. (2017)

131°53'41.61"E 131°56'20.94"E 131°57'58.98"E

Meta-rhyolite Meta-rhyolite Rhyolitic crystal tuff Basalt-andesite Rhyolite Rhyolitic crystal tuff Rhyolite Rhyolite

LA-ICPMS

269

3

Bi et al. (2017)

LA-ICPMS LA-ICPMS

392 388

3 2

Bi et al. (2017) Bi et al. (2017)

130°57'29.00"E 130°25'16.00"E 130°05'42.00"E 130°41'53.00"E 130°08'10.00"E 130°15'28.00"E 130°05'42.00"E

Monzogranite Granodiorite Granodiorite Monzogranite Granodiorite Granodiorite Granite aplite

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

272 272 265 262 261 258 257

2 2 1 2 1 1 3

Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019)

46°26′51.00″N 46°27′24.00″N 45°44′24.00″N 45°39′45.00″N 45°48′57.00″N

129°48′11.00″E 130°07′25.00″E 132°02′60.00″E 131°51′01.00″E 130°57′04.00″E

Andesite Dacite Rhyolite Rhyolite Rhyolite

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

112 110 122 116 124

1 2 2 1 3

Xu et al (2013) Xu et al (2013) Xu et al (2013) Xu et al (2013) Xu et al (2013)

46°19'39.00″N 46°19'39.00″N

130°58'23.00''E 130°58'23.00''E

Rhyolithe porphyry

SHRIMP SHRIMP

100 100

2 1

Sun.M et al (2018) Sun.M et al (2018)

46°37'47.00''N 46°31'40.00''N 45°46'36.00''N

130°55'10.00''E 130°57'90.00''E 131°48'40.00''E

Basalt Trachydacite Andesite

SHRIMP SHRIMP SHRIMP

101 109 103

1 1 11

Liu.K et al (2019) Liu.K et al (2019) Liu.K et al (2019)

48°00'14.66"N 47°51'53.13"N

133°12'30.84"E 132°53'02.91"E

46°22'11.20"N 46°10'56.57"N 46°06'27.39"N

132°06'51.41"E 132°04'31.55"E 131°54'26.86"E

46°06'21.22"N 46°27'14.06"N 46°24'26.32"N, 45°27'06.00"N 45°24'17.00"N 45°40'08.00"N 47°34'48.00"N 45°50'37.00"N 45°25'09.00"N 45°40'08.00"N Cretaceous magmatism

81

Latitude

Longitude

Rocks

age

σ

Method

References

45°45'47.26"N 45°42'15.93"N 45°43'25.32"N 44°11'40.86"N 44°07'37.97"N 44°06'09.64"N 44°06'09.64"N 43°56'28.17"N

129°26'31.01"E 129°26'05.78"E 129°17'03.28"E 128°51'09.37"E 128°43'03.58"E 128°35'41.96"E 128°35'41.96"E 128°34'43.08"E

monzogranites alkali-fedpar granite granodiorite monzogranites monzogranites tonalites tonalites tonalites

461 462 482 496 475 516

5 6 8 11 7 4

426

6

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

Wang.Z et al (2017) Wang.Z et al (2017) Wang.Z et al (2017) Wang.Z et al (2017) Wang.Z et al (2017) Wang.Z et al (2017) Wang.Z et al (2017) Wang.Z et al (2017)

45°47'17.94"N 45°47'17.94"N 45°43'57.68"N 45°43'57.68"N, 44°09'06.04"N 47°41'07.39"N 47°41'07.39"N

129°27'37.49"E 129°27'37.49"E 129°27'48.72"E 129°27'48.72"E 128°44'25.72"E 128°31'44.94"E 128°31'44.94"E

diorite tonalite tonalite monzogranite rhyolites rhyolites rhyolites

450 443

6 3

424 451 451 424

2 2 2 2

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

Wang et al (2012) Wang et al (2012) Wang et al (2012) Wang et al (2012) Wang et al (2012) Wang et al (2012) Wang et al (2012)

46°48′11.00″N 46°49′36.00"N 46°50′42.00″N 46°50′42.00″N 46°54′16.00″N 47°00′15.00″N 47°11′46.00″N 47°12′20.00″N

129°32′50.00″E 129°30′46.00″E 129°31′21.00″E 129°31′21.00″E 129°27′46.00″E 129°28′31.00″E 130°08′32.00″E 130°00′38.00″E

457 464 476 470 475 458 468 502

2 4 3 4 4 2 3 2

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

Wang.Z et al (2016) Wang.Z et al (2016) Wang.Z et al (2016) Wang.Z et al (2016) Wang.Z et al (2016) Wang.Z et al (2016) Wang.Z et al (2016) Wang.Z et al (2016)

46°56′18.00″N 46°57′09.00″N 46°55′25.00″N 46°55′25.00″N 46°57′31.00″N 46°59′34.00″N 47°46′16.00″N 47°38′24.00″N 47°51′49.00″N

128°28′07.00″E 128°30′31.00″E 128°38′05.00″E 128°38′05.00″E 128°51′06.00″E 128°57′16.00″E 129°27′53.00″E 129°08′22.00″E 129°08′38.00″E

Granite aplite Biotite monzogranite Biotite monzogranite Biotite monzogranite Biotite monzogranite Rhyolite Quartz monzodiorite Biotite monzogranite Two-mica monzogranite Monzonite Quartz monzonite Quartz monzonite Biotite monzogranite Quartz monzonite Rhyolite Biotite monzogranite Biotite monzogranite

496 491 491 488 486 488 470 469 471

2 3 2 2 5 3 3 2 2

Songren-Zhangguancai range Early Paleozoic magmatism

82

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

Wang.Z et al (2016) Wang.Z et al (2016) Wang.Z et al (2016) Wang.Z et al (2016) Wang.Z et al (2016) Wang.Z et al (2016) Wang.Z et al (2016) Wang.Z et al (2016) Wang.Z et al (2016)

48°04′58.00″N 48°00′37.00″N 48°14′58.00″N 47°04′49.00″N

129°15′18.00″E 129°15′07.00"E 129°25′27.00″E 129°27′31.00″E

Quartz monzonite Quartz monzonite Alkali-feldspar granite Rhyolite

472 472 450

2 2 2

LA-ICP-MS LA-ICP-MS LA-ICP-MS

Wang.Z et al (2016) Wang.Z et al (2016) Wang.Z et al (2016)

45°29′58.00″N 45°39′49.00″N 44°55′33.00″N 44°57′37.00″N 44°58′80.00″N 44°54′10.00″N 44°54′10.00″N 44°57′38.00″N 45°58′11.00″N

128°16′56.00″E 129°31′37.00″E 129°12′57.00″E 129°11′16.00″E 129°10′18.00″E 129°10′36.00″E 129°10′36.00″E 129°6′53.00″E 129°15′42.00″E

Alkali feldspar granite Monzogranite Quartz monzodiorite Quartz monzodiorite Quartz monzodiorite Dacite Trachyandesite Rhyolite Rhyolite

366 313 325 324 321 315 315 316 317

5 3 3 2 2 3 3 2 2

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

Guo.P et al (2018) Guo.P et al (2018) Guo.P et al (2018) Guo.P et al (2018) Guo.P et al (2018) Guo.P et al (2018) Guo.P et al (2018) Guo.P et al (2018) Guo.P et al (2018)

126°58'05.00''E 127°46'13.00''E 128°59'55.00''E 128°53'15.00''E 128°49'51.00''E 128°47'14.00''E 128°17'51.00''E 129°47'03.00''E 129°14'23.00''E 129°48'13.00''E 128°07'32.00''E 128°54'38.00''E 128°54'38.00''E 128°30'13.00''E 128°30'21.00''E 128°30'21.00''E 127°34'22.00''E 126°43'44.00''E 126°55'01.00''E 126°55'01.00''E 128°58'00.00''E 129°24'36.00''E 129°14'40.00''E 129°02'55.00''E 128°34'05.00''E 128°50'40.00''E

Alkali feldspar granite Syenogranite Alkali feldspar granite Granodiorite Syenogranite monzogranite Granodiorite Alkali feldspar granite Monzonite Syenogranite Granodiorite Felsic dyke Monzogranite Syenogranite Granodiorite Felsic dyke Granodiorite Granodiorite Monzogranite Dioritic enclave Granodiorite Monzogranite Granodiorite Alkali feldspar granite Monzogranite Monzogranite

190 216 212 200 197 201 175 222 210 180 183 147 179 199 191 147 190 173 175 175 198 201 200 176 266 497

2 3 2 2 2 3 2 5 2 3 4 10 7 5 4 6 2 4 3 4 4 4 3 2 1 2

TIMS LA-ICPMS TIMS LS TIMS LA-ICPMS LA-ICPMS SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP SHRIMP LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS

Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011)

Late Paleozoic magmatism / Jurassic magmatism 46°50'54.00''N 46°53'37.00''N 46°03'45.00''N 46°55'42.00''N 46°31'05.00''N 46°43'00.00''N 46°57'17.00''N 46°16'28.00''N 47°35'28.00''N 45°12'14.00''N 45°05'05.00''N 45°55'49.00''N 45°55'49.00''N 45°57'26.00''N 45°47'51.00''N 45°47'51.00''N 43°34'31.00''N 43°58'10.00''N 43°53'45.00''N 43°53'45.00''N 47°41'50.00''N 47°24'15.00''N 47°27'22.00''N 47°38'48.00''N 44°02'18.00''N 44°11'43.00''N

83

44°30'15.00''N 44°31'33.00''N 44°23'25.00''N 45°23'03.00''N 44°26'01.00''N 44°20'18.00''N 44°14'27.00''N 43°05'06.00''N 43°51'16.00''N 43°34'22.00''N 43°38'49.00''N 43°50'54.00''N 44°15'36.00''N 44°15'36.00''N 44°08'36.00''N 48°29'41.00''N 45°23′27.00″N 45°17′03.00″N 45°23′19.00″N 45°19′27.00″N 45°07′58.00″N 45°07′58.00″N 45°04′35.00″N 44°51′35.00″N 46°55′05.00″N 46°55′29.00″N 46°57′51.00″N 47°02′49.00″N 47°23′09.00″N 47°23′30.00″N 47°24′31.00″N 47°23′58.00″N 47°23′00.00″N 47°23′00.00″N

129°15'19.00''E 128°48'19.00''E 129°03'38.00''E 127°41'45.00''E 126°46'30.00''E 126°53'13.00''E 126°54'28.00''E 126°45'03.00''E 126°31'31.00''E 127°34'30.00''E 127°44'52.00''E 126°58'50.00''E 127°23'05.00''E 127°23'05.00''E 128°53'29.00''E 129°31'12.00''E 127°27′13.42″E 127°29′59.00″E 127°41'12.00″E 127°50'31.00″E 128°25'21.00"E 128°25'22.00″E 128°30′00.00″E 128°41′39.00″E 128°11′06.00″E 128°20′42.00″E 128°42′17.00″E 129°06′19.00″E 129°29′33.00″E 129°37′30.00″E 129°47′34.00″E 129°54′25.00″E 129°58′57.00″E 129°58′57.00″E

Syenogranite Syenogranite Syenogranite Syenogranite Alkali feldspar granite Granodiorite Monzogranite Granodiorite Syenogranite Granodiorite Granodiorite Alkali feldspar granite Pyroxenite Granodiorite Alkali feldspar granite Alkali feldspar granite monzodiorite monzogranite monzogranite granodiorite granodiorite syenogranite monzogranite monzogranite Diorite Granodiorite Monzogranite Monzogranite Syenogranite Monzogranite Granodiorite Syenogranite diorite monzodiorite

192 196 185 190 191 190 172 182 166 181 187 182 217 184 477 471 179 181 180 174 189 200 198 193 181 178 191 195 210 220 251 242 256 241

1 1 2 1 2 2 3 2 2 2 4 3 3 4 6 3 3 1 1 1 1 1 2 1 1 2 1 2 1 1 1 2 1 1

LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS LA-ICPMS SHRIMP SHRIMP SHRIMP LA-ICPMS LA-ICPMS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Wu et al. (2011) Ge et al. (2017) Ge et al. (2017) Ge et al. (2017) Ge et al. (2017) Ge et al. (2017) Ge et al. (2017) Ge et al. (2017) Ge et al. (2017) Ge et al. (2018) Ge et al. (2018) Ge et al. (2018) Ge et al. (2018) Ge et al. (2018) Ge et al. (2018) Ge et al. (2018) Ge et al. (2018) Ge et al. (2018) Ge et al. (2018)

45°41'00.00"N 45°39'00.00"N 47°36'00.00"N 46°55'00.00"N 47°21'00.00"N 43°53'00.00"N 43°49 '00.00"N

127°29'00.00"E 127°21'00.00"E 128°30'00.00"E 128°11'00.00"E 129°32'00.00"E 126°55'00.00"E 126°43'00.00"E

granodiorite granite granodiorite, granodiorite granite monzogranite granite

186 184 183 183 185 191 191

1 1 1 1 1 1 1

MC-LA-ICP-MS MC-LA-ICP-MS MC-LA-ICP-MS MC-LA-ICP-MS MC-LA-ICP-MS MC-LA-ICP-MS MC-LA-ICP-MS

Zhu et al (2017d) Zhu et al (2017d) Zhu et al (2017d) Zhu et al (2017d) Zhu et al (2017d) Zhu et al (2017d) Zhu et al (2017d)

48°29′35.30″N

129°25′21.30″E

Gabbro

186

2

LA-ICP-MS

Yu et al (2012)

84

48°32′24.10″N 47°42′36.80″N 46°20′54.00″N 45°08′29.00″N

129°12′51.00″E 128°23′23.30″E 128°01′08.80''E 127°14′01.70″E

hornblende-gabbro hornblende-gabbro magEtite–hornblendite gabbro–diorite

185 182 186 183

1 2 2 1

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

Yu et al (2012) Yu et al (2012) Yu et al (2012) Yu et al (2012)

44°06' 18.22" N 47°49' 37.42" N

128°42' 53.24" E 128°32' 58.00" E

monzogranite granodiorite

252 255

2 2

LA-ICP-MS LA-ICP-MS

Yu et al (2013) Yu et al (2013)

46°06'54.00"N 46°11'55.00"N

127° 36'54.00" E 127° 39'28.00" E

Rhyolite Andesite

184 179

2 2

LA-ICP-MS LA-ICP-MS

Tang et al (2011) Tang et al (2011)

44°52′22.00″N 44°51′43.00″N 43°03'15.30"N

128°40′26.00″E 128°42′30.00″E 126°39'23.86" E

monzogranite monzogranite tonalite samples

201 198 188

2 3 2

LA–ICP–MS LA–ICP–MS LA–ICP–MS

Qin et al (2016) Qin et al (2016) Feng et al (2019)

45°51′43.00″N 45°51′43.00″N 45°04′54.00″N 45°04′54.00″N 45°25′30.00″N 45°22′42.00″N 45°34′07.00″N 45°42′25.00″N 47°33′47.00″N 45°32′20.00″N 47°56′37.00″N 45°35′10.00″N 45°11′55.00″N 45°11′55.00″N

128°17′21.00″E 128°17′21.00″E 129°15′48.00″E 129°16′17.00″E 127°53′21.00″E 128°24′28.00″E 128°08′18.00″E 127°19′33.00″E 128°24′04.00″E 127°47′36.00″E 128°53′57.00″E 127°41′46.00″E 127°39′28.00″E 127°39′30.00″E

