Actuator fault estimation and accommodation for switched systems with time delay: Discrete-time case

Actuator fault estimation and accommodation for switched systems with time delay: Discrete-time case

ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎ Contents lists available at ScienceDirect ISA Transactions journal homepage: www.elsevier.com/locate/isatrans Res...

479KB Sizes 4 Downloads 92 Views

ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Contents lists available at ScienceDirect

ISA Transactions journal homepage: www.elsevier.com/locate/isatrans

Research Article

Actuator fault estimation and accommodation for switched systems with time delay: Discrete-time case$ Dongsheng Du a,b,n, Bin Jiang c,d a

College of Automation, Huaiyin Institute of Technology, 1 Meicheng Road, Huaian, 223003 Jiangsu, China College of Automation, Nanjing University of Science and Technology, Nanjing 210094, China c College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China d Jiangsu Key Laboratory of Internet of Things and Control Technologies (Nanjing University of Aeronautics and Astronautics), China b

art ic l e i nf o

a b s t r a c t

Article history: Received 5 June 2015 Received in revised form 4 November 2015 Accepted 5 February 2016

This paper investigates the problems of actuator fault estimation and accommodation for discrete-time switched systems with state delay. By using reduced-order observer method and switched Lyapunov function technique, a fault estimation algorithm is achieved for the discrete-time switched system with actuator fault and state delay. Then based on the obtained online fault estimation information, a switched dynamic output feedback controller is employed to compensate for the effect of faults by stabilizing the closed-loop systems. Finally, an example is proposed to illustrate the obtained results. & 2016 ISA. Published by Elsevier Ltd. All rights reserved.

Keywords: Discrete-time switched system Fault estimation Reduced-order observer Output feedback controller

1. Introduction In modern complex systems, dependability is as important as performances. Once a fault (sensor, actuator, or component failures) occurred in the system, the system's behavior may be drastically decreased, ranging from performance degradation to instability. Making a general survey of the related literature, fault tolerant control (FTC) technique is an efficient method in order to reach the system objectives, or if this turns to be impossible, to achievable new objectives to avoid catastrophic behaviors. Therefore, FTC have been the subjects of intensive investigations over the past two decades, and a number of achievements have been obtained, which can be found in several excellent papers, please refer to [1–9] and the references therein. As for FTC, which can be divided into two main approaches: passive and active. While passive fault tolerance considers systems faults as a special kind of uncertainties [10], active fault tolerance is based on fault detection and isolation (FDI) and accommodation technique [11]. Though FDI can give information whether there exist faults occurring [12], the magnitude of the fault can not be precisely provided. Therefore, the next step is to search an efficient approach to estimate the magnitude of the fault, which is called fault estimate or fault reconstruction [13]. Finally, using the ☆

This paper was recommended for publication by Dr. Steven Ding. Corresponding author at: College of Automation, Huaiyin Institute of Technology, 1 Meicheng Road, 223003 Jiangsu, China. E-mail addresses: [email protected] (D. Du), [email protected] (B. Jiang). n

estimated fault information, a fault-tolerant controller can be designed to compensate the effect of the fault. From the above discussion, it can be seen that fault estimation plays a very important role in active FTC. Therefore, the study of fault estimation has become a hot research topic owing to its importance in active FTC. During the past decade, various effective methods, such as sliding mode observer approach using equivalent output injection signal [14], adaptive technique [15], and learning method based on neural network [16] and so on, have been developed to realize fault estimation. Generally speaking, adaptive technique is usually used to obtain actuator fault information for continuous case [11]. Another commonly employed to realize fault estimation is based on descriptor observer technique, but it is usually utilized to estimate sensor fault [26]. Recently, reduced-order observer method is proposed to solve actuator fault estimation for discrete time systems, this motives us to investigate this issue for discretetime switched systems. Switched system is a class of hybrid systems, which consists of a finite number of subsystems and an associated switching signal governing the switching among them. Many real-world process and systems can be modeled as switched systems, including chemical processes, computer controlled systems, switched circuits, and so on. Therefore, it has been intensively investigated in the past decades [17– 23]. Compared with fruitful stability and stabilization results for switched systems, fault diagnosis and FTC achievements are relatively few. In [24,25], fault detection for switched system was separately investigated for continuous case and discrete case. Du et al. [26] investigated sensor fault estimation and accommodation approaches for continuous-

http://dx.doi.org/10.1016/j.isatra.2016.02.004 0019-0578/& 2016 ISA. Published by Elsevier Ltd. All rights reserved.

Please cite this article as: Du D, Jiang B. Actuator fault estimation and accommodation for switched systems with time delay: Discretetime case. ISA Transactions (2016), http://dx.doi.org/10.1016/j.isatra.2016.02.004i

D. Du, B. Jiang / ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎

2

time switched systems, and [27,28] separately studied actuator fault estimation and accommodation approaches for continuous-time switched systems with constant time-delay case and time-varying delay case. However, to the best of our knowledge, the problems of actuator fault estimation and compensation for discrete-time switched systems with state delay are still under research, which motivate us to study this meaningful and challenging topic. Based on the above discussion, our objective of this paper is to analyze and develop a general framework of fault estimation and accommodation for discrete-time switched systems with actuator faults and state delay. The advantages of this paper are shown as the following aspects: firstly, the actuator fault estimation algorithm for discrete-time switched systems with state delay is resolved by using reduced-order observer approach; secondly, a switched dynamic output feedback controller is designed to compensate for the effect of actuator faults; thirdly, all the obtained efficient conditions are formulated in the form of linear matrix inequality technique, which can be easily solved; finally, a simulation example is provided to illustrate the effectiveness of the proposed results. The rest of this paper is organized as follows. Section 2 presents the system description. In Section 3, a switched reduced-order observer design, including an H 1 performance index is proposed to estimate the actuator fault. Furthermore, in Section 4, fault accommodation is given. An example is illustrated in Section 5 to show the effectiveness of the proposed approach, and the paper is concluded in Section 6.

