Biotech. Adv. Vol. 7. pp. 215-239, 1989
0734-9750/89 $O.OO + .50 ~ 1989 Maxwell Pergamon Macmillan plc
Printed in Great Britain. All Rights Reserved
A D V A N C E S IN B I O C O N V E R S I O N OF ANTHRACYCLINE ANTIBIOTICS* U. GRAFE, K. DORNBERGER, C. WAGNER and K. ECKARDT C e n t r a l Institute
of Microbiology a n d Experimental Therapy, GDH Academy of Sciences, P.O. Box 73, lena 6900, G.D.R.
ABSTRACT During
the
tential
last decade
usefulness
in c a n c e r
new microbial
strains
les
cells
employing
bioconversion late
new anthracycline-type treatment
or e n z y m e s .
transformations
have been
a n d by b i o c o n v e r s i o n s
of a n t h r a c y c l i n e
structures
s u c h as are
supplied
of p r e c u r s o r
We h i g h l i g h t structures
w i t h po-
recent
b o t h by molecu-
advances
w i t h the m a i n
in
f o c u s on
c a r r i e d o u t by o x i d o r e d u c t a s e s .
KEYWORDS
Anthracycline oxidations lations,
antibiotics,
and reductions,
methylations,
bioconversions
by cells
glycosylations,
and enzymes,
reductive
deglycosy-
acylations. INTRODUCTION
The anthracyclines related tes.
form a still
antibiotics
mostly
Some representatives
position
in a n t i c a n c e r
unomycin
and adriamycin
modifications Both state
of
les h a v e
the art been
The continuing fies
leading
the b i o s y n t h e s i s
of t h i s
have
to m o r e
family occupy
been
potent
in b i o c o n v e r s i o n s
more
(1,2,3).
subjected and
of a n t h r a c y c l i n e s
development
f a m i l y of
from cultures
chemotherapy
excellently
highlighting
growing
derived
in the
an o u t s t a n d i n g
In p a r t i c u l a r , so e x t e n s i v e
less (4,5)
toxic
field
findings
derivatives.
215
reviewed
molecu(6,7,8,9).
of a n t h r a c y c l i n e s and evaluating
*To Prof. Dr. F. Bergter on the occasion of his 65th
da-
chemical
a n d the p r e s e n t
of a n t h r a c y c l i n e - t y p e
and comprehensively
recent
structurally of a c t i n o m y c e -
birthday
them
justiin
U. GRAFE etal.
216
comparison
with
Referring
cyclines.
deal
evidence.
pattern
with
Particular
role
cycline
foregoing
to the b a s i c
preferentially
their
the
of b i o s y n t h e s i s ,
late m i c r o b i a l
reference
in r e d u c t i v e
the
cyclines
first and have
tetracyclic
description
Bauer been
aglycone
revealed
with
one p r o p i o n a t e
15,16),
cinones,
acid,
known
The
that
formations Negative
the
one hand,
from
Thus, only
aglycone
and
has
IU-222
been
in the
This
case
the
late
lation
and
splitting
release
the
through
absence
to o t h e r of
supported
mutants
classes the
were
pathway off
of any
a series
5,11, and
of c o n v e r s i o n
of
on the other, precedes
musug-
trans(14).
by S t r e p t o m y c e s
view The
that • - r h o d o m y same
picture
has
~riseus
mu-
found
belonging grown
to be c o s y n t h e -
to d i f f e r e n t
in m i x e d
culture
~on
of a so far u n i d e n t i f i e d
for a s e r i e s catalyzing
the m e t h o x y c a r b o n y l a glycosylated
i;
Streptomyces
were
of d a u n o m y c i n s
(Fig.
daof
7-O-rhodosaminyl-E-rhodo-
(14).
presence
is r e s p o n s i b l e
of
B-pyrromy-
anthracyclines
the
with
i;
many
by b a u m y c i n - n e g a t i v e
MEI30-A4
glycosides
intermedi(Fig.
from e-rhodomycinone
c-rhodomycinone
studies
where
indicated
which
c- and
microorganisms
glycosylated
cosynthetic
during
comitant
of
as
of
H-isorhodomycinones,
and b a u m y c i n s
leading
daunomycinone
complex
but
early
from w h i c h
7-O-daunosaminylaklavinone
rhodomycinone-producing media.