Basalte Rhyolite Basaltic andesite Meta-andesite Basaltic andesite Andesite Basalt Rhyolite Rhyolite Dacite Rhyolite Rhyolite Trachyandesite Rhyolite

209 214 211 218 173 228 174 175 185 190 187 190 179 184

3 3 2 1 3 2 2 1 1 1 2 1 2 2

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

Xu et al (2013) Xu et al (2013) Xu et al (2013) Xu et al (2013) Xu et al (2013) Xu et al (2013) Xu et al (2013) Xu et al (2013) Xu et al (2013) Xu et al (2013) Xu et al (2013) Xu et al (2013) Xu et al (2013) Xu et al (2013)

43°23′50.89″N 44°13′10.39″N 44°12′24.81″N 44°16'09.45″N

128°38′41.88″E 131°66′44.20″E 131°07′23.71″E 131°06′18.87″E

Rhyolite Rhyolite Rhyolite Rhyolite

201 214 208 201

1 2 1 1

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

Xu et al (2009) Xu et al (2009) Xu et al (2009) Xu et al (2009)

45°43'56.00'N 45°04'42.00'N 45°04'48.00'N 45°03'50.00'N 45°07'56.00'N

129°17'21.00''E 129°16'10.00''E 129°16'15.00''E 131°29'54.00''E 131°23'59.00''E

gabbro diabase Basaltic andesite rhyolithe Horneblende gabbros syenogranite porphyry

209 211 218 202 203

3 2 1 1 1

LA–ICP–MS SIMS LA–ICP–MS LA–ICP–MS LA–ICP–MS

Wang et al (2015) Wang et al (2015) Wang et al (2015) Wang et al (2015) Wang et al (2015)

45°41'09.00''N 45°24'40.00''N 45°25'12.00''N

127°29'50.00''E 127°10'21.00''E 12751'25.00''E

Rhyolithe Basalte andesite Basalte andesite

294 293 293

6 2 2

LA-ICP-MS LA-ICP-MS LA-ICP-MS

Meng et al (2011) Meng et al (2011) Meng et al (2011)

85

45°52'27.00''N 45°28'09.00''N 45°26'16.00''N

129°06'26.00''E 128°27'58.00''E 128°28'30.00''E

Dacite Rhyolithe Rhyolithe

286 315 320

2 3 5

LA-ICP-MS LA-ICP-MS LA-ICP-MS

Meng et al (2011) Meng et al (2011) Meng et al (2011)

46°01′19.34″N 46°02′46.48″N 46°55′35.37″N 46°55′33.29″N 48°46′30.00″N

128°48′49.83″E 129°46′41.79″E 129°36′16.34″E 129°35′55.30″E 128°49′49.47″E

Olivine gabbro syenogranite syenogranite syenogranite Rhyolite

211 219 205 204 206

2 2 2 2 2

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

Guo et al (2016) Guo et al (2016) Guo et al (2016) Guo et al (2016) Guo et al (2016)

48°06' 42.81"N 48°04' 22.23"N

130°08'07.74"E 130°05'47.17"E

Monzogranite Monzogranite

272 250

2 3

LA-ICP-MS LA-ICP-MS

Yang et al (2017) Yang et al (2017)

47°24′56.50″N 47°22′03.60″N 47°34′52.50″N 47°24′30.70″N 47°22′50.50″N 47°22′50.50″N 47°29′09.40″N 47°20′54.10″N 47°24′53.00″N

129°43′27.90″E 130°04′00.00″E 129°47′17.60″E 129°49′10.30″E 129°59′27.30″E 129°59′27.30″E 129°17′56.50″E 129°36′21.60″E 129°40′57.50″E

Monzogranite Monzogranite Monzogranite Monzogranite Granodiorite Granodiorite Monzogranite Monzogranite Monzogranite

264 261 261 260 244 234 212 211 210

1 1 1 1 2 2 2 1 2

LA–ICP–MS LA–ICP–MS LA–ICP–MS LA–ICP–MS LA–ICP–MS LA–ICP–MS LA–ICP–MS LA–ICP–MS LA–ICP–MS

Wei (2012) Wei (2012) Wei (2012) Wei (2012) Wei (2012) Wei (2012) Wei (2012) Wei (2012) Wei (2012)

44°40′29.40″N 44°40′29.40″N 44°39′28.30″N 44°38′26.80″N 44°38′26.80″N

129°34′23.40″E 129°34′23.40″E 129°22′53.10″E 129°22′39.50″E 129°22′39.50″E

Diorite Granodiorite Monzogranite Diorite Granodiorite

221 215 217 221 219

1 1 1 1 1

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

Zhao et al (2018) Zhao et al (2018) Zhao et al (2018) Zhao et al (2018) Zhao et al (2018)

44°01'49.00″N 48°13'58.00″N 45°41'22.00″N 44°00'40.00″N 43°59'40.00″N 44°05'39.00″N 44°04'28.00″N 44°05'49.00″N 44°01'33.00″N 44°53'40.00″N 48°08'23.00″N 48°24'02.00″N 47°29'03.00″N 48°07'30.00″N

128°32'13.00″E 129°40'54.00″E 129°54'40.00″E 128°37'53.00″E 128°38'32.00″E 128°25'09.00″E 128°30'33.00″E 128°29'08.00″E 128°32'18.00″E 129°20'24.00″E 129°44'13.00″E 129°59'19.00″E 129°04'02.00″E 129°26'27.00″E

Monzogranite Alkali feldspar granite Quartz monzonite Quartz monzodiorite Quartz monzonite Alkali feldspar granite Monzogranite Quartz monzonite Monzogranite Syenogranite Monzonite Quartz monzonite Quartz trachyte Syenogranite

271 271 267 267 267 263 263 262 262 260 259 258 257 257

2 1 2 2 2 2 4 3 2 3 1 2 1 1

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019) Long X.Y et al (2019)

86

SHRIMP

Liu.K et al (2019)

SHRIMP

Liu.K et al (2019)

SHRIMP

Liu.K et al (2019)

2 2 2 3 1 1 2

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS SHRIMP LA-ICP-MS LA-ICP-MS

Liu.C et al (2018) Liu.C et al (2018) Liu.C et al (2018) Liu.C et al (2018) Liu.C et al (2018) Liu.C et al (2018) Liu.C et al (2018)

115.4 114.6 113.4 112 101.9 96

6.3 2.2 1.4 1 3.7 3

LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS LA-ICP-MS

Liu.C et al (2018) Liu.C et al (2018) Liu.C et al (2018) Liu.C et al (2018) Liu.C et al (2018) Liu.C et al (2018)

Basalt Basalt

103 102

2 3

SHRIMP SHRIMP

Sun.M et al (2018) Sun.M et al (2018)

129°13'20.00"E

Basaltic andesite

105

8

SHRIMP

Liu.K et al (2019)

129°20′05.00″E 128°53′57.00″E

Andesite Rhyolite

108 102

1 1

LA-ICP-MS LA-ICP-MS

Xu et al (2013) Xu et al (2013)

47°35'25.00"N

128°41'21.00"E

203

1

47°22'52.00''N 44°48'59.00''N

128°38'59.00''E 128°46'03.00"E

Andesite, Trachyandesite Trachyandesite

183 183

3

45°28′46.10″N 45°30′14.10″N 42°23′03.30''N 45°30′14.10″N 43°25′05.00″N 42°22′48.20''N 42°22′48.20''N

131°56′33.30″E 131°59′28.10″E 125°26′30.80″E 131°59′28.10″E 125°26′34.00″E 125°26′01.10″E 125°26′01.10″E

Granitic dyke Granite porphyry dyke Granodiorite Dioritic porphyric dyke Monzodiorite pluton Quartz syenite dyke Granitic dyke

216 208 181 180 175 163 161

42°08′39.80''N 45°49′57.70''N 45°47′12.80''N 45°48′00.00''N 45°17′36.70''N 44°41′38.00''N

125°03'24.10″E 132°05'39.00″E 132°57'34.40''E 132°55'16.00''E 131°14'48.20''E 130°33'11.00''E

Diabase dyke Dioritic porphyry dike Granitic dyke Granodiorite pluton Andesite Dacite

47°34'52.00″N 47°34'52.00″N

130°23'49.00″E 130°23'49.00″E

47°36'55.00''N 48°44′09.00″N 47°56′37.00″N

Regional strike-slip faults: Dunhua-Mishan Fault

Cretaceous magmatism

87

Mudanjiang area

Blueschist facies Amphibolite facies

Peak Pressure 8–16 kbar 10.9 kbar

Peak Temperature 320–180°C 622°C

Peak Pressure

Peak Temperature

9–11 kbar 10–12 kbar

320–450°C 500–540°C

References Zhou et al (2009) Li et al (2011)

11-13 Kbar

500-580°C

Li et al (2019)

References Zhao et al (2010) Ge et al (2017)

Yilan area

Blueschist facies Amphibolite facies Epidote-amphibolite facies

88

130°33'05.58"E 129°45'51.30"E 129°51'36.45"E 129°49′31.36″E 129°47'04.25"E 129°41'19.99"E 129°44'50.24"E 129°37'04.86"E 129°50'01.60"E 129°51'10.32"E 129°55'59.33"E 129°59'42.90"E 129°50'08.40"E 129°54'44.45"E

Dating method SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon)

Age 264± 7 Ma 251-321 Ma 307±6 Ma 257.5±2.3 Ma 195 Ma 246-267; 289-489 Ma 492±6 Ma 233±7 Ma 211± 3 Ma 207± 3 Ma 257 ± 4 Ma 257 ±5 Ma 213± 2 Ma 224±7 Ma

Significance Protolith age Youngest depositional age Protolith age Protolith age Protolith age Protolith age Protolith age Protolith age Youngest depositional age Youngest depositional age Protolith age Protolith age Protolith age Protolith age

Unknown

Unknown

LA-ICP-MS (zircon)

274.7±3.6 Ma

Protolith age

Luobei

48°57'58.34"N

130°39'19.07"E

LA-ICP-MS (zircon)

256.1 ± 1.0

Protolith age

Luobei Yilan Mudanjiang Mudanjiang Mudanjiang Yilan Luobei Luobei Yilan Mudanjiang Mudanjiang Yilan Yilan Yilan Yilan Yilan Yilan Luobei Luobei Luobei Luobei Mudanjiang

Unknown 46°22'46.20"N Unknown Unknown Unknown Unknown 49°08'31.266"N 49°12'53.09"N 46°23'17.06"N 44°38'25.14"N 44°38'39.14"N 46°22'57.29"N 46°23'04.71"N 46°23'17.06"N 46°17'55.44"N 46°24'43.56"N 46°12'48.56"N 48°30'11.81"N 48°11'13.51"N 48°10'16.71"N 48°08'35.81"N 44°34'17.28"N

Unknown 129°41'19.99"E Unknown Unknown Unknown Unknown 130°41'04.72"E 130°40'49.32"E 129°52'16.90"E 129°53'19.20"E 129°53'36.49"E 129°51'31.20''E 129°49'47.82"E 129°52'16.90"E 129°37'04.86"E 129°50'40.52"E 129°43'14.81"E 130°33'49.05"E 130°34'10.80"E 130°39'33.44"E 130°37'12.97"E 129°52'26.87"E

LA-ICP-MS (zircon) LA-ICP-MS (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) SHRIMP U-Pb (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon)

227.1 ± 1.4 Ma 200 Ma 254 ±2 Ma 264 ±8 Ma 201 ±2 Ma 224 ±7 Ma 268.6±0.8 Ma 264±4.2 Ma 281±3 Ma 262 ± 8 Ma 200 ± 3 Ma 141.8±1 Ma 275.3±2 Ma 281±3 Ma 256±3 Ma 162±3.9 Ma 256±2.1 329-171 Ma 194-187 Ma 296-255 Ma 270-200 Ma 167±2 Ma, 170-300 Ma

Protolith age Youngest depositional age Protolith age Protolith age Protolith age Protolith age Protolith age Protolith age Protolith age Youngest depositional age Youngest depositional age Protolith age Protolith age Protolith age Protolith age Protolith age Protolith age Youngest depositional age Youngest depositional age Youngest depositional age Youngest depositional age Youngest depositional age

Lithology Granitic gneiss Micaschist Blueschist Blueschist Blueschist Blueschist Gneiss Gneiss Mica schist Mica schist Amphibole schist Amphibole schist Blueschist Blueschist

Localities Luobei Mudanjiang Yilan Yilan Yilan Yilan Yilan Yilan Mudanjiang Mudanjiang Mudanjiang Mudanjiang Mudanjiang Mudanjiang

Location 48°48'49.65"N 44°35'50.36"N 46°22'46.05"N 46°18′28.58″N 46°25'02.30"N 46°22'46.20"N 46°25'42.83"N 46°17'55.44"N 44°36'45.62"N 44°37'13.58"N 44°41'24.79"N 44°42'17.88"N 44°37'29.01"N 44°38'16.76"N

Micaschist

Huanan

Epidote-amphibolite Migmatitic granite Micaschist Gneiss Micaschist Micaschist Blueschist Gneissic alkali-feldspar granites Gneissic monzogranites Blueschist Micaschist Micaschist Blueschist Blueschist Blueschist Amphibolite Greenschist Amphibolite Micaschist Micaschist Micaschist Micaschist Micaschist

U-Pb on zircons LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon)

89

References Wu et al (2007) Wu et al (2007) Zhou et al (2009) Zhou et al (2009) Zhou et al (2010) Zhou et al (2010) Zhou et al (2010) Zhou et al (2010) Zhou et al (2010) Zhou et al (2010) Zhou et al (2010) Zhou et al (2010) Zhou et al (2010) Zhou et al (2010) Li XP et al (2009) Li XP et al (2010) Li XP et al (2010) Li et al (2011) Zhou et al (2013) Zhou et al (2013) Zhou et al (2013) Zhou et al (2013) Cui et al (2013) Cui et al (2013) Ge et al (2016) Ge et al (2016) Ge et al (2016) Zhu et al (2015) Zhu et al (2015) Ge et al (2017) Dong et al (2017) Zhu et al (2017a) Zhu et al (2017a) Zhu et al (2017c) Zhu et al (2017c) Zhu et al (2017c) Zhu et al (2017c) Zhu et al (2017c)

Micaschist Micaschist

Mudanjiang

44°34'50.02"N

129°55'42.19"E

LA-ICP-MS (zircon)

188±2 Ma, 207-192 Ma 297-189 Ma

Youngest depositional age

Yilan

46°21′12.30″N

129°33′50.60″E

LA-ICP-MS (zircon)

Yilan

46°20′16.20″N

129°35′54.70''E

LA-ICP-MS (zircon)

309-265 Ma

Youngest depositional age

Yilan

46°19′40.00″N

129°35′02.90″E

LA-ICP-MS (zircon)

222-189 Ma

Youngest depositional age

Yilan

46°12′40.40″N

129°43′35.20″E

LA-ICP-MS (zircon)

283-216 Ma

Youngest depositional age

Yilan

46°18′31.20″N

129°45′36.20″E

LA-ICP-MS (zircon)

217-180 Ma

Youngest depositional age

Amphibolite

Yilan Mudanjiang

46°18′38.90″N 44°44'07.06"N

129°53′46.90″E 130°26'57.50"E

LA-ICP-MS (zircon) LA-ICP-MS (zircon)