2. Problem statements and preliminaries Consider the following discrete-time switched linear system with state delay: xðt þ 1Þ ¼

N X

δi ðtÞAi xðtÞ þ

i¼1

þ

N X

N X

δi ðtÞAdi xðt  dÞ þ

i¼1

N X

δi ðtÞBi ðuðtÞ þ f ðtÞÞ

Since the matrix C is of fullh collum rank, there always exist a i ? matrix C ? A Rðn  pÞn such that CC A Rnn is a nonsingular matrix.

3. Fault estimation design 3.1. State transformation We construct nonsingular matrix T ¼   CT ¼ 0pðn  pÞ I p

δi ðtÞDi ωðtÞ

ð1Þ

ð2Þ

δi ðtÞC 2i xðtÞ

ð3Þ

where xðtÞ A Rn is the state vector, uðtÞ A Rm is the control input vector, yðtÞ A Rp is the measurable output vector, zðtÞ A Rl is the controlled output, f ðtÞ A Rm represents the additive actuator fault, ωðtÞ A Rr is the disturbance which is assumed to belong to l2 ½0; 1Þ, and the positive integer d denotes the known state delay. The vector δi ðtÞ is called switching signal, which specifies which subsystem will be activated at the discrete time t, where

δi ðtÞ : Z ¼ f0; 1; 2⋯g-f0; 1g;

N X

δi ðtÞ ¼ 1;

i¼1

N X

δi ðtÞ

"

# " # N X B1i D1i ðuðtÞ þ f ðtÞÞ þ δi ðtÞ ωðtÞ B2i D2i

ð6Þ

i¼1

" #   x 1 ðtÞ yðtÞ ¼ 0pðn  pÞ I p x 2 ðtÞ where " xðtÞ ¼

x 1 ðtÞ

" T  1 Bi ¼

"

# T  1 Ai T ¼

;

x 2 ðtÞ

B1i

#

" T  1 Di ¼

;

B2i

ð7Þ

# A12i ; A22i

A11i A21i

D1i

#

A11di A21di

# A12di ; A22di

  CT ¼ 0pðn  pÞ I p :

;

D2i

" T  1 Adi T ¼

Then, the system (6) and (7) can be rewritten as x 1 ðt þ 1Þ ¼

N X

δi ðtÞA11i x 1 ðtÞ þ

i¼1

8t AZ :

N X

δi ðtÞA12i yðtÞ

i¼1

N X

δi ðtÞA11di x 1 ðt  dÞ þ

i¼1

ð4Þ

, which satisfies:

By using the condition in (5), the switched systems (1) and (2) can be transformed as follows: " #" " # # N X x 1 ðt þ 1Þ x 1 ðtÞ A11i A12i δi ðtÞ ¼ x 2 ðt þ 1Þ x 2 ðtÞ A21i A22i i¼1 # " #" N X A11di A12di x 1 ðt  dÞ þ δi ðtÞ A21di A22di x 2 ðt  dÞ

i¼1

xðt þ 1Þ ¼ f ðxðtÞÞ

i1

ð5Þ

þ

Lemma 1 (Vidyasagar [30]). The equilibrium 0 of

? C ðn  pÞn C pn

xðtÞ ¼ TxðtÞ

þ

At an arbitrary continuous time t, δi ðtÞ is dependent on t or x(t), or both, or other switching rules. Similar to the switched signal adopted in [29], we assume that the sequence of subsystems in switching signal δi ðtÞ is a priori, that is its instantaneous value is available in real time. Matrices Ai, Adi, Bi, C, C2i, and Di are constant matrices with appropriate dimensions. For the purpose of this note, we give the following lemma and assumption:

h

Then define the following state transformation:

i¼1

i¼1

þ

Assumption 1. It is supposed that matrices Bi and C are of full rank, i.e., rankðBi Þ ¼ m and rankðCÞ ¼ p, and the pairs ðAi ; Bi Þ and ðAi ; CÞ are, respectively, controllable and observable.

þ

yðtÞ ¼ CxðtÞ zðtÞ ¼

(i) V is a positive definite function, decrescent, and radially unbounded; (ii) ΔVðt; xðtÞÞ ¼ Vðt þ 1; xðt þ1ÞÞ  Vðt; xðtÞÞ is negative definite along the solutions of (4).

i¼1

i¼1

N X

is globally uniformly asymptotically stable if there is a function V : Z þ  Rn -R such that

þ

N X

N X

δi ðtÞA12di yðt  dÞ

i¼1

δi ðtÞB1i uðtÞ þ

i¼1

N X

δi ðtÞB1i f ðtÞ þ

i¼1

N X

δi ðtÞD1i ωðtÞ

i¼1

ð8Þ yðt þ1Þ ¼

N X

δi ðtÞA21i x 1 ðtÞ þ

i¼1

þ

N X

N X

δi ðtÞA21di x 1 ðt  dÞ þ

i¼1

þ

N X i¼1

δi ðtÞA22i yðtÞ

i¼1 N X

δi ðtÞA22di yðt dÞ

i¼1

δi ðtÞB2i uðtÞ þ

N X i¼1

δi ðtÞB2i f ðtÞ þ

N X

δi ðtÞD2i ωðtÞ

ð9Þ

i¼1

Please cite this article as: Du D, Jiang B. Actuator fault estimation and accommodation for switched systems with time delay: Discretetime case. ISA Transactions (2016), http://dx.doi.org/10.1016/j.isatra.2016.02.004i

D. Du, B. Jiang / ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎

By introducing the virtual input ηðtÞ and ρðtÞ:

ηðtÞ ¼

N X

δi ðtÞA12i yðtÞ þ

i¼1

N X

δi ðtÞA12di yðt  dÞ þ

i¼1 N X

ρðtÞ ¼ yðt þ 1Þ 

N X



δi ðtÞB1i uðtÞ

δi ðtÞA22i yðtÞ 

i¼1

¼

δi ðtÞA22di yðt dÞ 

i¼1

N X

δi ðtÞB2i uðtÞ

i¼1

þ

x 1 ðt þ1Þ ¼

δi ðtÞA11i x 1 ðtÞ þ

i¼1

þ

δi ðtÞB1i f ðtÞ þ

i¼1

ρðtÞ ¼

N X

N X

δi ðtÞA11di x 1 ðt  dÞ þ ηðtÞ δi ðtÞD1i ωðtÞ

δi ðtÞA21i x 1 ðtÞ þ

N X

δi ðtÞA21di x 1 ðt  dÞ þ

i¼1

N X

ð12Þ N X

þ

ð13Þ

For the dynamics (12) and (13), we construct the following reduced-order switched state observer:

δi ðtÞA11i x^ 1 ðtÞ þ

i¼1

i¼1

N X

þ

δi ðtÞB1i f^ ðtÞ 

i¼1

ρ^ ðtÞ ¼

N X

δi ðtÞA11di x^ 1 ðt  dÞ þ ηðtÞ

N X

δi ðtÞGi ðρ^ ðtÞ  ρðtÞÞ

ð14Þ

i¼1

δi ðtÞA21i x^ 1 ðtÞ þ

i¼1

N X

δi ðtÞA21di x^ 1 ðt  dÞ þ

i¼1

N X

δi ðtÞB2i f^ ðtÞ

i¼1

ð15Þ N X

f^ ðt þ 1Þ ¼ f^ ðtÞ 

δi ðtÞF i ðρ^ ðtÞ  ρðtÞÞ

ð16Þ

i¼1

where x^ ðtÞ A Rn  p is the reduced-order observer state, ρ^ ðtÞ A Rp is the reduced-order observer output, f^ ðtÞ A Rm is the fault estimation of the fault f(t), Gi and Fi are reduced-order observer gain matrices to be designed. Let eðtÞ ¼ x^ 1 ðtÞ  x 1 ðtÞ;

ef ðtÞ ¼ f^ ðtÞ f ðtÞ

ð17Þ

then the error dynamics are given as follows: eðt þ 1Þ ¼

N X

δi ðtÞðA11i  Gi A21i ÞeðtÞ þ

i¼1

þ

N X

N X

δi ðtÞðA11di  Gi A21di Þeðt  dÞ

i¼1

δi ðtÞðB1i  Gi B2i Þef ðtÞ þ

i¼1

N X

δi ðtÞðGi D2i  D1i ÞωðtÞ

i¼1

ð18Þ ef ðt þ1Þ ¼ f^ ðt þ 1Þ  f ðt þ 1Þ ¼ f^ ðtÞ 

N X

δi ðtÞF i A21i eðtÞ 

i¼1



N X

δi ðtÞF i B2i ef ðtÞ þ

i¼1

¼ f^ ðtÞ  f ðtÞ 

N X

N X

i¼1

δi ðtÞðA 1di  G i A 2di Þeðt  dÞ

i¼1

N X

δi ðtÞðG i D 1i  D 2i ÞνðtÞ

ð20Þ

# eðtÞ eðtÞ ¼ ; ef ðtÞ

"

"

#

ωðtÞ νðtÞ ¼ ; Δf ðtÞ

A 2i ¼ ½A21i B2i ; " A11di A 1di ¼ 0mðn  pÞ

# 0ðn  pÞm ; 0mm

  D 1i ¼ D2i 0pm ; " # 0ðn  pÞm D1i D 2i ¼ ; 0md Im

A 1i ¼

A11i

B1i

0mðn  pÞ

Im

# ;

  A 2di ¼ A21di 0ðn  pÞm ;

" Gi ¼

Gi

#

Fi

:

ð21Þ

The objective of this section is to determine the observer gains in order to guarantee asymptotic convergence of the estimated state in (14) to the state in (12). That is to say, the estimated error eðt þ 1Þ tends to zero when t-1. In the following, a reduced-order observer design method under an H 1 performance index is proposed to achieve robust fault estimation for discrete-time switched systems with state delay. Theorem 1. Given a constant γ 1 4 0, if there exists positive definite matrices Pi, Qi, nonsingular matrices Ω, and matrix Hi, for any i; j; l A f1; 2; …; Ng, such that 2 6 6 6 6 6 6 6 4

P j  ðΩ þ Ω Þ T

ΩT A 1i  Hi A 2i ΩT A 1di  Hi A 2di Hi D 1i  ΩT D 2i

nn

 Pi þ Q i

0

0

nn

n

Ql

nn

n

n

0  γ 21 I r þ m

nn

n

n

n

0

3

7 Im 7 7 7 0 7o0 7 0 7 5  Im

ð22Þ  T where I m ¼ 0ðn  pÞm I m . Then the augmented switched system (20) is stable with H 1 performance index γ1, and the reduced-order fault estimation observer is given by T

ð23Þ

Hi

i¼1

Proof. Suppose that (22) holds, then it is easy to see from (22) that

δi ðtÞF i D2i ωðtÞ  f ðt þ 1Þ

ðP j  ΩÞT P j 1 ðP j  ΩÞ Z 0

i¼1 N X

ð19Þ

i¼1

Gi ¼ Ω

δi ðtÞF i A21di eðt  dÞ

N X

δi ðtÞðA 1i  G i A 2i ÞeðtÞ þ

where "

3.2. Reduced-order observer design

x^ 1 ðt þ 1Þ ¼

δi ðtÞðIm  F i B2i Þef ðtÞ  Δf ðtÞ

i¼1

i¼1

N X

N X

N X

i¼1

N X

δi ðtÞF i D2i ωðtÞ

where Δf ðtÞ ¼ f ðt þ 1Þ  f ðtÞ. Combining the dynamics in (18) and (19), one can get the following augmented system: eðt þ 1Þ ¼

δi ðtÞB2i f ðtÞ

δi ðtÞD2i ωðtÞ

δi ðtÞF i A21di eðt dÞ

i¼1

i¼1

i¼1

i¼1

þ

þ

i¼1

N X

N X

δi ðtÞF i A21i eðtÞ 

i¼1

one can get N X

N X

N X

δi ðtÞF i D2i ωðtÞ ðf ðt þ 1Þ  f ðtÞÞ

i¼1

i¼1

ð11Þ

N X

N X

δi ðtÞF i B2i ef ðtÞ þ

i¼1

ð10Þ

i¼1 N X

N X

3

δi ðtÞF i A21i eðtÞ 

N X i¼1

ð24Þ

which implies that

δi ðtÞF i A21di eðt  dÞ

P j  ðΩ þ Ω Þ Z  Ω P j 1 Ω T

T

ð25Þ

Please cite this article as: Du D, Jiang B. Actuator fault estimation and accommodation for switched systems with time delay: Discretetime case. ISA Transactions (2016), http://dx.doi.org/10.1016/j.isatra.2016.02.004i