and
coeruleorubidus
mutant
in fact,
drawn
e-
such
stu-
starting
via a s e r i e s
aklaviketone
are d e r i v e d
in the b i o c o n v e r s i o n
aklavin
coeruleorubidus
solid
aglycones
pathway
leads
aklavinone,
at the
Biosynthetic
detected
and
of d a u n o m y c i n
glycosylation
the
results
mycinone,
enzymic
recently
the p r o d u c i n g
to d a u n o m y c i n
at
units
anthra-
substituents
moieties.
ester
intermediate,
of S t r e p t o m y c e s
sized
three
its m e t h y l
within
in the
in 1 9 5 0 by
occurring
the o l i g o k e t i d e
acetate
adriamycinone
on the
daunomycinone
tants.
and
of a n t h r a -
published
150 n a t u r a l l y
sugar
that
nine
biosynthesis
aklavinone,
cinone,
in the
anthracycline
and
bioconversions 12,13).
than
e ,B,~, ~ - r h o d o m y c i n o n e s ,
unomycinone,
been
and
to a u n i q u e
other
and
including
aklanonic
gested
conversions
OF A N T H R A C Y C L I N E S
differing
unambiguously
transformations
tants
and
of a n t h r a c y c l i n e s
(iO) m o r e isolated,
dies
the
of a n t h r a -
to o x i d o r e d u c t a s e s
deglycosylation
will
trisaccharides.
Brockmann
ates
review
bioconversions
is g i v e n
BIOSYNTHESIS
After
this
of c o n v e r s i o n s both
groups,
intermediate
glycosy-
without (17).
con-
ch
co
r,o
(3 0
0
0
c~
(3
o o~ ~<
\
~X
~ OH 0
""
(or tautomeric forms)
o ,onon,c oc,0
~ via methyl ester 0 ~1~ COOMe
OH 0
/
decaketide
~" ~ L [ I /1 J " O H ~ ~ pyrrom,cmon~,~ X ~HT~OH~ "~ \ n alw COOHe a__driamycinone ~ daunfmycinone ~- rhodomycinone ~ ~ "'OH cklavincne .._carmiAnom),cinone. ~_isorhVodom),cinone~~h.l~H ~) 6H OH i3 jsorh'~'od0mycinone 10-demethoxycarbonyI-Erhodomycinone v • -~2- rhodomycinone _j3- rhodomycinone V ~- rhodomycinone
(3-Pyrrom~cinonex
a ,ov,ooo,
4"
1 propionyl-CoA 9 malonyl- CoA
COOCoA
N
N
Z
Z
> Z -]
Z ©
© Z
¢0
218
U. G R A F E et al.
Variations enzyme occur such
of
the scheme depicted
A i n s t e a d of p r o p i o n y l in t h e b i o s y n t h e s i s
as n o g a l a m y c i n s
Until
now,
sugars
tives
Possibly,
amine,
the starting
of a c l a c i n o m y c i n has been
tially
t i o n by a s p e c i f i c
to L - c i n e r u l o s e
to a c l a c i n o m y c i n s
containing
other
the pertinent
pyrromycinones) thracycline sugars
A and,
(Fig.
2;
the
deriva-
in turn,
19).
Similarly,
formed
Other
either of
out w i t h
ini-
2-deoxy-L-fu-
sugar
oxida(L-rhodi-
and L-cinerulose trisaccharides
by g l y c o s y l a t i o n
the a g l y c o n e
during
an-
or a c y l a t i o n s
the g l y c o s i d e s
(18),
information
of
(e.g. c -
late conversions
but d e t a i l e d
triyiel-
SI)
Subsequent
to L - a c u l o s e
s u c h as m e t h y l a t i o n s
free sugars,
(MA 144
could
In the
of a k l a v i n o n e
of t h e t e r m i n a l
a n d B.
are
m a y a l s o be c a r r i e d
than with
(12,18,19).
under-
L-daunos-
conversions.