283-196 Ma 248 ± 4 Ma

Youngest depositional age Protolith age

Metaggabro

Yilan

46°17'52.10"N

129°36'58.50"E

LA-ICP-MS (zircon)

256± 2 Ma

Protolith age

Gabbro

Yilan

46°37'36.80"N

130°48'18.20"E

LA-ICP-MS (zircon)

259±3 Ma

Protolith age

Amphibolite

Luobei

48°14'00.70"N

130°43'30.90"E

LA-ICP-MS (zircon)

267±2 Ma

Protolith age

Metaggabro Amphibolite Amphibolite sample quartz schist Biotite plagioclase gneiss

Luobei Yilan Luobei Luobei Luobei

48°14'27.70"N 46°19′13.90″N 48°20′01.30″N 48°20′01.30″N 48°20′01.30″N

130°43'48.50"E 129°35′45.90″E 130°45′03.30″E 130°45′03.30″E 130°45′03.30″E

LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon)

264±2 Ma 274 ± 2 Ma 261 ± 2 Ma 436 ± 2 Ma 211 ± 3 Ma

Protolith age Protolith age Protolith age Protolith age Protolith age

Zhu et al (2017c) Dong et al (2018a) Dong et al (2018a) Dong et al (2018a) Dong et al (2018a) Dong et al (2018a) Dong et al (2018a) Ge et al (2018) Dong et al., 2017a Dong et al., 2017a Dong et al (2018b) Dong et al (2018b) Dong et al (2019) Han et al (2019) Han et al (2019) Han et al (2019)

biotite plagioclase gneiss biotite plagioclase gneiss Amphibolite

Luobei Luobei Luobei Luobei Luobei Luobei Luobei Yilan Yilan

48°20′03.50″N 48°20′12.80″N 48°20′38.30″N 48°17′32.10″N 48°17′32.10″N 48°02′51.50″N 48°19′59.60″N 46°24'53.26"N 46°23'06.97"N

130°45′13.90'E 130°45′11.80″E 130°45′14.20″E 130°44′25.90″E 130°44′25.90″E 130°42′14.90″E 130°45′10.10″E 129°38'44.45"E 129°52'17.06"E

LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) LA-ICP-MS (zircon) SIMS (Zircon) SIMS (Zircon)

261 ± 2 Ma 211 ± 1 Ma 211 ± 3 Ma

Protolith age Protolith age Protolith age Protolith age Protolith age Protolith age Protolith age Protolith age Protolith age

Han et al (2019) Han et al (2019) Han et al (2019) Yang et al., 2019 Yang et al., 2019 Yang et al., 2019 Yang et al., 2019 This study This study

Youngest depositional age

Micaschist Micaschist Micaschist Micaschist Micaschist

Meta-gabbroic diorite

Meta-diorite Amphibolite Garnet amphibolite

Leucogranite Blueschist

90

260±2Ma 264±2 Ma 272±3Ma 273±3Ma

245.5 ±3.5 Ma 356±5.2 Ma

Dating method

Age

130°34'30.95"E 130°34'30.95"E 130°16'41.64"E 130°45′11.80″E 130°45′14.20″E

Rb-Sr (biotite) Rb-Sr (biotite) Ar-Ar (phengite) LA-ICP-MS (zircon) LA-ICP-MS (zircon)

184 ± 4 Ma 190.0± 4.8 Ma 164.7± 0.7 Ma 197 ± 2 Ma 197 ± 2 Ma

Blueschist metamorphism Blueschist metamorphism High-pressure metamorphism Greenschist facies metamorphism Greenschist facies metamorphism

Wu et al (2007) Wu et al (2007) Li et al (2011) Han et al (2019) Han et al (2019)

46°21'27.35"N 46°18'26.91"N 46°06'34.74"N 46°23'15.95"N 46°23'15.95"N 46°24'53.84"N

129°34'20.71"E 129°49'31.36"E 130°29'01.34"E 129°53'03.55"E 129°53'03.55"E 129°50'35.92"E

173.6±0.5 Ma 175.3±0.4 Ma 174.8± 0.5 Ma 144.6±0.8 Ma 146.1 ±1.3 Ma 170.9±0.8 Ma

Metamorphic age Metamorphic age Metamorphic age Metamorphic age Metamorphic age Metamorphic age

Wu et al (2007) Wu et al (2007) Wu et al (2007) Li et al (2009) Li et al (2009) Li et al (2009)

Huanan Yilan

44°33'40.48"N 46°22'46.20"N

129°52'15.79"E 129°41'19.99"E

Ar-Ar (phengite) Ar-Ar (phengite) Ar-Ar (phengite) Ar-Ar (phengite) Ar-Ar (phengite) Ar-Ar (phengite) Ar-Ar (muscovite) Ar-Ar (phengite)

High-pressure blueschist metamorphism Metamorphic age

Zhao et al (2010) Li et al (2011)

Blueschist Blueschist Blueschist Blueschist

Yilan Yilan Yilan Yilan

46°25'14.45"N 46°22'45.37"N 46°23'09.14"N 46°23'02.70"N

129°46'44.12"E 129°51'39.67"E 129°52'14.32"E 129°52'53.43"E

164.9± 0.5 Ma 189.8±0.8 Ma 185.2 ± 4.4 Ma 161.1±6 Ma 158.8 ±1 Ma 172.9.±0.7

Metamorphic age Metamorphic age Metamorphic age Metamorphic age

Micaschist

Yilan

46°18'44.81"N

129°45'25.87"E

178.9 ± 0.5 Ma

Metamorphic age

Blueschist

Yilan

46°23'06.97"N

129°52'17.06"E

173.9 ± 0.7 Ma

Metamorphic age

Micaschist

Yilan

46°18'20.80"N,

129°45'28.17"E

177.9 ± 0.9 Ma

Metamorphic age

Zhou et al (2013) Zhu et al (2017b) Zhu et al (2017b) Zhu et al (2017b) Aouizerat et al (2018) Aouizerat et al (2018) Aouizerat et al (2018)

Amphibolite

Yilan

46°18′45.30″N

129°53′50.30″E

172 ± 5 Ma

later epidote amphibolite–greenschist metamorphism

Dong et al (2019)

Amphibolite ( c) Mudanjiang area Micaschist

Yilan

46°20′09.20″N

129°35′21.20″E

177 ± 11 Ma

later epidote amphibolite–greenschist facies metamorphism

Dong et al (2019)

Gneiss

Mudanjiang Mudanjiang

44°33'38.4626"N Unknown

129°52'14.2069" Unknown

164±0.5 Ma 198 ±2.2 Ma

Metamorphic age Metamorphic age

Zhao & Zhang (2011) Zhou et al (2013)

Micaschist

Mudanjiang

Unknown

Unknown

182 ±5 Ma

Metamorphic age

Zhou et al (2013)

Micaschist

Mudanjiang

Unknown

Unknown

187. 3±3.7 Ma

Metamorphic age

Zhou et al (2013)

Lithology

Localities

Location

dioritic gneiss dioritic gneiss Micaschist biotite plagioclase gneiss Amphibolite (b) Yilan area Micaschist Micaschist Micaschist Blueschist Blueschist Micaschist

Luobei Luobei Luobei Luobei Luobei

47°46'44.61"N 47°46'44.61"N 47°42'17.28"N 48°20′12.80″N 48°20′38.30″N

Yilan Yilan Huanan Yilan Yilan Yilan

Micaschist Amphibolite

Significance

References

(a) Luobei area

Ar-Ar (glaucophane) Ar-Ar (glaucophane) Ar-Ar (glaucophane) Ar-Ar (glaucophane) Ar-Ar (muscovite) Ar-Ar (phengite) Ar-Ar (muscovite) SIMS U-Pb (rutile) SIMS U-Pb (rutile) Ar-Ar (muscovite) Ar-Ar (biotite) Ar-Ar (muscovite) Ar-Ar (muscovite)

91

Amphibolite Amphibolite

Mudanjiang Mudanjiang

44°43'42.60"N 44°43'42.60"N

130°26'01.59"E 130°26'01.59"E

Ar-Ar (Ca-amphibole) Ar-Ar (Ca-amphibole)

Blueschist

Mudanjiang

44°34'45.58"N

129°53'32.44"E

Ar-Ar (phengite)

Blueschist

Mudanjiang

44°34'48.94"N

129°53'26.39"E

Ar-Ar (phengite)

92

195 ± 3 Ma 197 ± 5 Ma 175.7 ± 0.8 Ma 178.6 ± 0.9 Ma

Amphibolite metamorphism Amphibolite metamorphism

Ge et al (2018) Ge et al (2018)

High-pressure metamorphism

This study

High-pressure metamorphism

This study

conventional concordia columns (Pbc corr.) Sample/ spot # Qinghu @1 Qinghu @2 Qinghu @3 Qinghu @4 Qinghu @5 Qinghu @6 Qinghu @7 Qinghu @8 YILBLUE19-1 YILBLUE19-2 YILBLUE19-3 YILBLUE19-4 YILBLUE19-5 YILBLUE19-6 YILBLUE19-7 YIL LEU 141 YIL LEU 142 YIL LEU 143

207Pb

±σ

206Pb

±s

235U

%

238U

%

0.1717 4 0.1736 4 0.1739 9 0.1654 4 0.1703 3 0.1719 2 0.1664 6 0.1655 1

1.9066 4 2.4055 2 2.0006 7 2.2677 2 2.2246 7 2.2899 1 2.2161 1 2.2630 8

0.0252 7 0.0254 0 0.0256 4 0.0248 2 0.0249 9 0.0254 8 0.0247 3 0.0245 1

1.5143 9 1.5394 8 1.5172 7 1.5314 4 1.5160 0 1.5015 9 1.5006 0 1.5295 1

0.4191 4

2.1390 3

0.0567 4

3.6573 0

1.7410 3

1.6398 8

ρ

TW concordia columns (Pbc corr.)

TW concordia columns (Pbc uncorr.)

238U

±σ

207Pb

±σ

238U

±σ

207Pb

±s

207Pb

206Pb

%

206Pb

%

206Pb

%

206Pb

%

206Pb

0.7942 7 0.6399 8 0.7583 8 0.6753 2 0.6814 5 0.6557 4 0.6771 3 0.6758 5

39.5755 8 39.3743 5 39.0065 2 40.2843 4 40.0171 5 39.2521 7 40.4429 8 40.7973 5

1.5143 9 1.5394 8 1.5172 7 1.5314 4 1.5160 0 1.5015 9 1.5006 0 1.5295 1

0.0492 9 0.0495 9 0.0492 2 0.0483 4 0.0494 4 0.0489 4 0.0488 3 0.0489 7

1.1584 0 1.8483 9 1.3040 5 1.6725 0 1.6281 6 1.7288 5 1.6307 5 1.6679 8

39.575 58 39.374 35 38.980 42 40.284 34 39.983 85 39.252 17 40.442 98 40.747 21

1.5143 9 1.5394 8 1.5171 0 1.5314 4 1.5158 0 1.5015 9 1.5006 0 1.5292 0

0.0492 9 0.0495 9 0.0497 5 0.0483 4 0.0500 9 0.0489 4 0.0488 3 0.0499 4

1.1584 0 1.8483 9 1.1649 8 1.6725 0 1.4955 0 1.7288 5 1.6307 5 1.4605 8

1.5146 6

0.7081 1

17.6241 69

1.5146 62

0.0535 76

1.5103 80

17.624 17

1.5146 6

0.0535 8

0.2703 6

1.5354 8

0.8819 3

3.69660 5

1.5355 55

0.0985 43

0.8020 44

3.6966 1

1.5355 6

1.8831 3

0.1602 4

1.5047 6

0.7990 7

6.23459 6

1.5048 24

0.0749 51

1.0582 11

6.2346 0

10.484 07

1.6225 4

0.4658 1

1.5251 3

0.9399 6

2.14557 9

1.5251 53

0.1636 16

0.5488 84

0.5321 4

3.5546 5

0.0684 2

2.8561 7

0.8035 0

14.4777 68

2.8589 97

0.0637 43

1.4693 0

1.5875 5

0.1532 6

1.5007 8

0.9453 4

6.52470 8

1.5007 77

0.5165 2

3.4335 6

0.0667 3

1.5174 3

0.4419 4

14.9857 86

0.2771 7

1.9082 2

0.0395 6

1.5002 2

0.7861 9

0.2814 4

1.8194 7

0.0397 4

1.5060 6

0.2786 7

1.9880 7

0.0386 6

1.5023 0

±σ

207Pb

±σ

235U

206Pb

±σ

238U

161.81

26.87

160.92

2.84

160.9

2.4

175.65

42.56

162.57

3.62

161.7

2.5

158.47

30.23

162.88

3.02

163.2

2.4

115.76

38.98

155.45

3.27

158.1

2.4

168.58

37.59

159.71

3.29

159.1

2.4

145.09

40.06

161.08

3.42

162.2

2.4

139.50

37.85

156.34

3.22

157.5

2.3

146.49

38.66

155.51

3.27

156.1

2.4

1.5103 8

353.27

33.77

355.44

6.44

355.8

5.2

0.0985 4

0.8020 4

1588.5 3

15.26

1.5048 2

0.0749 5

1.0582 1

1047.5 2

22.66

2.1455 8

1.5251 5

0.1636 2

0.5488 8

2489.4 7

9.30

0.9665 43

14.477 77

2.8590 0

0.0637 4

0.9665 4

468.44

46.18

0.0695 30

0.5176 66

6.5247 1

1.5007 8

0.0695 3

0.5176 7

914.49

1.5174 34

0.0561 39

3.0800 50

14.985 79

1.5174 3

0.0561 4

3.0800 5

457.86

25.2776 8

1.5002 2

0.0508 1

1.1792 5

25.248 04

1.5002 6

0.0517 3

0.9550 0

232.36

0.8277 5

25.1624 6

1.5060 6

0.0513 6

1.0209 0

25.153 61

1.5060 2

0.0516 4

0.9670 6

257.09

0.7556 5

25.8653 8

1.5023 0

0.0522 8

1.3021 3

25.856 20

1.5022 7

0.0525 5

1.2582 8

297.50

93

10.62 66.90 27.00 23.30 29.44

1562.1 0

13.9 8

1542.6

985.67

11.9 5

958.1

2478.5 1

15.1 5

2465.2

433.23

12.6 1

426.6

9.64

919.2

917.84 422.82 248.41 251.80 249.60

11.9 4

416.4

4.21

250.1

4.07 4.41

251.2 244.5

207corr age (Ma)