D. Du, B. Jiang / ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎

4

Combining the condition in (23), (22) can be transformed into the following formation: 2 1 3 A 1i  G i A 2i A 1di  G i A 2di G i D 1i D 2i 0 Pj 6 7 6 nn P i þ Q i 0 0 Im 7 6 7 6 7 ð26Þ 6 nn n Q l 0 0 7o0 6 7 6 nn 7 2 n n  γ I 0 4 5 1 r þm nn n n n  Im

It is noted that 02

γ ν

i¼1

ð27Þ

i¼1

s ¼ t d

and define ΔV ðtÞ ¼ Vðt þ 1Þ  VðtÞ. Then along the error dynamics (20), ! N X ΔVðtÞ ¼ e T ðt þ 1Þ δi ðt þ1ÞP i eðt þ 1Þ i¼1 t X

þ

e T ðsÞ N X

 e ðtÞ

δi ðtÞP i eðtÞ 

i¼1 N X

T

¼ e ðt þ 1Þ

T

e ðsÞ

δi ðt þ 1ÞP i eðt þ 1Þ  e ðtÞ

N X

N X i¼1

s ¼ t d

!

T

i¼1

þ e T ðtÞ

t 1 X

N X i¼1

!

δi ðtÞQ i eðtÞ  e T ðt  dÞ

i¼1

N X

δi ðsÞQ i eðsÞ

3.3. Fault estimation algorithm design

!

δi ðtÞP i eðtÞ !

δi ðt  dÞQ i eðt dÞ

i¼1

It follows that for any nonzero vector eðtÞ and the particular case δi ðtÞ ¼ 1, δk a i ðtÞ ¼ 0, δj ðt þ 1Þ ¼ 1, δk a j ðt þ 1Þ ¼ 0, and δl ðt  dÞ ¼ 1, δk a l ðt  dÞ ¼ 0, we have 02 3 ðA 1i G i A 2i ÞT T B6 ΔVðtÞ ¼ ϑ ðtÞ@4 ðA 1di G i A 2di ÞT 7 5 ðG i D 1i  D 2i ÞT h i P j A 1i  G i A 2i A 1di  G i A 2di G i D 1i  D 2i 2 31 0 0  Pi þ Q i 6 7C 0  Q l 0 5AϑðtÞ ð29Þ þ4 0

eTf ðtÞef ðtÞ  γ 21 νT ðtÞνðtÞ

ð30Þ

i eTf ðtÞef ðtÞ  γ 21 νT ðtÞνðtÞ þ ΔVðtÞ  VðKÞ

r

t¼0

þ

N X

f ðtÞ

i¼1

δi ðtÞðA 1di  G i A 2di Þ

T

I m I m e T ðtÞeðtÞ  γ 21 νT ðtÞνðtÞ þ ΔVðtÞ



i¼1 N X

x~^ 1 ðt  dÞ f^ ðt  dÞ



δi ðtÞG i ρðtÞ þ I ηðtÞ

ð36Þ

h i In  p . Substituting (10) and (11) into (36), one has where I ¼ 0mðn  pÞ     N ^ P x~ 1 ðt þ 1Þ x~^ 1 ðtÞ δ ðtÞðA  G A Þ ¼ i 1i i 2i ^ ^ f ðt þ 1Þ

þ

N X

f ðtÞ

i¼1

δi ðtÞðA 1di  G i A 2di Þ

þ

N X

δi ðtÞG i yðt þ 1Þ þ



þ

N X



x~^ 1 ðt  dÞ f^ ðt  dÞ

N X



δi ðtÞðIA12i  G i A22i ÞyðtÞ

i¼1 N X

δi ðtÞðIA12di  G i A22di Þyðt  dÞ þ

i¼1

δi ðtÞðIB1i  G i B2i ÞuðtÞ

i¼1

ð37Þ

t¼0 KX 1 

f ðt þ 1Þ

i¼1

where K is an arbitrary positive integer. For any nonzero νðtÞ A l2 ½ 0; 1Þ and zero initial condition eðtÞ ¼ 0, one has KX 1 h

Combining (15) and (21), one has     N P x~^ 1 ðt þ 1Þ x~^ 1 ðtÞ ¼ δ ðtÞðA  G A Þ i 1i i 2i ^ ^

i¼1

i

t¼0

J 1K ¼

i¼1

i¼1

Then from the condition in (28), one can get that ΔVðtÞ o 0, which concludes from Lemma 1 that augmented switched system (20) is stable. Let KX 1 h

Based on the obtained results in the subsection 3.2, we construct the following augmented system: " #   N A11i B1i  x~^ ðtÞ  P x~^ 1 ðt þ 1Þ 1 δ ðtÞ ¼ i f^ ðt þ 1Þ 0mðn  pÞ I m f^ ðtÞ i¼1 " # N X 0ðn  pÞm  x~^ ðt  dÞ  A11di 1 δi ðtÞ 0 þ 0m f^ ðt  dÞ mðn  pÞ i¼1 " # " # N X In  p Gi δi ðtÞ ηðtÞ ð35Þ ðρ^ ðtÞ  ρðtÞÞ þ  0mðn  pÞ Fi

þ

0

h iT where ϑðtÞ ¼ e T ðtÞ e T ðt  dÞ νT ðtÞ .

J 1K ¼

ð34Þ

which implies, for any K, J 1K o0. Then, one has that for any nonzero νðtÞ A l2 ½0; 1Þ, J ef ðtÞ J 2 o γ 1 J νðtÞ J 2 . □

!