disaccharide
or o x i d a t i o n
biosynthesis
like
(5) which,
formation
later,
A, Y,
aglycones
aglycones
nucleoside
sugars
of L - r h o d o s a m i n e ,
oxidoreductase
B led
with
been
to be a s t e p by s t e p p r o c e d u r e
composed
nose)
18 d i f f e r e n t
less w e l l
for a d d i t i o n a l
(MA 144 NI)
co-
block
antibiotics
so far k n o w n has
yield
(aklavin),
a trisaccharide
the
starting
biosynthesis
and L-rhodinose
acetyl
building
(7).
and L-rhodinose
shown
via monosaccharide
cose,
of
might
material
1 involving initial
anthracycline-type
aglycones
transformations
2-deoxy-L-fucose,
saccharides ding
pathway
to a n t h r a c y c l i n e
of g l u c o s e - 6 - p h o s p h a t e
provide case
of o t h e r
steffimycins
the b i o g e n e t i c
bound
stood.
and
in Fig.
C o A as the
of
rather
is not y e t
available. EARLY Much
w o r k has
quence netic The
of
depicted
or t h e r e a f t e r
tetracyclic
the
system,
reader
or s u g a r s ,
of a n t h r a c y c l i n e 3 summarizes
i;
15,16,88).
giving
are
and even
activity.
antibiotics
Transformations
details
cannot
to e a r l i e r
reactions
structural
be g r o u p e d
starting
diversity
be g i v e n
of
here,
(4,5,6,7).
of
reducing as
pro-
of the
to b i o l o g i c a l l y
changes
to d e c o m p o s i t i o n s
They could
parts
reviews
leading
i).
so far
the b i o s y n t h e t i c
at d i f f e r e n t
se-
bioge-
(Fig.
bioconversions
r i s e to the n a t u r a l
Further
to p a r t i c u l a r
the p r o p e r
a n d the g e n e r a l
throughout
oxidations
m a y be r e f e r r e d
transformations
biological
thus
structure.
anthracyclines, nes
(Fig.
BIOSYNTHESIS
to e x p l o r e
biosynthesis
occurring
involve
ANTHRACYCLINE
in the past,
in Fig.
at t h e a g l y c o n e
anthracycline
Late
spent,
in a g l y c o n e
interrelationship
with aklavinone
and
BIOCONVERSIONSIN
been
events
scheme
known cess
AND LATE
their
active aglyco-
or d e l e t i n g
follows:
BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS
~./ Akn- Rhn
~///"
219
yHL-rhodosamine H (Rhn) NMe-2
k / ~ 2OH-L-deoxyf ucose H~)O~H (dFuc)
Akn-Rhn-dFuc
~
~H L_rhodinos e
H
(Rho) Akn-Rhn-dFuc-Rho (MAI44NI)
Akn-Rhn-dFuc- cinerulose A {aclacinornycinA)
!
Akn- Rhn-dFuc-L-aculose(aclacinomycin Y )
~k
~L formationof ether linkage Akn-Rhn-dFuc-cinerulose B (aclacinomycin B)
Fig.
2.
Terminal
steps
of a c l a c i n o m y c i n
by S t r e p t o m y c e s - glycosylations
galilaeus
1
H2
biosynthesis
(17,18)
of a n t h r a c y c l i n o n e s
- oxidations
and
- reductions
of a n t h r a c y c l i n o n e s
- methylations - acylations - oxidations
and
reductions
GLYCOSYLATIONS Investigations
synthesized
confirm
the p r o p o s e d
through
mutant
directed
components
OF A N T H R A C Y C L I N O N E S
into glycosylation
mically
of b l o c k e d
of s u g a r
of n a t u r a l l y
anthracyclinones biosynthetic
strains)
have
pattern
or to i s o l a t e
biosynthesis,
BY I N T A C T C E L L S occurring
been performed (e.g.
either
to
by c o m p l e m e n t a t i o n
new unusual
mutasynthesis,
or c h e -
structures
and hybrid
biosyn-
220
U.GRAFE etal. -demethylation, decarboxylation, !/ oxidation -oxidation
1 ~ J~ C O ~ y Ja t i o n
-oxidation /
COOMe
- methylation 1 ~ '
-oxidation
~
' ~-
- g lucu ronida tion - glucosylation
-deglycosylation, reduction
--~r"~ _gl ycosylat ion s, - ~condory transformations of sugars 0 ~-reduction / II -glycosylation of 13-dihydro
~'i@
-daunomycinone
deri~tive
~
~idation
partial structure
6. Fig.
3.