[Th ] pp m

[Pb ] pp m

Th/ U mea s

876

64

0.41

772

45

0.52

802

55

0.44

942 189 0

296

27

0.31

824

56

0.44

432

28

0.46

844

59

0.42

2.37

929 200 2 171 0

919

51

0.54

355.8 0

5.31

594

408

n/a

n/a

954.2 0

13.9 5

160.8 6 161.6 2 163.2 0 158.2 5 159.0 7 162.2 5 157.5 3 156.1 4

±σ

2.42 2.47 2.46 2.41 2.40 2.42 2.35

840

31.3 11.8 12.9 6.1 3.7 3.7 3.6

213 9 147 4 181 5

0.69 42

21.1 13.4

[U] pp m

431

0.51 283

671

117

0.17 121

600

111 3

n/a

n/a

426.0 4

11.9 5

248 9

293 8

919.4 2

13.3 8

158 0

100 3

415.8 8

6.26

287

199

250.2 3

3.71

251.1 9

3.74

244.1 6

3.63

1.86 462 1.18 259 0.63 304 0.69 24

167 3

104

174 3

134

197 5

133

0.06 71 0.08 75 0.07 82

YIL LEU 144 YIL LEU 145 YIL LEU 146 YIL LEU 147 YILGAB16-1 YILGAB16-2 YILGAB16-3 YILGAB16-4 YILGAB16-5 YILGAB16-6 YILGAB16-7 YILGAB16-8 YILGAB16-9 YILGAB16-10 YILGAB16-11 YILGAB16-12 YILGAB16-13 YILGAB16-14

0.2767 2

1.8456 8

0.0387 5

1.5014 2

0.8134 8

25.8061 5

1.5014 2

0.0517 9

1.0734 5

25.769 35

1.5013 6

0.0529 1

0.8843 3

276.21

0.2603 9

2.2642 0

0.0371 7

1.5017 5

0.6632 6

26.9012 2

1.5017 5

0.0508 0

1.6945 0

26.703 37

1.5014 5

0.0565 8

0.8783 8

231.95

0.2746 2

2.4210 6

0.0381 1

1.5583 7

0.6436 7

26.2414 3

1.5583 7

0.0522 7

1.8528 5

25.966 60

1.5563 4

0.0604 7

0.8390 3

297.06

0.2795 6

2.3660 9

0.0397 0

1.5003 6

0.6341 1

25.1866 9

1.5003 6

0.0510 7

1.8295 7

24.931 42

1.5006 8

0.0590 2

0.8312 0

243.90

0.2343 5

2.0005 4

0.0336 3

1.5010 5

0.7503 2

29.7364 9

1.5010 5

0.0505 4

1.3225 0

29.736 49

1.5010 5

0.0505 4

1.3225 0

220.0

0.2353 3

2.0516 9

0.0330 4

1.6065 2

0.7830 2

30.2644 1

1.6065 2

0.0516 6

1.2761 4

30.264 41

1.6065 2

0.0516 6

1.2761 4

270.2

0.2331 5

1.9192 7

0.0333 8

1.5114 4

0.7875 0

29.9543 6

1.5114 4

0.0506 5

1.1828 6

29.954 36

1.5114 4

0.0506 5

1.1828 6

225.0

0.2335 9

2.3212 2

0.0339 9

1.5279 6

0.6582 6

29.4198 9

1.5279 6

0.0498 4

1.7473 9

29.419 89

1.5279 6

0.0498 4

1.7473 9

187.6

0.2281 5

2.3214 6

0.0332 2

1.5145 1

0.6524 0

30.1003 2

1.5145 1

0.0498 1

1.7593 9

30.100 32

1.5145 1

0.0498 1

1.7593 9

186.0

0.2365 6

2.1325 8

0.0335 5

1.5109 2

0.7085 0

29.8042 2

1.5109 2

0.0511 3

1.5050 0

29.804 22

1.5109 2

0.0511 3

1.5050 0

246.9

0.2460 1

1.9037 3

0.0349 5

1.5001 9

0.7880 3

28.6131 2

1.5001 9

0.0510 5

1.1720 1

28.562 65

1.5002 2

0.0524 4

0.9421 5

243.2

0.2242 7

2.1627 3

0.0320 9

1.5128 2

0.6995 0

31.1587 1

1.5128 2

0.0506 8

1.5455 6

31.125 10

1.5124 0

0.0515 3

1.2094 5

226.4

0.2403 4

2.2623 2

0.0345 8

1.5049 8

0.6652 4

28.9195 1

1.5049 8

0.0504 1

1.6891 2

28.919 51

1.5049 8

0.0504 1

1.6891 2

213.9

0.2310 5

2.1574 2

0.0329 9

1.5002 1

0.6953 7

30.3126 7

1.5002 1

0.0508 0

1.5504 2

30.312 67

1.5002 1

0.0508 0

1.5504 2

231.6

0.2350 3

2.0927 5

0.0334 6

1.5159 7

0.7243 9

29.8887 4

1.5159 7

0.0509 5

1.4427 2

29.888 74

1.5159 7

0.0509 5

1.4427 2

238.5

0.2300 0

1.9842 1

0.0334 2

1.5077 1

0.7598 6

29.9189 2

1.5077 1

0.0499 1

1.2899 1

29.864 71

1.5074 6

0.0513 3

1.0088 6

190.7

0.2256 4

3.5937 6

0.0308 0

1.5290 3

0.4254 7

32.4708 1

1.5290 3

0.0531 4

3.2522 6

32.470 81

1.5290 3

0.0531 4

3.2522 6

334.7

0.2356 2

2.2035 8

0.0338 0

1.5508 5

0.7037 8

29.5861 3

1.5508 5

0.0505 6

1.5654 6

29.586 13

1.5508 5

0.0505 6

1.5654 6

220.8

94

24.40 38.66 41.74 41.61 30.3 29.0 27.1 40.2

248.05 234.98 246.38 250.31 213.8 214.6 212.8 213.2

4.07 4.76 5.31 5.26 3.9 4.0 3.7 4.5

245.1 235.3 241.1 251.0 213.2 209.6 211.7 215.5

3.6 3.5 3.7 3.7 3.1 3.3 3.1 3.2

244.8 6

3.64

235.3 0

3.50

240.6 9

3.71

251.0 3

3.73

213.2

3.2

209.2 211.6 215.6

3.3 3.2 3.3

209 9

139

211 0

214

211 5

177

223 3

182

113 6

100 9

142 8

666

133 1

530

643

319

0.07 87 0.10 83 0.08 86 0.08 95 51 57 52 26

40.5 34.3

208.7 215.6

4.4 4.2

210.7 212.7

3.1 3.2

210.8 212.5

3.2 3.2

107 0

100 7

982

440

48 39

26.8 35.3 38.7 35.4

223.3 205.5 218.7 211.1

3.8 4.0 4.5 4.1

221.4 203.6 219.1 209.2

3.3 3.0 3.2 3.1

221.3 203.5 219.2 209.1

3.3 3.1 3.3 3.1

232 1

148 9

131 4

774

136 0

574

877

460

102 52 56 35

32.9

214.3

4.1

212.2

3.2

212.0

3.2

999

488 40

29.7 72.1

210.2 206.6

3.8 6.7

211.9 195.5

3.1 2.9

212.1 194.8

3.2 3.0

206 5

186 6

982

495

92 38

35.8

214.8

4.3

214.3

3.3

214.2

3.3

115 4

376 45

0.89 0.47 0.40 0.50 0.94 0.45 0.64 0.59 0.42 0.52 0.49 0.90 0.50 0.33

YILGAB16-15 YILGAB16-16 YILGAB16-17 YILGAB16-18 YILGAB16-19 YILGAB16-20 YILGAB16-21 YILGAB16-22 YILGAB16-23 YILGAB16-24 YILGAB16-25 YILGAB16-26 YILGAB16-27 YILGAB16-28 YILGAB16-29 YILGAB16-30 YILGAB16-31 YILGAB16-32

0.2244 7

1.9531 8

0.0326 0

1.5136 5

0.7749 7

30.6706 5

1.5136 5

0.0499 3

1.2344 1

30.670 65

1.5136 5

0.0499 3

1.2344 1

191.8

0.2316 4

2.1681 9

0.0332 5

1.5134 6

0.6980 3

30.0768 5

1.5134 6

0.0505 3

1.5525 7

30.043 10

1.5130 2

0.0514 1

1.2094 7

219.4

0.2359 3

1.9487 1

0.0331 6

1.5182 1

0.7790 8

30.1539 8

1.5182 1

0.0516 0

1.2216 8

30.147 24

1.5181 8

0.0517 7

1.1935 3

267.6

0.2354 8

1.7672 6

0.0338 5

1.5037 2

0.8508 8

29.5400 7

1.5037 2

0.0504 5

0.9284 4

29.531 89

1.5037 5

0.0506 7

0.8766 4

215.8

0.2304 0

1.8976 3

0.0334 6

1.5324 6

0.8075 7

29.8873 9

1.5324 6

0.0499 4

1.1191 8

29.887 39

1.5324 6

0.0499 4

1.1191 8

192.3

0.2360 1

1.8213 6

0.0338 5

1.5054 1

0.8265 3

29.5403 2

1.5054 1

0.0505 6

1.0252 2

29.540 32

1.5054 1

0.0505 6

1.0252 2

221.0

0.2357 5

1.8296 5

0.0340 4

1.5080 1

0.8242 1

29.3744 9

1.5080 1

0.0502 2

1.0361 1

29.374 49

1.5080 1

0.0502 2

1.0361 1

205.4

0.2312 1

2.3762 6

0.0333 6

1.5241 2

0.6413 9

29.9777 9

1.5241 2

0.0502 7

1.8231 0

29.957 78

1.5238 5

0.0507 9

1.6488 9

207.4

0.2195 1

2.0048 9

0.0313 9

1.5647 3

0.7804 6

31.8542 4

1.5647 3

0.0507 1

1.2534 7

31.854 24

1.5647 3

0.0507 1

1.2534 7

227.8

0.2336 3

2.2001 0

0.0329 6

1.5038 1

0.6835 2

30.3407 2

1.5038 1

0.0514 1

1.6059 2

30.315 64

1.5037 0

0.0520 6

1.4571 0

259.2

0.2267 8

2.9328 0

0.0328 1

1.5327 5

0.5226 2

30.4820 3

1.5327 5

0.0501 4

2.5004 0

30.413 85

1.5315 5

0.0518 9

1.8752 7

201.3

0.2267 2

1.8723 3

0.0325 8

1.5003 4

0.8013 2

30.6897 8

1.5003 4

0.0504 6

1.1201 0

30.681 33

1.5003 3

0.0506 8

1.0874 5

216.5

0.2306 5

2.0317 8

0.0329 0

1.5066 0

0.7415 2

30.3943 0

1.5066 0

0.0508 4

1.3631 9

30.379 75

1.5065 4

0.0512 2

1.3121 6

233.8

0.2260 6

2.4095 5

0.0327 3

1.5304 2

0.6351 5

30.5560 0

1.5304 2

0.0501 0

1.8611 2

30.514 93

1.5299 3

0.0511 5

1.5688 3

199.5

0.2246 4

2.5519 9

0.0323 2

1.5008 5

0.5881 1

30.9367 6

1.5008 5

0.0504 0

2.0640 0

30.856 36

1.5006 0

0.0524 4

1.4113 8

213.7

0.2333 3

1.9928 3

0.0337 8

1.5007 8

0.7530 9

29.6014 1

1.5007 8

0.0500 9

1.3111 2

29.601 41

1.5007 8

0.0500 9

1.3111 2

199.3

0.2305 8

1.8181 7

0.0333 0

1.5060 5

0.8283 3

30.0311 5

1.5060 5

0.0502 2

1.0186 2

30.014 87

1.5059 9

0.0506 5

0.9368 9

205.3

0.2240 9

2.2183 9

0.0328 6

1.5125 5

0.6818 2

30.4361 5

1.5125 5

0.0494 7

1.6227 9

30.396 52

1.5122 4

0.0504 9

1.3548 7

170.0

95

28.5 35.5 27.8 21.4 25.8 23.5 23.9 41.7

205.6 211.6 215.1 214.7 210.5 215.1 214.9 211.2

3.6 4.1 3.8 3.4 3.6 3.5 3.6 4.5

206.8 210.8 210.3 214.6 212.2 214.6 215.8 211.5

3.1 3.1 3.1 3.2 3.2 3.2 3.2 3.2

206.9 210.8 210.0 214.6 212.3 214.6 215.9 211.6

3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.2

114 7

877

114 6

988

185 6

874

211 8

174 6

131 2

888

261 1

217 8

162 4

909

609

329

48 50 73 94 55 116 68 25

28.7 36.5

201.5 213.2

3.7 4.2

199.3 209.0

3.1 3.1

199.1 208.7

3.1 3.1

110 8

535

998

716

42 42

57.0

207.5

5.5

208.1

3.1

208.1

3.2

457

215 18

25.7 31.2 42.7

207.5 210.7 206.9

3.5 3.9 4.5

206.7 208.7 207.6

3.1 3.1 3.1

206.6 208.5 207.6

3.1 3.1 3.2

225 8

111 0

224 3

174 9

710

451

88 95 29

47.1 30.2

205.8 212.9

4.8 3.8

205.1 214.2

3.0 3.2

205.0 214.3

3.1 3.2

117 6

112 0

919

401

50 37

23.5 37.5

210.7 205.3

3.5 4.1

211.2 208.4

3.1 3.1

211.2 208.6

3.1 3.1

196 0

143 4

989

465

83 39

0.76 0.86 0.47 0.82 0.68 0.83 0.56 0.54 0.48 0.72 0.47 0.49 0.78 0.64 0.95 0.44 0.73 0.47

YILGAB16-33 YILGAB16-34 YILGAB16-35 YILGAB16-36 YILGAB16-37 YILGAB16-38 YILGAB16-39 YILGAB16-40 MUD37-1 MUD37-2 MUD37-3 MUD37-4 MUD37-5 MUD37-6 MUD37-7 MUD37-8 MUD37-9 MUD37-10 MUD37-11 MUD37-12 MUD37-13 MUD37-14 MUD37-15

0.2340 6

1.7520 6

0.0337 1

1.5027 6

0.8577 1

29.6658 1

1.5027 6

0.0503 6

0.9007 9

29.665 81

1.5027 6

0.0503 6

0.9007 9

211.7

0.2310 7

1.9040 6

0.0328 7

1.5019 6

0.7888 2

30.4203 9

1.5019 6

0.0509 8

1.1702 8

30.406 94

1.5020 0

0.0513 3

1.0942 7

240.0

0.2262 8

2.0981 7

0.0328 6

1.5543 8

0.7408 3

30.4283 8

1.5543 8

0.0499 4

1.4093 3

30.428 38

1.5543 8

0.0499 4

1.4093 3

192.1

0.2256 8

1.7985 6

0.0326 0

1.5062 4

0.8374 7

30.6710 1

1.5062 4

0.0502 0

0.9828 8

30.650 84

1.5061 5

0.0507 2

0.8638 1

204.3

0.2302 2

1.8877 1

0.0330 0

1.5380 6

0.8147 8

30.3040 4

1.5380 6

0.0506 0

1.0944 4

30.290 06

1.5379 6

0.0509 6

1.0191 3

222.6

0.2295 7

2.1499 8

0.0331 3

1.5897 9

0.7394 4

30.1843 8

1.5897 9

0.0502 6

1.4474 0

30.159 62

1.5894 8

0.0509 0

1.2801 2

206.9

0.2191 9

2.8436 7

0.0324 2

1.5050 4

0.5292 6

30.8415 2

1.5050 4

0.0490 3

2.4127 4

30.762 17

1.5044 9

0.0510 5

1.7965 3

149.3

0.2234 5

2.5113 1

0.0325 6

1.5188 9

0.6048 2

30.7105 2

1.5188 9

0.0497 7

1.9999 2

30.654 34

1.5182 8

0.0512 1

1.5247 6

184.2

0.1870 3 0.2227 8 0.2465 8 0.2544 6 0.2637 7 0.2728 4 0.2397 5 0.2639 9 0.2783 4 0.2683 2 0.2844 9 0.2982 0 0.2925 3 0.3251 2 0.6049 6