ð28Þ

0

By Schur complement formula, the inequality is equivalent to the following inequality: 2 1 3 Pj A 1i  G i A 2i A 1di G i A 2di G i D 1i  D 2i 6 7 T 6 7  P i þ Q i þI m I m 0 0 6 nn 7 ð33Þ 6 7o0 6 nn 7 n Ql 0 4 5 nn n n  γ 21 I r þ m

eTf ðtÞef ðtÞ  γ 21 νT ðtÞνðtÞ þ ΔVðtÞ o0

δi ðsÞQ i eðsÞ

!

 γ 21 I r þ m

0

It follows from (33) and Schur complement formula that:

!

i¼1

s ¼ t dþ1 T

N X

3

νðtÞ þ ΔVðtÞ

0 Consider the following switched Lyapunov function: ! ! N t 1 N X X X δi ðtÞP i eðtÞ þ e T ðsÞ δi ðsÞQ i eðsÞ VðtÞ ¼ e T ðtÞ

ðA 1i  G i A 2i ÞT

T B6 7 ¼ ϑ ðtÞ@4 ðA 1di  G i A 2di ÞT 5 T ðG i D 1i  D 2i Þ h i ; P j A 1i  G i A 2i A 1di  G i A 2di G i D 1i  D 2i 2 31 T  Pi þ Q i þ I m I m 0 0 6 7C 7CϑðtÞ þ6 ð32Þ 0 0 Q l 4 5A

T I m I m e T ðtÞeðtÞ  21 T ðtÞ

ð31Þ

Define the following invariable:   N P ~^ ζ ðt þ1Þ ¼ x^1 ðt þ 1Þ  δi ðtÞG i yðt þ1Þ f ðt þ 1Þ

ð38Þ

i¼1

Please cite this article as: Du D, Jiang B. Actuator fault estimation and accommodation for switched systems with time delay: Discretetime case. ISA Transactions (2016), http://dx.doi.org/10.1016/j.isatra.2016.02.004i

D. Du, B. Jiang / ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Then, it follows from (37) that N X

ζ ðt þ 1Þ ¼

δi ðtÞðA 1i  G i A 2i Þζ ðtÞ þ

i¼1

þ

N X

N X

δi ðtÞðA 1di  G i A 2di Þζ ðt  dÞ

δi ðtÞðIA12i  G i A22i ÞyðtÞ þ

N X

δi ðtÞðIA12di  G i A22di Þyðt dÞ

δi ðtÞðIB1i  G i B2i ÞuðtÞ

ð39Þ

Furthermore, it follows from that   N P x~^ 1 ðtÞ ¼ ζ ðtÞ  δi ðt 1ÞG i yðtÞ ^ f ðtÞ

ð40Þ

i¼1

PN where i ¼ 1 δi ðt  1Þ means the subsystem of time t  1 is activated.

0

;

C~ i ¼ ½C 2i 0;

On the basis of the obtained online fault estimation information, we design a fault tolerant controller to guarantee the stability in the presence of faults. Since the state x(t) is unavailable directly, we utilize the switched dynamical output feedback controller scheme to construct the fault tolerant controller. For the discretetime switched system (1)–(3), we consider the following dynamic output feedback controller: N X

^ þ 1Þ ¼ xðt

^ þ δi ðtÞAKi xðtÞ

i¼1

ð47Þ

4.1. H 1 performance analysis

N X

Lemma 2. Given a constant γ 2 4 0, the augmented switched systems (45) and (46) is stable with H 1 performance γ2, if there exist positive matrices P and Q , such that the following linear matrix inequality holds: 2 3 P A~ i P A~ di P B~ i P 6 7 6 nn  P þ H T Q H þ C~ T C~ 0 0 7 6 7 i i ð48Þ 6 7 o0 6 nn 7 n  Q 0 4 5 nn n n  γ 22 I

ξðt þ 1Þ ¼

VðtÞ ¼ ξ ðtÞP ξðtÞ þ T

ð49Þ

ξT ðsÞHT Q H ξðsÞ

ð50Þ

s ¼ t d

t X

ΔVðtÞ ¼ ξT ðt þ1ÞP ξðt þ 1Þ þ ð42Þ

^ þ δi ðtÞAKi xðtÞ

N X

δi ðtÞBKi CxðtÞ

ð43Þ

i¼1

Then substituting u(t) into (1), one has N X

N X

δi ðtÞAi xðtÞ þ

i¼1

þ

δi ðtÞAdi xðt  dÞ þ

i¼1

N X

N X

δi ðtÞBi ðf ðtÞ  f^ ðtÞÞ þ

ξT ðsÞHT Q HξðsÞ  ξT ðtÞP ξðtÞ



i¼1



N X

N X i¼1

δi ðtÞBi ef ðtÞ þ

i¼1

N X

^ δi ðtÞBi C Ki xðtÞ

δi ðtÞDi ωðtÞ

ð44Þ

i¼1

δi ðtÞA~ i ξðtÞ þ

i¼1

T

N X

T

T

ð51Þ

This with the relationship xðt  dÞ ¼ H ξðt  dÞ

J 2K ¼

ð52Þ

KX 1 

zT ðtÞzðtÞ  γ 22 μT ðtÞμðtÞ



ð53Þ

t¼0

δi ðtÞA~ di Hξðt  dÞ þ

i¼1

N X

δi ðtÞB~ i μðtÞ

J 2K ¼

i¼1

KX 1 

zT ðtÞξðtÞ  γ 22 μT ðtÞμðtÞ þ ΔVðtÞ  VðKÞ

t¼0

ð45Þ r

δi ðtÞC~ i ξðtÞ

ð46Þ

i¼1

KX 1 

zT ðtÞzðtÞ  γ 22 μT ðtÞμðtÞ þ ΔVðtÞ

ð54Þ

t¼0

It is noted that 02

where xðtÞ

T

 ξ ðt  dÞH Q H ξðt  dÞ T

where K is an arbitrary positive integer. For any nonzero μðtÞ A ½0; 1Þ and zero initial condition ξðtÞ ¼ 0, one has