Biosynthetic cyclinone
thesis
(20).
are only briefly
cells
of b l o c k e d
of
the tetracyclic
CIO,
been tes
of mono,
observed
the g l y c o s y l a t i o n s
strains
nucleus,
and C13 hydroxy
formation
of
mentioned
mutant
similar
have been
while disaccharides
so far r e p o r t e d ,
have been
converting
but
groups
here,
trisaccharides
in t h e b i o s y n t h e s i s
of the a n t h r a -
skeleton
The majority
which
modifications
carried
out by
the C T - h y d r o x y
glycosylations
established.
group
of C4,
In g e n e r a l ,
and even pentasaccharides have
been
shown
of t h e t r i s a c c h a r i d e s
as
(Fig.
has
intermedia2;
18}.
C7-O-glycosides Observed
monoglycosylation
nes b y a g l y c o n e - n e g a t i v e biosynthetic matic
and other cones
Feeding
strains
of a n t h r a c y c l i n e s by
Streptomyces
s u c h as
mycinone
idiotrophic spp.
have
E-rhodomycinone,
sugars
as s h o w n
strains
been
of
confirmed
of
reported
~-pyrromycinone,
fed a g l y c o the o v e r a l l
in Fig. S.
i. E n z y -
coeruleorubidus
for v a r i o u s
agly-
and e-isorhodo-
(20,21). of
synthetic lines
pathway
glycosylations
with different
mutants
aglycones pathway
characteristic
and
adriamycin,
the
fed a g l y c o n e
which
occupy
to b l o c k e d of
the p a r e n t a l
or m o d i f i e d (e.g.
an e a r l i e r
mutants
yielded strain
glycosides
due
isorhodomycinone,
position either
in the b i o -
anthracyc-
s u c h as d a u n o m y c i n to t r a n s f o r m a t i o n s
see b e l o w ) .
However
of
BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS
there
may
be s t r a i n - s p e c i f i c
missing
glycosylation
mutants
of
S. c o e r u l e o r u b i d u s
as E - p y r r o m y c i n o n e genera, fied was
e.g.
were
noticed
procedure,
qoeruleorubidus
E-pyrromycinone
dihydrodaunomycin
from
may
glycosides,
recognize been
provided
by
that
daunosaminyl modified
have
employed
lonolide, biotic
(as an
specificity.
to y i e l d the
by d e s o s a m i n e ,
has
sp.
Further,
appear
yielded
naturally
peucetius In the grown
to p o s s e ~
et al.
(30)
vat.
car-
case
of
in the
biosynthesis) rather
fed e.g.
of
followed
as a p o s s i b l e
anti-
Streptomyces
protylonolide was
broad-
proty-
of the m a c r o l i d e
mutant
biosynthesis
protylonolide
in the
which
(24).
precursor
of h y b r i d
of the a d d e d
could
13-deoxycarminomycinone
23-hydroxy-desosaminyl
product
machinery
of p o l y k e t i d e
a blocked
me-
possibility
s_p_. K A - 4 6 4
inhibitor
from
glycosylation
(I).
formed
via C 2 3 -
by s u b s e q u e n t
intermediate
of d a u n o s -
biosynthesis.