2.9933 6 2.6992 8 7.6894 9 7.4654 0 2.9437 3 3.7387 5 7.0826 0 2.1885 4 3.9375 9 2.6551 4 3.1373 3 2.1868 4 3.6752 3 3.3798 0 2.3195 2

0.0274 6 0.0326 5 0.0366 1 0.0368 2 0.0370 0 0.0370 7 0.0374 5 0.0376 0 0.0378 5 0.0379 1 0.0404 7 0.0416 2 0.0417 8 0.0440 1 0.0775 7

1.5625 4 1.6129 6 1.6560 1 1.5702 8 1.5186 7 1.5455 8 1.5085 4 1.5447 5 1.5640 5 1.5188 0 1.5228 5 1.5081 5 1.5005 2 1.6071 2 1.5000 2

0.5220 0 0.5975 5 0.2153 6 0.2103 4 0.5159 0 0.4134 0 0.2129 9 0.7058 4 0.3972 1 0.5720 2 0.4854 0 0.6896 5 0.4082 8 0.4755 1 0.6467 0

36.4209 8 30.6271 4 27.3185 1 27.1569 7 27.0287 5 26.9760 5 26.7015 8 26.5927 1 26.4221 9 26.3794 2 24.7080 5 24.0297 3 23.9364 5 22.7238 5 12.8920 6

1.5625 4 1.6129 6 1.6560 1 1.5702 8 1.5186 7 1.5455 8 1.5085 4 1.5447 5 1.5640 5 1.5188 0 1.5228 5 1.5081 5 1.5005 2 1.6071 2 1.5000 2

0.0494 0 0.0494 9 0.0488 5 0.0501 2 0.0517 1 0.0533 8 0.0464 3 0.0509 2 0.0533 4 0.0513 3 0.0509 8 0.0519 7 0.0507 8 0.0535 8 0.0565 6

2.5531 7 2.1643 7 7.5090 6 7.2983 9 2.5217 4 3.4043 2 6.9200 9 1.5503 1 3.6136 4 2.1778 5 2.7429 5 1.5835 9 3.3549 6 2.9732 5 1.7692 0

36.420 98 30.507 31 27.026 02 26.955 70 27.028 75 26.976 05 26.180 57 26.592 71 26.422 19 26.379 42 24.675 17 24.029 73 23.936 45 22.723 85 12.869 56

1.5625 4 1.6114 9 1.6416 7 1.5587 5 1.5186 7 1.5455 8 1.5032 7 1.5447 5 1.5640 5 1.5188 0 1.5223 3 1.5081 5 1.5005 2 1.6071 2 1.5000 1

0.0494 0 0.0525 6 0.0572 8 0.0559 4 0.0517 1 0.0533 8 0.0618 3 0.0509 2 0.0533 4 0.0513 3 0.0520 3 0.0519 7 0.0507 8 0.0535 8 0.0579 2

2.5531 7 1.4887 5 3.6138 7 4.0512 1 2.5217 4 3.4043 2 2.1249 5 1.5503 1 3.6136 4 2.1778 5 2.2785 4 1.5835 9 3.3549 6 2.9732 5 1.4339 4

96

20.7 26.8 32.5

213.5 211.1 207.1

3.4 3.6 3.9

213.7 208.5 208.4

3.2 3.1 3.2

213.7 208.3 208.5

3.2 3.1 3.2

215 0

185 0

139 8

100 2

837

373

95 58 33

22.6 25.1 33.2 55.6

206.6 210.4 209.8 201.2

3.4 3.6 4.1 5.2

206.8 209.3 210.1 205.7

3.1 3.2 3.3 3.0

206.8 209.2 210.1 206.0

3.1 3.2 3.3 3.1

231 9

232 2

184 5

104 7

104 4

669

911

496

102 75 43 36

45.9

204.8

4.7

206.6

3.1

206.7

3.1

806

454 32

167.05

58.59

174.09

4.80

174.6

2.7

170.88

49.76

204.22

5.01

207.1

3.3

231.8

3.8

233.1

3.6

140.86 200.50

167.3 9 161.2 0

223.79 230.19

15.5 6 15.4 9

272.46

56.79

237.70

6.26

234.2

3.5

345.01

75.24

244.96

8.17

234.6

3.6

19.96

158.3 1

218.21

14.0 0

237.0

3.5

236.99

35.37

237.88

4.65

238.0

3.6

343.22

79.78

249.34

8.74

239.5

3.7

255.89

49.31

241.35

5.72

239.9

3.6

239.99

62.04

254.22

7.08

255.8

3.8

284.10

35.82

264.99

5.11

262.8

3.9

231.02

75.68

260.55

8.48

263.8

3.9

353.52

65.80

285.83

8.45

277.6

4.4

474.60

38.66

480.37

8.92

481.6

7.0

174.6 5 207.3 2 232.3 1 233.3 1 233.9 4 233.9 0 238.3 3 237.9 7 238.7 5 239.7 5 255.8 7 262.6 8 264.0 8 277.0 0 481.6 9

2.72

548

335

3.31

140 2

175 9

3.82

171

184

3.66

257

493

3.53

470

372

3.61

184

250

3.57

396

251

3.64

881

130 7

3.74

144

165

3.61

413

262

3.87

355

424

3.92

744

246

3.95

393

211

4.43

195

112

7.09

443

268

18 66 9 15 23 10 18 49 8 19 20 36 20 10 42

0.86 0.72 0.45 1.00 0.57 0.64 0.54 0.56 0.61 1.25 1.08 1.92 0.79 1.36 0.64 1.48 1.14 0.63 1.19 0.33 0.54 0.58 0.61

MUD37-16 MUD37-17 MUD37-18 MUD37-19 MUD37-20 MUD37-21 MUD37-22 MUD37-23 MUD37-24 MUD37-25 MUD37-26 MUD37-27 MUD37-28 MUD37-29 MUD37-30 MUD37-31 MUD37-32 MUD37-33 MUD37-34 MUD37-35 MUD37-36 MUD40-1 MUD40-2 MUD40-3 MUD40-4 MUD40-5 MUD40-6

0.6221 9 0.6232 9 0.6371 4 0.6492 9 0.6421 7 0.6404 2 0.6376 2 0.6203 5 0.6387 6 0.6421 0 0.6525 5 0.6489 7 0.6611 0 0.6514 5 0.6528 0 0.6510 7 0.6647 9 0.6673 0 0.6642 0 1.4076 0 1.4193 2

2.7418 7 2.1503 4 1.8666 3 2.0623 5 2.5026 0 1.8839 3 2.2884 0 2.0282 5 1.7913 0 2.0809 3 1.8466 3 2.1801 4 1.8783 2 1.8266 7 1.7384 4 1.6996 4 1.7811 9 1.7854 1 1.5853 6 1.8983 2 2.0331 5

0.0785 5 0.0795 0 0.0801 6 0.0802 1 0.0805 6 0.0806 3 0.0806 9 0.0807 2 0.0808 4 0.0810 3 0.0818 3 0.0821 0 0.0824 8 0.0826 7 0.0828 7 0.0830 8 0.0837 5 0.0837 7 0.0838 9 0.1467 4 0.1495 8

1.5706 8 1.5077 8 1.5000 0 1.5177 8 1.5048 7 1.5003 0 1.5245 5 1.5238 0 1.5553 8 1.5000 0 1.5000 0 1.5257 3 1.5015 6 1.5379 2 1.5004 8 1.5000 1 1.5197 8 1.5022 4 1.5068 7 1.5002 9 1.5191 9

0.5728 5 0.7011 8 0.8035 9 0.7359 4 0.6013 2 0.7963 7 0.6662 1 0.7512 9 0.8683 0 0.7208 3 0.8122 9 0.6998 3 0.7994 2 0.8419 2 0.8631 2 0.8825 4 0.8532 4 0.8414 0 0.9504 9 0.7903 2 0.7472 1

12.7302 9 12.5787 5 12.4747 8 12.4669 6 12.4125 8 12.4027 7 12.3933 6 12.3885 7 12.3695 6 12.3416 9 12.2206 3 12.1809 7 12.1238 0 12.0958 7 12.0663 9 12.0358 7 11.9401 2 11.9367 9 11.9199 2

0.1672 4 0.1774 4 0.1679 6 0.1759 0 0.1974 0 0.2012 7

3.3058 7 4.1596 1 3.4654 5 2.0588 0 3.3265 3 3.1093 3

0.0249 4 0.0250 2 0.0255 4 0.0259 8 0.0278 0 0.0284 6

1.5460 9 1.5767 4 1.5538 9 1.5115 2 1.5633 2 1.5502 7

0.4676 8 0.3790 6 0.4484 0 0.7341 8 0.4699 6 0.4985 9

40.0932 3 39.9743 3 39.1531 2 38.4919 5 35.9725 9 35.1424 7

6.81455 6.68544

1.5706 8 1.5077 8 1.5000 0 1.5177 8 1.5048 7 1.5003 0 1.5245 5 1.5238 0 1.5553 8 1.5000 0 1.5000 0 1.5257 3 1.5015 6 1.5379 2 1.5004 8 1.5000 1 1.5197 8 1.5022 4 1.5068 7 1.5002 9 1.5191 9

0.0574 5 0.0568 6 0.0576 5 0.0587 1 0.0578 1 0.0576 1 0.0573 1 0.0557 4 0.0573 1 0.0574 7 0.0578 4 0.0573 3 0.0581 3 0.0571 5 0.0571 3 0.0568 3 0.0575 7 0.0577 7 0.0574 2 0.0695 7 0.0688 2

2.2474 1 1.5331 5 1.1109 9 1.3963 0 1.9995 9 1.1394 2 1.7066 1 1.3385 9 0.8885 6 1.4423 1 1.0770 4 1.5573 0 1.1284 6 0.9856 7 0.8779 1 0.7992 2 0.9289 3 0.9648 7 0.4926 7 1.1630 8 1.3512 0

12.730 29 12.563 87 12.474 78 12.461 02 12.389 32 12.402 77 12.357 15 12.388 57 12.359 54 12.341 69 12.214 40 12.163 29 12.116 44 12.095 87 12.066 39 12.035 87 11.934 61 11.936 79 11.919 92 6.8018 0 6.6799 5

1.5706 8 1.5079 7 1.5000 0 1.5178 9 1.5051 1 1.5003 0 1.5256 3 1.5238 0 1.5555 8 1.5000 0 1.5000 0 1.5261 5 1.5016 0 1.5379 2 1.5004 8 1.5000 1 1.5197 4 1.5022 4 1.5068 7 1.5003 1 1.5190 6

0.0574 5 0.0577 8 0.0576 5 0.0590 8 0.0592 7 0.0576 1 0.0595 9 0.0557 4 0.0579 4 0.0574 7 0.0582 3 0.0584 6 0.0586 0 0.0571 5 0.0571 3 0.0568 3 0.0579 3 0.0577 7 0.0574 2 0.0710 0 0.0694 5

2.2474 1 1.3275 1 1.1109 9 1.3140 3 1.7417 9 1.1394 2 1.1261 6 1.3385 9 0.7998 1 1.4423 1 1.0248 8 1.3053 0 1.0375 4 0.9856 7 0.8779 1 0.7992 2 0.8721 6 0.9648 7 0.4926 7 1.0487 3 1.2556 4

1.5460 9 1.5767 4 1.5538 9 1.5115 2 1.5633 2 1.5502 7

0.0486 3 0.0514 4 0.0476 9 0.0491 1 0.0515 0 0.0513 0

2.9220 5 3.8491 9 3.0975 4 1.3978 4 2.9362 9 2.6952 9

40.000 06 39.873 80 39.153 12 38.446 41 35.972 59 35.142 47

1.5448 2 1.5738 0 1.5538 9 1.5112 9 1.5633 2 1.5502 7

0.0504 6 0.0534 2 0.0476 9 0.0500 4 0.0515 0 0.0513 0

2.2925 3 2.8663 5 3.0975 4 1.1761 8 2.9362 9 2.6952 9

97

508.68

48.67

491.22

10.7 3

487.5

7.4

486.21

33.49

491.91

8.42

493.1

7.2

516.32

24.21

500.53

7.40

497.1

7.2

556.29

30.17

508.04

8.28

497.4

7.3

522.62

43.27

503.65

9.99

499.5

7.2

514.87

24.83

502.56

7.50

499.9

7.2

503.56

37.12

500.83

9.09

500.2

7.3

441.98

29.50

490.07

7.92

500.4

7.3

503.29

19.44

501.54

7.11

501.2

7.5

509.79

31.40

503.61

8.30

502.2

7.3

523.59

23.45

510.05

7.43

507.0

7.3

504.38

33.91

507.85

8.75

508.6

7.5

534.67

24.51

515.28

7.62

510.9

7.4

497.33

21.57

509.37

7.34

512.1

7.6

496.53

19.23

510.20

7.00

513.3

7.4

485.06

17.55

509.13

6.83

514.5

7.4

513.41

20.28

517.54

7.25

518.5

7.6

521.07

21.03

519.07

7.28

518.6

7.5

507.73

10.80

517.18

6.45

519.3

7.5

915.66

23.75

892.15

882.7

12.4

893.32

27.65

897.08

898.6

12.8

130.03

67.33

157.02

4.82

158.81

2.43

260.77

86.08

165.86

6.39

159.28

2.48

84.16

71.89

157.65

5.07

162.58

2.50

152.86

32.42

164.52

3.13

165.34

2.47

263.34

66.04

182.93

5.58

176.76

2.73

254.28

60.82

186.20

5.30

180.88

2.77

11.3 3 12.1 8

487.1 4 493.2 4 496.7 7 496.4 1 499.1 0 499.6 2 500.1 7 501.3 6 501.1 2 502.1 2 506.7 5 508.6 8 510.5 2 512.3 1 513.5 4 515.0 1 518.5 6 518.5 7 519.5 2 881.4 4 898.8 0 158.9 3 158.8 3 162.9 1 165.3 9 176.3 3 180.5 1

7.53

368

209

7.29

503

234

7.30

704

672

7.39

464

185

7.38

503

182

7.34

693

342

7.48

688

299

7.49

510

382

7.63

137 7

986

7.38

566

341

7.44

826

719

7.61

509

267

7.51

719

387

126 5 107 2 138 2 148 5 112 5 368 7

107 6

814

277

415

204

2.45

514

330

2.50

292

186

2.53

277

203

2.48

179 4

285 7

2.75

262

120

2.79

339

299

7.71 7.54 7.56 7.71 7.62 7.65 12.8 5 13.2 7

494 511 101 9 581 550 0

36 48 76 44 47 67 65 52 142 57 88 50 72 137 106 134 156 114 461 139 75 16 9 9 71 9 13

0.57 0.47 0.95 0.40 0.36 0.49 0.43 0.75 0.72 0.60 0.87 0.53 0.54 0.85 0.46 0.37 0.69 0.52 1.49 0.34 0.49 0.64 3 0.63 7 0.73 3 1.59 2 0.45 7 0.88 3