It follows that N X

¼ ξ ðt þ 1ÞP ξðt þ1Þ  ξ ðtÞP ξðtÞ þ ξ ðtÞH T Q H ξðtÞ

i¼1 N X

ξT ðsÞHT Q HξðsÞ

s ¼ td

3 " #1 T h i A~ i T  P þ HT Q H 0 ~ ~ ~ 4 5 @ Aξ~ ðtÞ ΔVðtÞ ¼ ξ ðtÞ P A i A di þ T 0 Q A~ di h iT T where ξ~ ðtÞ ¼ ξ ðtÞ xT ðt dÞ , which follows from (65) and Schur complete lemma that the system (49) is stable. Let

^ δi ðtÞBi C Ki xðtÞ

δi ðtÞDi ωðtÞ

δi ðtÞAdi xðt  dÞ þ

t1 X

which implies 02

i¼1

δi ðtÞAi xðtÞ þ

N X

N X i¼1

i¼1

N X

t 1 X

ð41Þ

^  f^ ðtÞ δi ðtÞC Ki xðtÞ

N X

ξðt þ 1Þ ¼

δi ðtÞA~ di Hξðt  dÞ

i¼1

Then along the error dynamics (49),

δi ðtÞBKi yðtÞ

i¼1

i¼1

¼

N X

Define Lyapunov function:

^ A Rn is the controller state vector, AKi, BKi and CKi are where xðtÞ controller gains to be determined later. Substituting (2) into (41), one has

xðt þ 1Þ ¼

δi ðtÞA~ i ξðtÞ þ

i¼1

i¼1

^ þ 1Þ ¼ xðt

N X

s ¼ t dþ1

N X

"

H ¼ ½I 0:

Proof. Firstly, we establish the stability of augmented switched system (45). When μðtÞ ¼ 0, (45) becomes

4. Fault accommodation design

zðtÞ ¼



i¼1

i¼1

uðtÞ ¼

 Bi

i¼1

i¼1

þ

N X

 Di B~ i ¼ 0

5

#

ξðtÞ ¼ ^ ; xðtÞ

"

#

ωðtÞ μðtÞ ¼ e ðtÞ ; f

" A~ i ¼

Ai

Bi C Ki

BKi C

AKi

# ;

  Adi A~ di ¼ ; 0

zT ðtÞzðtÞ  γ 22 μT ðtÞμðtÞ þ ΔVðtÞ

3 T A~ B6 Ti 7 h i B6 7 ¼ z T ðtÞB6 A~ di 7P A~ i A~ di B~ i @4 5 T B~ i

Please cite this article as: Du D, Jiang B. Actuator fault estimation and accommodation for switched systems with time delay: Discretetime case. ISA Transactions (2016), http://dx.doi.org/10.1016/j.isatra.2016.02.004i

D. Du, B. Jiang / ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎

6

2 6 þ6 4

T  P þ H T Q H þ C~ i C~ i

0

0

0

Q

0

0



0

31

2 2I

Observe that

7C 7CzðtÞ 5A

Ξ  ST X  1 S ¼ ST ðYX  IÞ  1 ðY  X  1 ÞðXY  IÞ  1 S 4 0

Then we have P 4 0. Considering the notations in (47) with, and AKi, BKi, and CKi in (57), we can verify that the matrix inequality in (56) can be rewritten as

h iT T where zðtÞ ¼ ξ ðtÞ xT ðt  dÞ μT ðtÞ . It follows from (65) and Schur complement formula that zT ðtÞzðtÞ  γ 22 μT ðtÞμðtÞ þ ΔVðtÞ o0

2

ð55Þ

which implies, for any K, J 2K o 0. Then, one has that for any nonzero νðtÞ A ½0; 1Þ, J zðtÞ J 2 o γ 2 J μðtÞ J 2 . □ Based on Lemma 1, a dynamic output feedback controller design method is developed in the following theorem. Theorem 2. Given a constant γ 2 4 0, then there exists a dynamic output feedback controller in the form of (41) and (42) such that the augmented switched system (45) and (46) is stable with H 1 performance γ2 if there exist positive definite matrices X, Y, matrices Ωi, Mi, Ni, such that the following linear matrix inequalities: 2 3 Λ11 Λ12 Λ13 0 0 6 nn Λ 0 Λ24 H 7 6 7 22 6 7 2 6 nn n  γ2I 0 0 7 ð56Þ 6 7o0 6 nn n n I 0 7 4 5 nn

n

n

n

Q

1

i A f1; 2; …; Ng and some given positive matrix Q , where " #  Ai Adi Ai Y þBi Ni I ; Λ12 ¼ ; Ωi XAi þ M i C XAdi X #  Bi ;  XBi 3 2 T T 3 2 3 I 0 Y Y C 2i 7 6 7 7 X 0 5; Λ24 ¼ 4 C T 5; H ¼ 6 4 I 5: 2i 0 Q 0 0

holds, for all  Y Λ11 ¼ I " Di Λ13 ¼ XDi 2 Y 6 I Λ22 ¼ 4 0

In this case, a desired stable dynamic output feedback H 1 controller is given the parameters as follows: AKi ¼ S  1 ðΩi XAi Y  M i CY  XBi N i ÞW  T ; T

C Ki ¼ Ni W

BKi ¼ S  1 M i ;

:

ð57Þ

where S and W are any nonsingular matrices satisfying SW T ¼ I  XY ð58Þ Proof. Suppose that the inequalities (56) holds, which implies   Y I o0 ð59Þ I X which, by the Schur complement formula, gives that X Y  1 4 0. Therefore, I  XY is nonsingular, hence there exist nonsingular matrices S and W such that (58) holds. Now, we introduce the following nonsingular matrices:     Y I I X ; Π2 ¼ ð60Þ Π1 ¼ T ; T 0 W 0 S Let 1

P ¼ Π2Π1 then  X P¼ T S

S

ð61Þ

6 6 6 6 6 6 6 6 6 6 4

 Π2P T

Π T2 A~ i Π 1

Π2

ð62Þ

0

0

0

Π T1 C~ i

nn

n

Q

nn

n

n

0  γ 22 I

0 0

nn

n

n

n

I

nn

n

n

n

n

T

T

3

0

 Π 1 P Π 1 þ Π 1 C~ i

T

7 7 Π T1 H T 7 7 0 0

0 1 Q

7 7o0 7 7 7 7 5

ð65Þ T 2 ;

T 1 ; I; I; I; Ig

Pre- and post-multiplying this inequality by diagfΠ Π and its transpose, respectively, which, by the Schur complement, the result then follows from Lemma 1. □

Remark 1. For the sake of clarity, only a class of actuator fault case is considered in this paper. However, note that such additive actuator faults considered in this paper can be readily extended to general class of additive faults [31]. Meanwhile, the additive faults representation is more general than the multiplicative ones, which can be modeled as additive actuator ones [6]. Remark 2. The time delay is assumed to be constant in this paper. Moreover, by using the technique in [32], the results may be extended to time-varying case. Remark 3. For the existence of the terms Adi, switched Lyapunov function is not suitable in designing dynamic output feedback controller. A common Lyapunov function is employed to achieve the results. This may result in some conservatism.