Otherwise, and
(29). as
antibiotics
aglycone
(obtained
This
of S t r e p t o m y c e s
Sadakane
hydroxylation
amine
such
isolated
by c h e m i c a l
B-isorhodomycinone
Streptomyces
a 16-membered
Obviously,
to
to new a n t h r a c y c -
of a S t r e p t o m y c e s
derivatives
by m u t a n t s
aglycones
access
structure.
glycosyltransferase(s)
tylosin
fradiae),
or
new a n t i t u m o r
of c e r u l e n i n
substrate
mu-
to l - h y d r o x y - 1 3 -
the g l y c o s y l a t i n g
aglycones
the d a u n o m y c i n - p r o d u c i n g
range
employed
biosynthesis
or s y n t h e s i z e d
fermentation
but
the p e r t i n e n t
(21)
of u n u s u a l
for g e t t i n g
unusual
the p e r t i n e n t
to y i e l d
et al.
in d a u n o m y c i n
(23,24,25,26)
occurring
presence
and
of m o d i -
N-formyl-l-hydroxy-13-dihydrodaunomycin.
of ~ - c i t r o m y c i n o n e
been
such
species
formation
E-isorhodomycinone
be u s e f u l
demonstrated
minatus
aglycones
of o t h e r
MuWI,
Yoshimoto
blocked
and
the p e r t i n e n t
presence
when
by
through
l-hydroxy-ll-deoxy-carminomycin
glycosylations
mutants
(27,28)
line
and
enzymatic
blocked
thods
Otherwise,
to c u l t u r e s
as
instance,
(22).
of S,
In future,
such
for
~rhodomycinone
roseoviolacea
structures
In a m u t a s y n t h e t i c
convert
shown,
and
(20).
supplied
Actinomadura
glycoside
Cants
differences
of a k l a v i n o n e
221
mutations
aglycone
cosides
could
could
formation
alter
in s u c h
be o b t a i n e d .
The
the
intensely
(~-L-Daunosaminyl)-B-rhodomycinone) from
cultures
myces
strain
Barminomycins cinone
of m u t a n t D788 (32)
obtained
specifity
a manner
OXA-1874
(II)
that
potent was
of g l y c o s y l a t i o n
new u n u s u a l
monogly-
oxaunomycin
recently
(7-0-
isolated
of a b a u m y c i n - p r o d u c i n g
Strepto-
(31). and
unusual
by c u l t i v a t i o n
glycoside of
derivatives
S. p e u c e t i u s
of d a u n o m y -
in p r e s e n c e
of
222
U. GRAFEet al. NHe 2
~
:
HO ---0 ~ 0
---
CH20 H thio-
and
newly
discovered
I
fluorobarbituric
acid
anthracyclines
0
(33)
are a d d i t i o n a l
from m i c r o b i a l
OH
examples
of
sources.
OH
"'OH it
OH 7-O-Triqlycosides Aklavinone
and e - p y r r o m y c i n o n e
trisaccharides
mycins
cinerubins
formed
and
cosides by Oki
though et al.
C34)
a step (18)
by s t e p
several
by a p i g m e n t - n e g a t i v e aclacinomycins he,
(34)~
with chain
growth
different
mutant
of
Aglycones
~-isorhodomycinone,
by m u t a n t
are
e- and
MAI44-MI-KE303
from of
the
sugar
as ~ -,
glycosylation of e x p e r i m e n t s galilaeus,
Surprisingly,
were
the p e r t i n e n t
feeding
at C I O p o s i t i o n with
blocked
the h y b r i d
(35)
antibiotics
of
CGIO
As s h o w n
were
formed
transformed
A as sugar led
In a n o t h e r
S. c o e r u l e o r u b i d u s and
of
triglycosides
of y - r h o d o m y c i n o n e
(see below).
mutants
chain.
B- and e - r h o d o m y c i n o -
L-rhodosaminyl-2-deoxy-L-fucosyl-L-cinerulose (35,36).
monogly-
as a p r o d u c e r
B-pyrromycinone
to y i e l d
as a c l a c i n o -
pertinent
trisaccharides
S. g a l i l a e u s such
such
the
CGII
to series
and 2.
7-O-(L-rhodos-
aminyl-2-deoxyiL-fucosyl-L-cinerosyl. A)-B-isorhodomycinone
and
BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS
-~2-rhodomycinone ever,
feeding
cinone,
and
obtained
and
strain,
KE303,
4;
mutant
not
yield
trisarubicinol
aglycones
qalilaeus
such
added
carsame
was
triglycosides
obtained
(a p i g m e n t - l e s s
strain)
able
was
auramycinone,
to c o n v e r t
sulfurmyci-
and
e-pyrro-
ll-hydroxysulfurmycinone
containing
sugar
chains
either
of L - r h o d o s a m i n e - 2 - d e o x y - L - f u c o s e - L - c i n e r u l o s e
L-rhodosamino-2-deoxy-L-fucose-L-cinerulose
B (Fig.