MUD40-7 MUD40-8 MUD40-9 MUD40-10 MUD40-11 MUD40-12 MUD40-13 MUD40-14 MUD40-15 MUD40-16 MUD40-17 MUD40-18 MUD40-19 MUD40-20 MUD40-21 MUD40-22 MUD40-23 MUD40-24 MUD40-25 MUD40-26 MUD40-27 MUD40-28 MUD40-29 MUD40-30 MUD40-31 MUD40-32 MUD40-33

0.1942 5 0.1957 9 0.1958 8 0.2065 9 0.2062 3 0.2108 7 0.2110 3 0.2165 9 0.2286 8 0.2203 4 0.2482 0 0.2691 4 0.2719 8 0.2730 7 0.2908 6 0.2724 8 0.2799 1 0.2877 5 0.2884 4 0.3007 8 0.3044 4 0.3206 6 0.4809 2 0.5533 8 0.6051 0 0.6361 4 0.6177 4

2.3163 5 3.3708 8 2.9551 8 2.2734 8 2.4602 4 2.3011 2 2.6722 4 3.0735 2 2.9143 6 2.7511 9 3.1177 9 3.4139 5 2.2361 0 3.2367 2 3.3434 2 3.9287 0 2.3105 1 2.6199 9 2.7755 7 1.9615 6 1.7676 7 2.7142 9 4.2527 5 2.4070 1 1.8286 0 2.4240 2 2.1179 6

0.0287 2 0.0289 5 0.0292 7 0.0294 4 0.0300 9 0.0302 0 0.0309 3 0.0315 6 0.0318 1 0.0326 1 0.0347 7 0.0385 5 0.0385 6 0.0398 6 0.0405 9 0.0406 0 0.0406 5 0.0406 8 0.0415 8 0.0426 9 0.0427 4 0.0440 5 0.0629 5 0.0714 2 0.0765 4 0.0776 7 0.0788 8

1.5252 9 1.5046 0 1.5899 7 1.5015 6 1.5021 9 1.5090 3 1.5323 4 1.5008 7 1.5389 8 1.5809 5 1.5009 1 1.5913 7 1.5059 4 1.5312 6 1.5436 9 1.5236 7 1.5043 7 1.5149 5 1.5000 9 1.5054 8 1.5041 2 1.5303 9 1.5421 7 1.5009 5 1.5006 9 1.5222 0 1.5000 2

0.6584 9 0.4463 5 0.5380 3 0.6604 7 0.6105 8 0.6557 8 0.5734 3 0.4883 2 0.5280 7 0.5746 4 0.4814 0 0.4661 4 0.6734 7 0.4730 9 0.4617 1 0.3878 3 0.6511 0 0.5782 3 0.5404 6 0.7674 9 0.8509 0 0.5638 3 0.3626 3 0.6235 7 0.8206 8 0.6279 6 0.7082 4

34.8182 8 34.5444 7 34.1635 1 33.9637 6 33.2350 7 33.1163 7 32.3298 0 31.6887 7 31.4361 8 30.6670 5 28.7581 5 25.9378 7 25.9334 4 25.0874 6 24.6386 0 24.6311 8 24.5984 3 24.5820 2 24.0479 2 23.4246 8 23.3967 5 22.6998 3 15.8863 5 14.0013 5 13.0648 6 12.8746 4 12.6780 3

1.5252 9 1.5046 0 1.5899 7 1.5015 6 1.5021 9 1.5090 3 1.5323 4 1.5008 7 1.5389 8 1.5809 5 1.5009 1 1.5913 7 1.5059 4 1.5312 6 1.5436 9 1.5236 7 1.5043 7 1.5149 5 1.5000 9 1.5054 8 1.5041 2 1.5303 9 1.5421 7 1.5009 5 1.5006 9 1.5222 0 1.5000 2

0.0490 5 0.0490 5 0.0485 3 0.0508 9 0.0497 1 0.0506 5 0.0494 8 0.0497 8 0.0521 4 0.0490 1 0.0517 7 0.0506 3 0.0511 5 0.0496 9 0.0519 8 0.0486 8 0.0499 4 0.0513 0 0.0503 1 0.0511 0 0.0516 6 0.0527 9 0.0554 1 0.0561 9 0.0573 4 0.0594 0 0.0568 0

1.7432 7 3.0164 5 2.4910 0 1.7070 6 1.9483 9 1.7372 3 2.1892 4 2.6821 5 2.4748 9 2.2515 9 2.7327 4 3.0203 6 1.6529 7 2.8516 0 2.9657 2 3.6212 0 1.7536 6 2.1375 8 2.3352 8 1.2574 7 0.9286 0 2.2417 1 3.9632 8 1.8817 2 1.0448 4 1.8864 8 1.4952 3

34.818 28 34.424 08 34.163 51 33.963 76 33.235 07 33.116 37 32.329 80 31.688 77 31.436 18 30.667 05 28.758 15 25.885 40 25.910 76 25.087 46 24.638 60 24.405 09 24.598 43 24.582 02 24.047 92 23.424 68 23.389 89 22.699 83 15.807 26 14.001 35 13.057 92 12.874 64 12.668 76

1.5252 9 1.5037 4 1.5899 7 1.5015 6 1.5021 9 1.5090 3 1.5323 4 1.5008 7 1.5389 8 1.5809 5 1.5009 1 1.5900 0 1.5056 7 1.5312 6 1.5436 9 1.5202 9 1.5043 7 1.5149 5 1.5000 9 1.5054 8 1.5041 0 1.5303 9 1.5373 2 1.5009 5 1.5006 7 1.5222 0 1.5000 3

98

0.0490 5 0.0518 0 0.0485 3 0.0508 9 0.0497 1 0.0506 5 0.0494 8 0.0497 8 0.0521 4 0.0490 1 0.0517 7 0.0522 2 0.0518 4 0.0496 9 0.0519 8 0.0559 0 0.0499 4 0.0513 0 0.0503 1 0.0511 0 0.0518 9 0.0527 9 0.0593 0 0.0561 9 0.0577 5 0.0594 0 0.0573 7

1.7432 7 1.8814 5 2.4910 0 1.7070 6 1.9483 9 1.7372 3 2.1892 4 2.6821 5 2.4748 9 2.2515 9 2.7327 4 2.3363 7 1.3703 2 2.8516 0 2.9657 2 1.6721 1 1.7536 6 2.1375 8 2.3352 8 1.2574 7 0.8950 2 2.2417 1 2.6098 7 1.8817 2 0.9730 9 1.8864 8 1.4138 8

150.42

40.35

180.25

3.83

182.54

2.75

150.41

69.20

181.56

5.62

183.96

2.73

125.36

57.62

181.63

4.93

185.98

2.92

235.82

38.91

190.69

3.96

187.06

2.77

181.52

44.78

190.39

4.28

191.10

2.83

224.76

39.67

194.28

4.08

191.78

2.85

170.68

50.33

194.41

4.74

196.37

2.96

184.67

61.29

199.07

5.57

200.29

2.96

291.49

55.56

209.11

5.52

201.87

3.06

148.15

51.95

202.19

5.06

206.85

3.22

275.15

61.42

225.11

6.31

220.35

3.25

224.06

68.37

242.01

7.38

243.86

3.81

247.82

37.61

244.27

4.87

243.90

3.61

180.34

65.14

245.15

7.07

251.97

3.78

284.36

66.44

259.24

7.68

256.47

3.88

132.25

83.00

244.67

8.58

256.54

3.83

192.10

40.28

250.59

5.14

256.88

3.79

254.44

48.42

256.79

5.96

257.05

3.82

209.22

53.26

257.33

6.33

262.64

3.86

245.33

28.71

267.01

4.62

269.49

3.97

270.40

21.15

269.86

4.20

269.80

3.98

319.86

50.16

282.41

6.71

277.91

4.16

393.52

5.89

428.85

86.01

398.70

14.1 2

460.05

41.19

447.21

8.74

444.72

6.45

504.50

22.83

480.47

7.02

475.44

6.88

581.80

40.45

499.91

9.62

482.21

7.08

483.82

32.68

488.43

8.25

489.41

7.07

182.6 9 184.1 2 186.2 8 186.8 1 191.1 5 191.6 0 196.5 1 200.3 7 201.3 6 207.1 8 220.0 1 243.9 9 243.8 7 252.4 7 256.2 6 257.4 0 257.3 4 257.0 7 263.0 3 269.6 7 269.8 0 277.5 7 393.0 8 444.5 0 474.9 9 480.6 0 489.5 0

2.77

743

436

2.75

662

549

2.95

365

224

2.79

761

320

2.85

132 9

389

2.87

699

422

2.99

463

163

3.00

407

239

3.09

324

161

3.25

391

158

3.29

244

94

3.85

319

207

3.63

117 6

594

3.85

214

166

3.94

180

112

3.88

511

314

3.83

141 1

129 1

3.86

565

285

3.91

410

274

4.01

971

241

4.01

248 1

100 5

4.21

316

167

5.99

105 6

633

6.56

326

294

6.99

780

224

7.19

195

67

7.20

954

452

26 25 13 26 46 26 17 16 12 15 10 15 54 11 9 25 76 28 21 47 12 4 17 83 31 68 18 90

0.58 6 0.82 9 0.61 4 0.42 0 0.29 2 0.60 3 0.35 2 0.58 8 0.49 6 0.40 5 0.38 6 0.64 9 0.50 5 0.77 4 0.62 2 0.61 4 0.91 5 0.50 4 0.67 0 0.24 8 0.40 5 0.52 7 0.59 9 0.90 1 0.28 7 0.34 2 0.47 4

MUD40-34 MUD40-35 MUD40-36 MUD40-37 MUD40-38 MUD40-39 MUD40-40 MUD40-41 MUD40-42 YIL LEU 231 YIL LEU 232 YIL LEU 233 YIL LEU 234 YIL LEU 235 YIL LEU 236 YIL LEU 237 YIL LEU 238 YIL LEU 239 YIL LEU 2310 YIL LEU 2311 YIL LEU 2312

0.6394 4 0.6382 4 0.6440 3 0.6227 7 0.6437 3 0.6422 0 0.6559 0 1.6241 7 7.9621 7

1.7443 5 1.8817 4 1.5906 7 2.1503 9 1.6555 9 2.1949 2 1.7122 7 1.8101 2 1.6936 4

0.0807 1 0.0807 5 0.0808 2 0.0816 4 0.0817 7 0.0818 4 0.0826 2 0.1617 4 0.3535 1

1.5008 6 1.5088 6 1.5013 2 1.5130 6 1.5000 1 1.5000 4 1.5068 2 1.5015 5 1.5024 0

0.8604 1 0.8018 4 0.9438 3 0.7036 2 0.9060 3 0.6834 1 0.8800 2 0.8295 3 0.8870 8

12.3907 7 12.3839 0 12.3731 5 12.2495 4 12.2290 2 12.2191 1 12.1042 2

1.5008 6 1.5088 6 1.5013 2 1.5130 6 1.5000 1 1.5000 4 1.5068 2 1.5015 5 1.5024 0

0.0574 6 0.0573 2 0.0577 9 0.0553 3 0.0570 9 0.0569 1 0.0575 8 0.0728 3 0.1633 5

0.8889 2 1.1244 0 0.5256 2 1.5280 2 0.7006 8 1.6023 7 0.8132 3 1.0108 8 0.7818 1

12.386 85 12.381 99 12.369 99 12.249 54 12.229 02 12.202 47 12.096 59 6.1777 3 2.8259 2

1.5008 5 1.5088 5 1.5013 1 1.5130 6 1.5000 1 1.5000 3 1.5068 6 1.5015 1 1.5024 2

0.0577 1 0.0574 4 0.0579 9 0.0553 3 0.0570 9 0.0579 7 0.0580 7 0.0734 5 0.1640 3

0.8500 2 1.1121 3 0.5074 6 1.5280 2 0.7006 8 1.4316 1 0.7478 3 0.8983 7 0.7705 6

0.1104 7

3.3849 9

0.0167 2

1.5824 4

0.4674 9

59.8161 4

1.5824 4

0.0479 2

2.9923 3

59.665 92

1.5810 0

0.0499 0

2.0704 8

95.53

0.1124 1

3.5670 6

0.0171 7

1.5066 4

0.4223 7

58.2412 3

1.5066 4

0.0474 8

3.2332 6

58.091 43

1.5072 3

0.0495 1

2.7330 9

73.56

0.1126 7

4.8740 6

0.0171 7

1.6463 1

0.3377 7

58.2349 8

1.6463 1

0.0475 9

4.5876 1

57.955 51

1.6400 4

0.0513 7

2.9747 3

78.73

0.1108 4

4.1295 7

0.0171 8

1.6914 4

0.4095 9

58.2218 9

1.6914 4

0.0468 0

3.7672 8

58.221 89

1.6914 4

0.0468 0

3.7672 8

39.27

0.1161 6

3.2070 3

0.0172 8

1.6772 7

0.5230 0

57.8787 3

1.6772 7

0.0487 6

2.7334 6

57.878 73

1.6772 7

0.0487 6

2.7334 6

136.34

0.1158 2

4.5792 0

0.0173 2

1.6232 8

0.3544 9

57.7486 6

1.6232 8

0.0485 1

4.2818 2

57.748 66

1.6232 8

0.0485 1

4.2818 2

124.17

0.1176 1

3.4988 9

0.0173 3

1.5557 1

0.4446 3

57.7055 4

1.5557 1

0.0492 2

3.1340 1

57.705 54

1.5557 1

0.0492 2

3.1340 1

158.43

0.1171 9

2.5658 7

0.0173 4

1.5525 4

0.6050 7

57.6673 1

1.5525 4

0.0490 2

2.0428 7

57.667 31

1.5525 4

0.0490 2

2.0428 7

148.59

0.1170 1

2.5737 9

0.0173 6

1.5760 6

0.6123 5

57.5926 4

1.5760 6

0.0488 8

2.0348 1

57.592 64

1.5760 6

0.0488 8

2.0348 1

141.90

0.0975 1

8.9992 8

0.0174 2

1.5877 6

0.1764 3

57.3917 8

1.5877 6

0.0405 9

8.8581 1

56.855 04

1.5739 9

0.0480 2

3.3655 4

313.53

212.9 6

94.47

0.1139 2

3.6667 1

0.0174 5

1.5575 9

0.4247 9

57.3112 3

1.5575 9

0.0473 5

3.3194 4

57.157 45

1.5554 5

0.0494 7

2.5268 8

67.11

77.16

109.55

0.1167 9

5.2080 2

0.0174 8

1.6003 6

0.3072 9

57.2057 3

1.6003 6

0.0484 6

4.9560 4

56.932 87

1.5938 5

0.0522 1

3.2567 2

121.59

6.18273 2.82876

99

509.40

19.42

501.96

6.93

500.33

7.23

504.05

24.55

501.22

7.47

500.60

7.27

521.96

11.49

504.80

6.35

501.02

7.24

425.52

33.73

491.58

8.41

505.88

7.37

495.20

15.37

504.62

6.60

506.70

7.31

488.13

34.97

503.66

8.75

507.09

7.32

513.81 1009.2 2 2490.6 6

17.77

512.10

20.37

979.60

13.11

2226.7 5

11.4 4 15.3 9

69.35

106.39

3.42

75.12

108.17

105.4 9

108.40

87.75

106.74

63.00 97.85 71.74 47.20 47.08

112.7 8

111.58 111.28 112.90 112.53 112.36

112.16

6.91

3.67 5.02 4.19 3.39 4.84 3.75 2.74 2.74 8.15 3.81 5.55

511.72

7.42

1951.3 5

13.4 9 25.3 5

106.9

1.7

966.44

109.7 109.8 109.8 110.4 110.7 110.8 110.8 111.0 111.4 111.5 111.7

1.6 1.8 1.8 1.8 1.8 1.7 1.7 1.7 1.8 1.7 1.8

500.1 8 500.5 4 500.6 7 507.1 9 506.8 9 507.4 0 511.6 8 964.5 7

100 8 130 3 279 0

101 5 157 1

7.52

313

99

7.44

156 0

707

7.46

445

214

7.54

120 1

169

14.0 5

366

362

361

266

929

251

7.35 7.40 7.35

n/a

n/a

106.9 1

1.69

109.8 5

1.66

109.8 4

1.80

109.9 8

1.87

110.3 5

1.85

110.6 3

1.81

110.6 2

1.72

110.7 2

1.72

110.8 8

1.74

112.4 3

1.77

111.6 4

1.74

111.6 8

1.79

21

11 0 14 9 23 9 29 15 2 43 10 9 81 17 7

1.00 7 1.20 5 0.00 8 0.31 6 0.45 3 0.48 2 0.14 1 0.98 9 0.73 6

0.27 18

153 2

992

587

239

0.65 32 0.41 12

278

158

0.57 6

502

391

0.78 11

356

187

0.52 7

823

264

0.32 16

838

501

0.60 18

926

342

0.37 19

326

110

0.34 6

831

823

0.99 19

470

363

0.77 10

YIL LEU 2313 YIL LEU 2314 YIL LEU 2315 YIL LEU 2316 YIL LEU 2317 YIL LEU 2318 YIL LEU 2319 YIL LEU 2320 YIL LEU 2321 YIL LEU 2322 YIL LEU 2323 YIL LEU 2324 YIL LEU 2325 YIL LEU 2326 YIL LEU 2327 YIL LEU 2328 YIL LEU 2329 YIL LEU 2330