5. An illustrate example Consider the discrete-time switched linear system (1)–(3) consisting of three subsystems described by        0:5 0:3 0:2  0:1 1  0:2 A1 ¼ ; A2 ¼ ; A3 ¼ ; 0:1 1 1 0:3 2 0:05   0:1 0:3 Ad1 ¼ ; 0 1        0:2 0:1 0:2 1 0:1 Ad2 ¼ ; Ad3 ¼ ; B1 ¼ ; 0 0:3 0 0:05 0:2     0:1 0:1 B2 ¼ ; B3 ¼ ; 0:2 0:2       0:1 0:1 0:1 D1 ¼ ; D2 ¼ ; D3 ¼ ; C 11 ¼ C 12 ¼ C 13 ¼ ½1 2; 0:2 0:2 0:2 C 21 ¼ C 22 ¼ C 23 ¼ ½2 1: The state transformation matrix can follows that the augmented matrices    0:65 0:1 0:25 A 11 ¼ ; A 12 ¼ 0 1 0

  0 . It be chosen as T ¼ 10:5 0:5 in (21) can be constructed as    0:1 1:1 0:1 ; A 13 ¼ ; 1 0 1

A 21 ¼ ½0:15 0:5;

 A 1d2 ¼ 

ð63Þ

Π T2 A~ di Π T2 B~ i

nn

where

Ξ ¼ W  1 YðX Y  1 ÞYW  T 40

1



A 22 ¼ ½  0:05 0:5;



Ξ

ð64Þ

A 1d3 ¼

 0:25

0

0  0:3

0

0

0

0 

A 23 ¼ ½  0:1 0:5;  ; ;

 A 2d1 ¼ 0:15

 0 ;

A 1d1 ¼

 0:05

0

0

0

 ;

A 2d2 ¼ ½0:05 0;

Please cite this article as: Du D, Jiang B. Actuator fault estimation and accommodation for switched systems with time delay: Discretetime case. ISA Transactions (2016), http://dx.doi.org/10.1016/j.isatra.2016.02.004i

D. Du, B. Jiang / ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎

7

2.5 2 1.5 1 0.5 0 −0.5

0

10

20

30

40

50

60

70

80

90

100

90

100

Fig. 1. Fault f 1 ðtÞ (solid line) and its estimate f ^1 ðtÞ (dotted line).

3.5 3 2.5 2 1.5 1 0.5 0 −0.5

0

10

20

30

40

50

60

70

80

Fig. 2. Fault f 2 ðtÞ (solid line) and its estimate f ^2 ðtÞ (dotted line).

A 2d3 ¼ ½0:5 0; D 11 ¼ ½0:5 0; 

0:1

0



0 0:1

1  0 : 1

D 22 ¼ D 23 ¼

 D 12 ¼ ½0:5 0;

0

 ;

D 13 ¼ ½0:5 0;

D 21 ¼

0:1 0

 0 ; 1

By solving the condition (22) in Theorem 2, one can get the optimal value γ 1 ¼ 1:82 with reduced-order observer parameters as follows:       0:4401 0:1357  0:0551 G1 ¼ ; G2 ¼ ; G3 ¼ :  0:0039 0:0007 0:0026  1 0 Then, the positive definite matrix Q is set up as 0 2 , by solving the conditions in Theorem 2, one obtains the minimum attenuation value γ 2 ¼ 2:16 with the dynamic output feedback controller parameters as follows:      0:2997 2:9905 0:1028 1:5334 ; AK2 ¼ ; AK1 ¼ 0:1125 2:2276 0:0709 1:6935   0:1191 0:1245 AK3 ¼ ; 0:1377 4:0849        0:8266  0:6498  0:4300 BK1 ¼ ; BK2 ¼ ; BK3 ¼ ;  0:4915  0:3593  0:9382 C K1 ¼ ½0:4399  11:6092; C K2 ¼ ½  1:2777  0:5005; C K3 ¼ ½  3:0098 5:7662: For simulation, an actuator constant fault signal f 1 ðtÞ is set up as ( 0; 0 r t r 20 f 1 ðtÞ ¼ 2; 20 o t r 100 If the external disturbance is set as a step signal, Fig. 1 depicts the fault f 1 ðtÞ (solid line) and its estimate f^ 1 ðtÞ (dotted line). An actuator time-varying fault signal f 2 ðtÞ is set up as ( 0; 0 r t r 20 f 2 ðtÞ ¼ sin ðtÞ þ 2; 20 o t r 100 Fig. 2depicts the fault f 2 ðtÞ (solid line) and its estimate f^ 2 ðtÞ (dotted line). It follows from Figs. 1 and 2 that the proposed reduced-order

0.3

0.2 x1(t) x2(t)

0.1

0

−0.1

−0.2

0

10

20

30

40

50

60

70

80

90

100

time step k Fig. 3. State x(t) with fault accommodation.

switched observer has good performance to estimate the actuator fault. Therefore, the simulation results exhibit well estimated operation. Fig. 3 shows the simulation result of state response with fault accommodation.

6. Conclusion By utilizing the reduced-order rank observer method and switched Lyapunov function technique, fault estimation and compensation for discrete-time switched system with state delay are studied in this work, and an efficient reduced-order rank observer design is obtained in the form of linear matrix inequality. Through a dynamic output feedback controller fault compensation, an fault-tolerant operation is realized. Finally, simulation results are presented to verify the effectiveness of the proposed method.