Feeding
mutant
laeus
When
to the
l-hydroxysulfurmycinone,
ll-hydroxy-auramycinone,
to the p e r t i n e n t composed
adriamy-
glycoside.
were
of
2-hydroxyaklavinone
MAI44-MI
yielded,
to a b l o c k e d
quite
How-
OBB-III-838
as a k l a v i n o n e ,
l-hydroxy-auramycinone,
mycinone,
any
A)-13-dihy~rocarminomycinone)
Streptomyces
223
(37).
(7-O-(L-rhodosaminyl-2-deoxy-
of an a c l a c i n o m y c i n - p r o d u c i n g
several ~one,
38).
et al.
13-deoxodaunomycinone,
did
13-dihydrocarminomycinone
L-fucosyl-L-cinerosyl (Fig.
by Y o s h i m o t o
of d a u n o m y c i n o n e ,
steffimycinone
minomycinone mutant
were
similar,
A or of
4;
28/39).
of ~.
gali-
2-hydroxyaclacinomycin
A
(40).
If c h e m i c a l l y occurred IOR
synthesized
solely
with
configuration.
specificity 111-848, tion:
type
Despite
and
the
were
not
cinerubins
production
strains.
For
by S t r e p t o m y c e s
aklavinone
possessing
the a p p a r e n t
chemically
Ro-22-8507)
gesting
racemic isomer
of g l y c o s y l a t i n g
several
cinomycins
the
enzyme(s)
linones
instance,
the k e s a r i r h o d i n s DSM
2658
cer
cell
lines
been
(L1210,
P388
A and
etc.),
excep-
to a c l a sug-
by w i l d -
B produced
of
13-deoxy-
containing
other
( $-rhodomycinone-7-O-(rho-
described
in v i t r o
OBB-
7-O-L-rhodosaminyl-2-
a trisaccharide
trisaccharide
promising
so.
information
A or B d e r i v a t i v e s
Further,
new
are
9R,
substrate
In a d d i t i o n
trisaccharides
previously
possess
(28).
7S,
(with one
recent
purpurascens
these
Streptomyces
is m o r e
with e-rhodomycinone
of
of
natural
sugars
some
range
there
(41).
Though
conversion
of o t h e r
carminomycinone
d i n o s e ) 3) has
fed,
natural
aglycones
glycosylated
deoxy-b-fucosyl-L-cinerulosyl
combined
broad of
synthesized
was
the
(42). derivatives
activities so
of a n t h r a c y c -
against
far n o n e h a v e
some
been
can-
employ-
ed t h e r a p e u t i c a l l y . CiO-O-glycosides An
interesting
CiO-O-monoglycoside
aminyl)-y-rhodomycinone) specific
recombinant
iremyceticus
(III)
because
strain (43,44).
is i r e m y c i n of
its
of S t r e p t o m y c e s Other
rare
(iO-O-(L-rhodos-
isolation
cases
from
violaceus in w h i c h
an
inter-
subsD. only
C10-
224
U. GRAFE et al,
%
.0
I
~I0
i
11
0
R1
Rg
)H
R4
R7
R9
RIO
RII
RI2
aklavinone
H
OH
OH
Et
COOMe
H
H
B-rhodomycinone
H
OH
OH
Et
OH
OH
H H
e-rhodomycinone
H
OH
OH
Et
COOMe
OH
e-isorhodomycinone
OH
OH
OH
~%
COOMe
OH
H
c-pyrromycinone
OH
OH
OH
Et
COOMe
H
H H
~-pyrromycinone
OH
OH
OH
Et
OH
H
B-isorhodomycinone
OH
OH
OH
Et
OH
OH
H
~2-rhodomycinone
OH
OH
OH
Et
OH
OH
H
carminomycinone
H
OH
OH
COMe
H
H
H OH
2-OH-aklavinone
H
OH
OH
Et
COOMe
H
auramycinone
H
OH
OH
Me
COOMe
H
H
sulfurmycinone
H
OH
OH
CH2COMe
COOMe
H
H
l-OH-auramycinone
OH
OH
OH
Me
COOMe
H
H
l-OH-sulfurmycinone
OH
OH
OH
CH2COMe
COOMe
H
H
ll-OH-auramycinone
H
OH
OH
Me
COOMe
OH
H
ll-OH-sulfurmycinone
H
OH
OH
CH2COMe
OGOMe
OH
H
Fig.