0.1155 8

3.6216 3

0.0174 9

1.6457 1

0.4544 1

57.1880 3

1.6457 1

0.0479 4

3.2261 2

57.079 33

1.6437 7

0.0494 4

2.5867 8

96.25

0.1139 4

3.1809 3

0.0175 0

1.6737 8

0.5261 9

57.1510 1

1.6737 8

0.0472 3

2.7049 6

56.995 91

1.6712 1

0.0493 7

1.7930 5

60.69

0.1201 9

3.6295 5

0.0175 0

1.7808 0

0.4906 4

57.1337 7

1.7808 0

0.0498 0

3.1626 5

57.046 78

1.7791 3

0.0510 0

2.7006 7

185.78

0.1174 3

3.8119 4

0.0175 2

1.6135 5

0.4232 9

57.0752 2

1.6135 5

0.0486 1

3.4536 0

57.075 22

1.6135 5

0.0486 1

3.4536 0

128.98

0.1148 6

4.6256 6

0.0175 2

1.5238 3

0.3294 3

57.0683 8

1.5238 3

0.0475 4

4.3674 5

56.758 43

1.5205 5

0.0518 2

2.4754 8

76.56

0.1149 7

3.1357 2

0.0175 5

1.5845 3

0.5053 2

56.9648 0

1.5845 3

0.0475 0

2.7059 2

56.964 80

1.5845 3

0.0475 0

2.7059 2

74.42

0.1201 4

3.5720 0

0.0176 0

1.9667 0

0.5505 9

56.8141 1

1.9667 0

0.0495 1

2.9818 2

56.814 11

1.9667 0

0.0495 1

2.9818 2

171.84

0.1204 8

3.7204 9

0.0176 1

1.8308 0

0.4920 9

56.7833 0

1.8308 0

0.0496 2

3.2388 6

56.783 30

1.8308 0

0.0496 2

3.2388 6

177.02

0.1198 6

2.7679 5

0.0176 2

1.5648 8

0.5653 6

56.7493 6

1.5648 8

0.0493 3

2.2831 3

56.749 36

1.5648 8

0.0493 3

2.2831 3

163.76

0.1041 5

9.1371 5

0.0176 4

1.6972 0

0.1857 5

56.7031 5

1.6972 0

0.0428 3

8.9781 4

55.039 58

1.6614 4

0.0660 9

2.0146 7

177.38

210.1 3

100.60

0.1103 7

5.0479 4

0.0176 5

1.6358 1

0.3240 6

56.6608 7

1.6358 1

0.0453 6

4.7755 4

55.581 16

1.6268 1

0.0604 2

1.3370 9

-36.40

112.0 3

106.31

0.1162 2

4.8246 3

0.0176 7

1.7502 8

0.3627 8

56.5869 3

1.7502 8

0.0477 0

4.4959 5

56.492 58

1.7479 3

0.0490 1

3.9354 1

84.29

103.3 4

111.64

0.1185 7

2.4944 6

0.0176 8

1.5480 3

0.6205 9

56.5466 3

1.5480 3

0.0486 3

1.9560 0

56.546 63

1.5480 3

0.0486 3

1.9560 0

129.84

45.38

113.77

0.1167 2

3.7391 6

0.0177 1

1.5172 1

0.4057 6

56.4527 4

1.5172 1

0.0477 9

3.4175 1

56.293 73

1.5158 0

0.0500 1

2.3835 6

88.90

0.1187 5

2.1459 6

0.0178 1

1.5095 4

0.7034 3

56.1537 2

1.5095 4

0.0483 6

1.5252 7

56.077 88

1.5092 7

0.0494 2

1.2490 2

116.96

0.1108 4

8.7066 3

0.0178 1

1.5618 4

0.1793 9

56.1468 8

1.5618 4

0.0451 4

8.5654 0

54.298 24

1.5399 7

0.0711 6

3.3190 6

-48.35

0.1179 1

4.0809 4

0.0178 5

1.6190 1

0.3967 2

56.0337 3

1.6190 1

0.0479 2

3.7460 4

56.033 73

1.6190 1

0.0479 2

3.7460 4

95.18

0.1253 7

2.8183 6

0.0179 3

1.5543 5

0.5515 1

55.7715 8

1.5543 5

0.0507 1

2.3509 9

55.771 58

1.5543 5

0.0507 1

2.3509 9

227.65

100

74.64 63.23 72.02 79.30

111.06 109.56 115.24 112.74

100.6 2

110.41

63.09

110.50

68.16 73.83 52.52

79.07 35.58

115.20 115.50 114.95

112.10 113.93

196.2 4

106.73

86.38

113.17

53.43

119.92

3.82 3.31 3.96 4.08 4.85 3.29 3.90 4.07 3.01 8.79 5.11 5.11 2.69 3.98 2.32 8.86 4.38 3.19

111.7 111.8 111.9 112.0 112.0 112.2 112.5 112.5 112.6 112.7 112.8 112.9 113.0 113.2 113.8 113.8 114.0 114.6

1.8 1.9 2.0 1.8 1.7 1.8 2.2 2.0 1.7 1.9 1.8 2.0 1.7 1.7 1.7 1.8 1.8 1.8

111.7 9

1.84

111.9 6

1.86

111.6 3

1.98

111.9 2

1.81

112.0 8

1.70

112.2 9

1.78

112.3 0

2.21

112.3 5

2.06

112.4 5

1.76

113.4 5

1.89

113.1 8

1.84

113.0 1

1.98

112.9 6

1.74

113.2 6

1.72

113.7 8

1.71

114.2 3

1.80

114.0 9

1.85

114.2 1

1.77

692

229

0.33 14

116 2

514

687

560

0.44 24 0.81 16

388

174

0.45 8

550

452

0.82 12

557

146

0.26 11

395

53

0.13 8

425

199

0.47 9

696

214

0.31 14

675

629

0.93 16

172 3

323

501

189

0.19 33 0.38 10

931

347

0.37 19

633

201

0.32 13

236 4

207 3

101 4

105 5

264

255

0.88 55 1.04 24 0.96 6

872

850

0.97 21

YIL LEU 2331 YIL LEU 2332 YIL LEU 2333 YIL LEU 2334 YIL LEU 2335 YIL LEU 2336 YIL LEU 2337 YIL LEU 2338 YIL LEU 2339 YIL LEU 2340 YIL LEU 2341 YIL T 21 YIL T 22 YIL T 23 YIL T 24 YIL T 25 YIL T 26 YIL T 27 YIL-G15-1 YIL-G15-2 YIL-G15-3

0.1254 2

3.5512 2

0.0190 1

1.6175 6

0.4555 0

52.6003 9

1.6175 6

0.0478 5

3.1614 3

52.600 39

1.6175 6

0.0478 5

3.1614 3

91.63

0.1591 8

5.6142 9

0.0211 6

1.5446 1

0.2751 2

47.2660 2

1.5446 1

0.0545 7

5.3976 3

46.557 99

1.5308 6

0.0662 7

1.8167 7

394.56

0.1444 5

9.4561 2

0.0219 3

1.8109 3

0.1915 1

45.5913 8

1.8109 3

0.0477 6

9.2811 0

44.142 84

1.7665 6

0.0728 0

1.9961 2

87.55

0.1656 7

4.9840 9

0.0246 3

1.5036 9

0.3017 0

40.6081 4

1.5036 9

0.0487 9

4.7518 5

39.626 65

1.5013 5

0.0678 1

1.6546 2

137.82

0.1771 8

6.0141 3

0.0260 1

1.5265 8

0.2538 3

38.4461 0

1.5265 8

0.0494 1

5.8171 6

38.213 61

1.5219 8

0.0541 6

3.5208 0

167.11

0.1689 4

9.7356 0

0.0264 3

1.6484 8

0.1693 3

37.8354 5

1.6484 8

0.0463 6

9.5950 2

36.424 68

1.6183 2

0.0757 9

3.4995 5

0.00

0.2908 1

2.1709 0

0.0412 0

1.5001 8

0.6910 4

24.2699 7

1.5001 8

0.0511 9

1.5691 7

24.245 00

1.5001 5

0.0520 0

1.3615 3

249.38

0.3529 7

3.2682 5

0.0438 7

1.8281 6

0.5593 7

22.7922 6

1.8281 6

0.0583 5

2.7091 2

22.548 38

1.8222 3

0.0666 6

1.1230 9

542.83

0.3253 4

4.4714 3

0.0455 0

1.9289 4

0.4313 9

21.9778 3

1.9289 4

0.0518 6

4.0339 6

21.561 86

1.9196 8

0.0666 9

1.3563 5

279.16

0.5582 2

2.0828 0

0.0722 4

1.5039 6

0.7220 8

13.8432 2

1.5039 6

0.0560 5

1.4409 0

13.836 62

1.5039 0

0.0564 2

1.3527 9

454.17

0.6480 8

1.6384 6

0.0815 1

1.5001 3

0.9155 7

12.2680 8

1.5001 3

0.0576 6

0.6589 2

12.265 33

1.5001 3

0.0578 4

0.6427 5

517.03

0.0965 8 0.1153 4 0.1137 5 0.1108 0 0.1077 1 0.1075 3 0.1100 0 0.3139 0 0.2829 4 0.3425 1

7.5239 8 4.5391 5 3.0621 0 2.7692 6 5.0574 9 3.5324 1 2.9242 8 2.6078 6 4.1251 0 5.6010 8

0.0164 2 0.0166 9 0.0167 3 0.0165 1 0.0166 6 0.0162 4 0.0164 6 0.0422 8 0.0404 8 0.0474 5

1.9176 3 1.6343 4 1.5593 5 1.5098 2 1.7661 5 1.6356 3 1.5841 2 1.5208 1 1.5182 1 1.5016 3

0.2548 7 0.3600 5 0.5092 4 0.5452 1 0.3492 1 0.4630 3 0.5417 1 0.5831 7 0.3680 4 0.2681 0

60.9169 8 59.9009 4 59.7897 7 60.5719 4 60.0131 1 61.5827 5 60.7441 8 23.6521 50 24.7045 32 21.0741 21

1.9176 3 1.6343 4 1.5593 5 1.5098 2 1.7661 5 1.6356 3 1.5841 2 1.5208 15 1.5182 12 1.5016 25

0.0426 7 0.0501 1 0.0493 3 0.0486 8 0.0468 8 0.0480 3 0.0484 6 0.0538 46 0.0506 95 0.0523 50

7.2755 0 4.2347 2 2.6353 2 2.3214 8 4.7390 8 3.1309 1 2.4580 4 2.1185 03 3.8355 54 5.3960 37

60.321 64 59.900 94 59.789 77 60.571 94 59.761 30 61.523 91 60.686 24 23.652 15 24.615 82 20.716 66

1.9012 6 1.6343 4 1.5593 5 1.5098 2 1.7586 9 1.6355 2 1.5840 4 1.5208 1 1.5152 0 1.5004 3

0.0504 2 0.0501 1 0.0493 3 0.0486 8 0.0501 9 0.0487 8 0.0492 1 0.0538 5 0.0535 1 0.0656 4

3.6772 4 4.2347 2 2.6353 2 2.3214 8 2.9251 6 3.0497 4 2.3906 4 2.1185 0 1.9688 2 3.3074 4

101

73.24

119.97

116.7 1

149.99

206.4 6

137.00

107.9 7

155.65

130.5 3

165.63

232.0 8

158.50

35.72

259.20

58.15 89.81 31.67 14.40

306.95 286.00 450.37 507.30

4.03 7.86

121.4 135.0

12.1 9

139.9

7.22

156.8

9.23

165.5

14.3 9

168.2

4.98

260.3

8.69

276.8

11.2 1

286.8

7.60

449.6

6.56

505.1

1.9 2.1 2.5 2.3 2.5 2.7 3.8 5.0 5.4 6.5 7.3

121.5 0

1.97

133.9 5

2.06

140.0 2

2.49

156.8 8

2.36

165.5 2

2.53

168.7 8

2.80

260.3 6

3.86

274.4 9

4.95

286.8 6

5.45

449.5 6

6.64

504.9 4

7.41

105.6 8 106.4 6 106.7 7 105.4 8 106.7 0 103.8 5 105.2 1

329

151

0.46 7

697

280

0.40 17

658

353

0.54 17

123 0

184 4

315

115

1.50 46 0.36 9

570

98

0.17 17

112 9

240

879

122

0.21 52 0.14 42

578

203

0.35 30

454

158

0.35 38

214 4

345

2.01

702

430

1.75

538

300

1.67

805

576

1.59

104 9

547

1.88

658

397

1.70

638

233

1.67

108 3

822

0.16 193

186.71

172.5 8

93.62

6.75

105.0

2.0

200.11

95.48

110.84

4.78

106.7

1.7

163.35

60.48

109.39

3.18

106.9

1.7

132.21

53.70

106.70

2.81

105.6

1.6

43.29

109.5 7

103.87

5.01

106.5

1.9

100.58

72.43

103.70

3.49

103.8

1.7

121.93

56.91

105.97

2.95

105.3

1.7

364.6

47.1

277.2

6.3

266.9

4.0

266.2

4.0

210

199

227.0

86.3

253.0

9.3

255.8

3.8

256.0

3.8

278

140

300.7

118.6

299.1

14.6

298.9

4.4

298.8

4.5

436

307

14 11 17 21 14 12 23 12 14 26

0.61 0.56 0.72 0.52 0.60 0.37 0.76 0.95 0.50 0.70

YIL-G15-4 YIL-G15-5 YIL-G15-6 YIL-G15-7 YIL-G15-8 YIL-G15-9 YIL-G15-10 YIL-G15-11 YIL-G15-12 YIL-G15-13 YIL-G15-14 YIL-G15-15 YIL-G15-16 YIL-G15-17 YIL-G15-18