Please cite this article as: Du D, Jiang B. Actuator fault estimation and accommodation for switched systems with time delay: Discretetime case. ISA Transactions (2016), http://dx.doi.org/10.1016/j.isatra.2016.02.004i

D. Du, B. Jiang / ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎

8

Acknowledgments This work was partially supported by the Natural Science Foundation of Jiangsu Province (BK20140457), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Fund of Huaiyin Institute of Technology (HGC1309).

References [1] Basseville M. Detecting changes in signals and systems—a survey. Automatica 1988;24(3):309–26. [2] Berdjag D, Cocquempot V, Christophe C, Shumesky A, Zhirabok A. Algebraic approach for model decomposition: application to fault detection and isolation in discrete-event systems. Int J Appl Math Comput Sci 2011;21(1):109–25. [3] Gholami M, Cocquempot V, Henrik S, Thomas B. Passive fault tolerant control of piecewise affine systems based on H 1 synthesis. IFAC Workshop Series, 2011. p. 28–35. [4] Patton RJ. Robustness in model-based fault diagnosis: the 1995 situation. Annu Rev Control 1997;21:103–23. [5] Liu M, Cao X, Shi P. Fault estimation and tolerant control for fuzzy stochastic systems. IEEE Trans Fuzzy Syst 2013;21(2):221–9. [6] Frank PM, Ding SX, Koppen-Seliger B. Current developments in the theory of FDI. In: Proceedings of IFAC safeprocess, Budapest, Hungary, 2000. p. 16–27. [7] Zuo Z, Daniel WCH, Wang Y. Fault tolerant control for singular systems with actuator saturation and nonlinear perturbation. Automatica 2010;46(3):569–76. [8] Feng J, Wang S, Zhao Q. Closed-loop design of fault detection for networked non-linear systems with mixed delays and packet losses. IET Control Theory Appl 2013;7(6):858–68. [9] Wang S, Feng J, Zhang H. Robust fault tolerant control for a class of networked control systems with state delay and stochastic actuator failures. Int J Adapt Control Signal Process 2016 (in press). [10] Tao G, Chen S, Joshi SM. An adaptive actuator failure compensation controller using output feedback. IEEE Trans Autom Control 2002;47(3):506–11. [11] Zhang K, Jiang B, Shi P. Fast fault estimation and accommodation for dynamical systems. IET Control Theory Appl 2009;3(2):189–99. [12] Zhong M, Li S, Zhao Y. Robust H 1 fault detection for uncertain LDTV systems using Krein space approach. Int J Innov Comput Inf Control 2013;9(4):1637–49. [13] Tabatabaeipour, Mojtaba S, Bak, Thomas. Robust observer-based fault estimation and accommodation of discrete-time piecewise linear systems. J Frankl Inst 2014;351(1):277–95.

[14] Edwards C, Spurgeon SK, Patton RJ. Sliding mode observers for fault detection and isolation. Automatica 2000;36(4):541–53. [15] Tan C, Tao G, Qi R. A discrete-time parameter estimation based adaptive actuator failure compensation control scheme. Int J Control 2013;86(2):276–89. [16] Polycarpou MM. Fault accommodation of a class of multivariable nonlinear dynamical systems using a learning approach. IEEE Trans Autom Control 2001;46(5):736–42. [17] Zhao J, Hill DJ. Passivity and stability of switched systems: a multiple storage function method. Syst Control Lett 2008;57(2):158–64. [18] Vesely V, Rosinova D. Robust MPC controller design for switched systems using multi-parameter dependent Lyapunov function. Int J Innov Comput Inf Control 2014;10(1):269–80. [19] Wu LG, Zheng WX. Weighted H1 model reduction for linear switched systems with time-varying delay. Automatica 2009;45(1):186–93. [20] Attia SB, Salhi S, Ksouri M. Static switched output feedback stabilization for linear discrete-time switched systems. Int J Innov Comput Inf Control 2012;8 (5 (A)):3203–13. [21] Zhang LX, Gao HJ. Asynchronously switched control of switched linear systems with average dwell time. Automatica 2010;46:953–8. [22] Zhang LX, Shi P, Boukas E, Wang C. Hinfty model reduction for uncertain switched linear discrete-time systems. Automatica 2008;44:2944–9. [23] Cheng D, Guo L, Lin Y, Wang Y. Stabilization of switched linear systems. IEEE Trans Autom Control 2005;50(5):661–6. [24] Wang D, Wang W, Shi P. Robust fault detection for switched linear systems with state delays. IEEE Trans Syst Man Cybern 2009;39(3):800–5. [25] Du D, Jiang B, Shi P. Fault detection for discrete-time switched systems with intermittent measurements. Int J Control 2012;85(1):78–87. [26] Du D, Jiang B, Shi P. Sensor fault estimation and compensation for time-delay switched systems. Int J Syst Sci 2012;43(4):629–40. [27] Du D, Jiang B, Shi P. Active fault-tolerant control for switched systems with time delay. Int J Adapt Control Signal Process 2011;25:466–80. [28] Du D, Jiang B, Shi P. Fault estimation and accommodation for switched systems with time-varying delay. Int J Control Autom Syst 2011;9(3):442–51. [29] Daafouz J, Riedinger P, Iung C. Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach. IEEE Trans Autom Control 2002;47(11):1883–7. [30] Vidyasagar M. Nonlinear systems analysis. Englewood Cliffs, NJ: Prentice-Hall International Editions; 1993. [31] Patton RJ, Chen J, Lopez-Toribio CJ. Fuzzy observers for nonlinear dynamic systems fault diagnosis. In: Proceedings of 37th IEEE conference on decision control, Tampa, FL, 1998. p. 84–9. [32] Du D, Jiang B, Zhou S. Delay-dependent robust stabilization of uncertain discrete-time switched systems with time-varying state delay. Int J Syst Sci 2008;39(3):305–13.

Please cite this article as: Du D, Jiang B. Actuator fault estimation and accommodation for switched systems with time delay: Discretetime case. ISA Transactions (2016), http://dx.doi.org/10.1016/j.isatra.2016.02.004i