4.
7-O-Triglycosylation mutants
of 2.
of a g l y c o n s
qalilaeus
and 2.
by b l o c k e d
coeruleorubidus
225
BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS
OH
0
glycosides
have
been
OH
formed
0
are CG8
compound
(iO-O-(L-rhodos-
aminyl-2-deoxy-L-fucosyl-L-cinerosyl
A)-Y-rhodomycinone)
tained
to a b l o c k e d
by
feeding
galilaeus
(18)
of y - r h o d o m y c i n o n e
and
the
naturally
occurring
ob-
mutant
cosmomycins
of 2.
A
(iO-O-
(L-rhodosaminyl-L-rhodinosyl-L-rhodinosyl)-y-rhodomycinone)
and
B (iO-O-(L-rhodosaminyl-2-deoxy-L-fucosyl-L-rhodinosyl)-Y-rhodomycinone)
(45,46).
(For
the
occurrence
of y - r h o d o m y c i n o n e
see M a t s u z a w a
Serirubicins
ditrisarubicins
MG344-hF49, different
and
several
from
in
(47)
moieties
chains
A447
both
aglycones.
as a g l y c o n e s
~ I~
while
cyaneus
cyaneus
SD.
representing
see
C and
IV) D
(48)
(49)
the
from ~.
are
complexes
containing
either
at 7-0 and
iO-O positions
Thus,
contain ~ -citromycinone
Streptomyces
(i) c.f.)
from ~.
formula
hexasaccharides
anthracycline
respectively A447
of s u g a r
trisaccharide
droxyserirubicin
cited
(general
D S M and a n t i b i o t i c s
of d i f f e r e n t
or m o d i f i e d of
cytorhodins
combinations
purpurascens composed
(47),
of a i O - O - p e n t a g ~ y c o s i d e
serirubicin
identical
and
l-hy-
and ~ 2 - r h o d o m y c i n o n e
cytorhodins,
ditrisarubicin,
are d e r i v a t i v e s
of
and
B-rhodomycinone
'"OH
R1.R2=sugarl-sugar2-sug or3 $ugarl"Rhn s u g a r 2 : d F u c or Rho sugar3" Rho or CinAor Acu or Cin B
228
U. GRAFE et al.
(49).
The
cosmocarcins
biosynthetic cells
studies
or e n z y m e s
possesssimilar
on e n z y m a t i c
have
not
been
structures
(50).
Up to now,
ClO-O-glycosylations
by e n t i r e
reported.
C4-O-glycosides Recently,
a new
class
of b i o s y n t h e t i c
of e - r h o d o m y c i n o n e
and
et al.
of
as p r o d u c t s
Earlier, lacea
by way
MuWI
succeeded
none
(V).
e-glycosides, compounds. too,
the
of
that
transformation
same
routes
(glucuronides
been
by C a s s i n e l l i
described
peucetius
employing
vat.
castaneus
Actinomadura
e-rhodomycinone,
known
or by
compounds
appears
anthracyclines
(51).
roseovio-
Nakagawa
et al.
4-O-(B-D-glucopyranosyl)-e-rhodomyci-
previously
new
It thus
the
cyclines
the
fermentations
microbial
ciple,
Streptomyces
in i s o l a t i n g
Unlike from
has
of g l u c o s y l a t i o n
for b i o c o n v e r s i o n
(52)
isolated
aklavinone
anthracyclinone
feeding
were
found
with
respect
which
are
to be B - g l y c o s i d i c to 4 - O - g l y c o s y l a t i o n ,
of a n t h r a c y c l i n e s
as d e s c r i b e d
glycosides
experiments,
follows,
for t r a n s f o r m a t i o n
in p r i n -
of a n t h r a -
in m a m m a l s .