0.3367 5 0.1924 8 0.2782 5 0.3623 7 0.1032 8 0.2897 7 0.5299 0 0.5335 5 0.7051 7 1.0915 5 0.8664 6 1.2734 0 1.6045 4 1.7746 2 2.4436 0

4.3242 5 2.5183 9 1.9728 1 1.7012 8 2.4630 3 1.7087 9 1.5826 7 1.9202 4 1.8529 4 1.6542 5 1.9918 1 1.5966 8 1.9429 2 1.6228 2 1.7068 8

0.0473 5 0.0280 4 0.0393 6 0.0499 0 0.0158 3 0.0411 0 0.0695 6 0.0705 1 0.0860 1 0.1026 4 0.1052 5 0.1361 3 0.1645 9 0.1697 3 0.1952 4

3.0643 6 1.6021 9 1.5047 6 1.5000 2 1.5601 1 1.5085 5 1.5040 5 1.5002 2 1.5001 3 1.5336 7 1.5524 4 1.5251 1 1.5000 9 1.5004 0 1.5523 6

0.7086 5 0.6362 0 0.7627 5 0.8817 0 0.6334 1 0.8828 1 0.9503 2 0.7812 7 0.8096 0 0.9271 1 0.7794 1 0.9551 8 0.7720 8 0.9245 6 0.9094 7

21.1199 25 35.6666 43 25.4090 45 20.0399 65 63.1732 57 24.3285 82 14.3763 58 14.1817 38 11.6267 79 9.74273 7 9.50118 8 7.34609 8 6.07568 8 5.89178 5 5.12182 4

3.0643 65 1.6021 85 1.5047 59 1.5000 21 1.5601 11 1.5085 48 1.5040 46 1.5002 18 1.5001 30 1.5336 71 1.5524 42 1.5251 12 1.5000 86 1.5003 97 1.5523 63

0.0515 82 0.0497 90 0.0512 78 0.0526 68 0.0473 20 0.0511 29 0.0552 51 0.0548 79 0.0594 64 0.0771 30 0.0597 07 0.0678 45 0.0707 04 0.0758 32 0.0907 72

3.0510 29 1.9430 04 1.2758 04 0.8026 74 1.9059 33 0.8026 58 0.4926 44 1.1986 08 1.0876 52 0.6199 92 1.2478 91 0.4726 64 1.2347 77 0.6183 42 0.7096 53

20.895 12 35.519 72 25.390 37 20.039 97 63.045 39 24.328 58 14.376 36 14.181 74 11.614 18 9.7273 9 9.4023 7 7.3435 0 6.0756 9 5.8832 2 5.1141 9

3.0606 7 1.6006 9 1.5046 8 1.5000 2 1.5593 1 1.5085 5 1.5040 5 1.5002 2 1.5001 1 1.5339 4 1.5533 3 1.5250 9 1.5000 9 1.5004 3 1.5526 0

102

0.0599 3 0.0530 3 0.0518 5 0.0526 7 0.0489 2 0.0511 3 0.0552 5 0.0548 8 0.0603 0 0.0783 2 0.0677 8 0.0681 2 0.0707 0 0.0769 4 0.0918 8

1.4926 1 1.2673 7 1.1761 1 0.8026 7 1.4336 6 0.8026 6 0.4926 4 1.1986 1 0.9124 6 0.5326 7 0.7626 8 0.4550 1 1.2347 8 0.5371 3 0.6631 2

266.9

68.5

294.7

11.1

298.2

8.9

298.5

9.0

185.2

44.6

178.7

4.1

178.3

2.8

178.2

2.8

253.3

29.1

249.3

4.4

248.8

3.7

248.8

3.7

314.5

18.2

314.0

4.6

313.9

4.6

313.9

4.6

65.4

44.8

99.8

2.3

101.2

1.6

101.3

1.6

246.7

18.4

258.4

3.9

259.7

3.8

259.8

3.9

422.4

11.0

431.7

5.6

433.5

6.3

433.6

6.4

407.3

26.6

434.2

6.8

439.2

6.4

439.7

6.5

502

254

584.1

23.4

541.9

7.8

531.9

7.7

530.9

7.8

512

501

1124.6

12.3

749.3

8.8

629.9

9.2

616.8

9.3

593.0

26.8

633.6

9.4

645.1

9.5

646.2

9.8

863.8

9.8

833.9

9.1

822.7

11.8

821.3

12.2

948.9

25.1

972.0

12.2

982.2

13.7

983.7

14.3

357

234

1090.6

12.3

1036.2

10.6

1010.6

14.0

14.6

117 3

611

1441.8

13.5

1255.5

12.4

1149.7

16.4

17.1

570

466

1006. 8 1130. 9

617 110 1 125 6 133 5 142 5 169 0 260 7

103 6 139 0 129 6

29 904 235 149 4 123 7 314 488

262 171 380

31 41 55 94 30 78 202 43 60 120 160 206 75 243 148

0.05 0.82 0.19 1.12 0.87 0.19 0.19 0.51 0.98 0.25 0.12 0.29 0.65 0.52 0.82

Sample SiO2

YIL-BLUE-19 43.43

YIL-LEU-14 78.52

TiO2 Al2O3 TFe2O3 CaO MgO MnO K2O

3.53 13.34 13.88 8.84 4.84 0.12 3.64

0.05 12.43 0.40 0.82 0.11 0.01 4.07

Na2O P2O5 LOI

2.13 1.27 3.88

3.63 0.01 0.42

Total Ni (ppm) Cr (ppm) Cu (ppm) Mg# Ba Ce Cr Cs Dy Er Eu Pb Ga Gd Hf Ho La Lu Nb Nd Pr Rb Sm Sr Ta Tb Th Tm U

98.89 52.90 34.00 41.40 33 334.26 116.35

100.47 2.10 0.00 2.60 28 731.51 1.65 4.51 1.17 0.11 0.12 0.49 17.3 14.06 0.11 6.85 0.03 0.93 0.06 1.75 0.68 0.19 108.34 0.15 324.52 0.05 0.02 12.46 0.03 2.45

39.24 1.68 12.94 2.97 7.49 4.3

44.84 22.36 16.51 1.79 44.41 0.13 35.26 85.89 17.83 32.21 23.28 827.82 2.38 3.06 3.26

0.27 1.54

YIL-GAB-16 46.70 0.11 24.58 3.90 14.41 6.55 0.06 0.31

MUD-37 70.00

1.09

5.68 0.14 1.92 7.68 99.66 13.90 19.80 1.90 33 554.48 30.60 25.28 4.15 1.79 0.99 0.65 36.2 18.77 2.29 4.43 0.36 15.85 0.15 7.06 14.26 3.63 56.39 2.62 411.98 0.55 0.34 15.07 0.16 6.52

0.02 2.18 1.40 99.91 54.60 265.00 18.80 70 126.53 4.99 228.79 3.92 0.57 0.31 0.38 1.8 15.85 0.59 0.27 0.12 2.41 0.04 1.03 2.66 0.62 13.87 0.59 835.39 0.03 0.10 0.32 0.04 0.36

0.41 15.38 2.50 0.71 0.89 0.04 2.00

MUD-40 68.59 0.43 15.76 2.55 2.77 1.13 0.05 2.78

YIL-LEU-23 68.52 0.22 16.08 1.52 2.04 0.36 0.03 2.76

YIL-T-2 63.51

YIL-GRA-15 50.75

0.62 17.04 4.09 2.67 0.66 0.08 4.53

1.61 15.59 9.05 7.59 7.63 0.14 1.75

4.94

4.31

0.12 0.68 7.72 99.81 8.30 13.20 10.80 38 978.01 34.97 23.56 2.24 1.72 0.85 0.88 22.0 20.77 2.42 4.33 0.32 19.37 0.11 7.62 16.47 4.37 53.29 2.90 1102.96 0.54 0.34 6.77 0.12 2.95

0.07 3.67 7.07 99.59 2.10 5.60 10.40 25 337.49 16.35 9.43 9.21 0.84 0.41 0.50 6.9 20.14 1.27 3.16 0.15 9.65 0.05 3.68 8.36 2.17 42.57 1.54 269.21 0.19 0.18 1.93 0.05 0.83

3.57 0.18 2.64 8.10 99.59 -4.90 2.00 10.70 19 882.97 51.05 9.70 6.51 3.95 2.42 1.35 20.1 20.29 4.28 6.91 0.85 28.99 0.40 14.95 25.20 6.65 158.30 4.62 301.42 1.08 0.68 13.37 0.38 2.30

3.59 0.34 2.14 5.34 100.18 198.00 353.00 24.40 54 679.75 58.96 305.08 0.47 5.28 2.86 1.96 7.8 18.35 6.18 4.82 1.07 26.79 0.38 9.09 32.49 8.01 40.41 6.74 760.13 0.59 0.91 3.89 0.41 1.21

103

V Y Yb Zr ΣREE LREE/HREE (La/Yb)N Nb/Yb Th/Yb Ta/Yb Eu/Eu* Sr/Y

155.82 42.04 1.19 594.91 318.0 5.6 26.7 29.6 2.7 2.0 1.0 20

5.58 1.05 0.26 172.42 4.3 4.0 2.6 6.8 48.3 0.2 11.6 308

65.86 2.92 0.24 10.61 12.5 5.8 7.2 4.3 1.3 0.1 2.0 286

44.05 10.85 1.01 150.94 69.1 11.0 11.2 7.0 14.9 0.5 0.8 38

42.79 9.38 0.77 149.87 79.6 12.5 18.1 9.9 8.8 0.7 1.0 118

23.47 4.41 0.33 113.07 38.9 11.8 20.7 11.0 5.8 0.6 1.1 61

104

37.77 23.99 2.57 257.84 121.8 9.2 8.1 5.8 5.2 0.4 0.9 13

161.61 27.98 2.52 189.37 141.2 7.7 7.6 3.6 1.5 0.2 0.9 27

Laser power (%)

36Ar [V]

%1σ

37Ar [V]

%1σ

38Ar [V]

%1σ

39Ar [V]

%1σ

40Ar [V]

%1σ

4

0.0094

8.214

0.0658

61.210

0.00705

241.549

0.0797

42.647

4.0471

1.843

1

0.1412 0.0173 0.0172 0.0035 0.0261 0.0056 0.0076 0.0063 0.0075 0.0093 0.0045 0.0066 0.0028 0.0035

0.795 4.607 3.990 19.392 2.687 12.120 9.754 10.433 9.269 7.667 16.591 9.997 26.459 19.622

0.0424 0.0348 0.0231 0.0237 0.0587 0.0182 0.0798 0.0379 0.0558 0.0363 0.0588 0.0267 0.0456 0.0232

94.489 116.768 159.699 168.306 67.626 212.438 46.607 115.842 66.771 108.745 64.896 140.598 91.762 172.876

0.11987 0.03960 0.11322 0.15736 0.39958 0.14770 0.25835 0.19044 0.11805 0.11653 0.10653 0.12291 0.03822 0.11226

17.196 40.344 68.710 50.135 19.592 52.756 30.097 42.531 66.656 69.807 73.552 63.383 205.930 68.997

3.5467 3.9811 9.4027 7.6838 27.0031 5.6935 10.0286 5.1694 7.3401 9.5686 4.3243 7.5288 4.5714 7.7581

0.952 0.821 0.415 0.497 0.198 0.705 0.394 0.724 0.546 0.411 0.852 0.503 0.809 0.503

121.0754 102.8073 234.9738 186.5022 657.0959 138.2033 241.5739 124.3042 176.8676 230.7177 105.0041 182.4290 111.6357 187.6450

0.067 0.075 0.064 0.079 0.025 0.107 0.064 0.115 0.085 0.064 0.138 0.080 0.138 0.081

2 2 2 2 2 2 2 2 2 2 2 2 2 2

0.2685

1.078

0.2055

74.392

2.03358

13.491

113.6800

0.132

2804.8822

0.019

0.0380 0.1285 0.1873 0.1572 0.0302 0.0351 0.0248 0.0222 0.0104 0.0114 0.0075 0.0071 0.0092

8.5901 2.6671 1.9165 2.1320 10.7979 9.2600 13.1240 14.6129 31.1926 11.6615 17.9724 18.8225 14.7053

0.0660 0.0289 0.1041 0.0036 0.0096 0.0493 0.0536 0.0171 0.0013 0.0218 0.0230 0.0327 0.0329

16.6571 38.2437 30.6841 357.5549 171.2327 29.8949 28.0544 65.1942 805.7159 67.0051 73.1608 62.1987 76.5197

0.0547 0.0341 0.1802 0.4638 0.4281 0.4817 0.2480 0.2699 0.0548 0.2591 0.0567 0.0776 0.3184

56.5494 88.1358 17.3580 6.7728 7.3559 6.7776 14.2257 10.9837 55.2580 8.1171 34.2934 24.8296 6.2031

0.2564 2.9588 14.7301 32.4167 29.5682 32.6364 20.5613 18.7336 5.9866 16.8191 8.7059 7.7967 21.9276

20.3941 1.7600 0.3762 0.2110 0.2250 0.2097 0.2893 0.3124 0.8816 0.2495 0.4288 0.4536 0.2047

13.8979 105.6602 410.3877 821.7867 711.0663 778.4077 495.9999 450.8743 145.6235 400.4079 208.2610 186.0209 528.8986

3.7017 0.4870 0.1288 0.0641 0.0748 0.0712 0.1060 0.1204 0.3543 0.0295 0.0358 0.0497 0.0263

0.6688

1.5428

0.1816

34.5010

2.8588

3.5847

213.0975

0.0920

5257.2926

0.030

SAMPLE: MUD-31 (blueschist) 3 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.2 4.4 4.6 5 5.5 8

Σ SAMPLE: MUD-39 (blueschist) 3.0 3.3 3.5 3.6 3.7 3.8 3.9 4 4.2 4.5 4.8 5.1 7

Σ

105

106

Highlights

   

Two main periods of oceanward accretionary growth are identified in NE China between 305 Ma and 195 Ma and around 112 Ma-101 Ma. A major phase of regional subduction erosion happened between 195 Ma and 142 Ma at the eastern edge of the Songliao Block. An arc-arc collisional process happened amalgamating the Jiamusi and Songliao Blocks in the early Cretaceous. Combined with regional data, we suggest that the regional Jurassic-early Cretaceous extrusion event disturbed the initial orogenic architecture in NE China.

107

Credits of author statement Wenjiao Xiao: Conceptualization, Supervision, Methodology, Fieldwork; Arthur Aouizerat: Fieldwork, Data curation, WritingOriginal draft preparation. Karel Schulman, Patrick Monie, Brian Windley, Arthur Aouizerat, Jianbo Zhou, Jinjiang Zhang, Songjian Ao, Dongfang Song, Kai Liu: Investigation, Fieldwork, Writing. Wenjiao Xiao, Brian Windley, Kai Liu: Writing- Reviewing and Editing.

108

Declaration of interests ☐ √The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. ☐The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

109