_
R2
H H '~O
~
0
0
%
~00Me
OH
OH
RI:HOrOH OH
R2= COOH or CH20H
vE Cl3-O-glycosides Recently, ted
to
4-demethoxydaunomycinone
of S.
peucetius
A~uga
reptans
were
found
cinone
way
The cell
(M-99-FCE)
L (labiateae)
(53).
and
Daucus
latter
example
cultures
above
Similarly, carota
reduce
were
conver-
by a m u t a n t
L.
plant
strain
cells
of
(Umbr@lliferae)
and g l y c o s y l a t e
daunomy-
13(S)-dihydro-O(B-D-glycopyranosyl)-daunomycinone
of b i o c o n v e r s i o n
scribed
(VI)
to s t e r e o s p e c i f i c a l l y
to y i e l d
(VII). plant
and d a u n o m y c i n o n e
13-(S)-dihydro-13-O-B-D-glucopyranosides
illustrates
for the p r o d u c t i o n (54).
In a n a l o g y
the C l 3 - O - g l y c o s i d e s
are
nicely
the p o t e n t i a l
of
of new a n t h r a c y c l i n e s to the C 4 - O - d e r i v a t i v e s B-glycosides.
by de-
BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS
OH
0
227
0
""OH
Ivie~
0
O, R
o.
R=h.leorH
6 'JT'
~
o"
"OH
ONe 0
OH
OH
VI_/I Other The
glycosylations
newly
discovered
cilorubicin) galamine
moiety
7-O-bonded enzymatic
An e a r l y
of
methylation
cosides
similar
common
structures bound
aglycone,
type
sugar
to the
occurrence
of an
(55).
anthracyclinones ester
is a late
instance,
and
adriamycin
step
during (Fig.
in d a u n o conversion i;
56). of
or a d r i a m y c i n
4-O-demethyl-ll-desoxyadriamycin
is the
(15,16,17).
or by a d d i t i o n
to d a u n o m y c i n
4-O-demethyldaunomycinone
no-
in a d d i t i o n
the
for
in m u t a n t s
de-
moieties
to m o s t
group
(e.g.
to b i c y c l i c
of g l y c o s y l a t i o n
to its m e t h y l
to d a u n o m y c i n blocked
chain
suggesting
this and
acid
or s u l p h a n i l a m i d e
strains, of
out
occurring,
was
the
chain
the C 4 - h y d r o x y
carminomycin
ducing
step
of a k l a n o n i c
biosynthesis
ethionine
C2 of
aglycone
methylation
Methylation
of
carrying
at the
and
a trisaccharide
at C1 and
system
conversion
When
arugomycin
tetrasaccharide
Methylations
mycin
contain
(57)
(carminomycinone)
pro-
and g l y -
228
U. GRAFE et 01.
(58)
were
vine
was
produced.
As a p r o o f
synthesized
via
of N - m e t h y l a t i o n
N-methylation
of sugars,
of d a u n o s a m i n y l
akla-
aklavinone
(59). Acylations
of
sugar
N-acylations (14,60) lation
have
Oxidation part
of
been may
at C12
volved
have
In some
prior
to the
cases,
so far
group
e.g.
in Fig. been
have
steps
as
to c a r b o n y l
and
subsequent
oxidation
to y i e l d
adriamycin
(doxorubicin)
a single
step
e£ al.
(1988)
adriamycin
by m u t a n t
Reductions
of
As
the
rule,
inactive
of
latter
showing
aromatic and
pathway
The
two o t h e r
(5,16)
of C l 4 - m e t h y l
published
the c o n v e r s i o n
aglycone
constituents
of a n t h r a c y c l i n e s
at the
aglycone
reactions
lead
for
recent-
of d a u n o m y c i n
(63).
to m u c h
less
as
to C14
proof
S. p e u c e t i u s
The m a i n
such
group
Final
was
the in-
of C l 3 - m e t h y l e n e
function
process
of
oxidases
In a d d i t i o n ,
(56).
strain-
C I O and CII
to
or e v e ~
are
13S-dihydroderivatives
of d a u n o m y c i n ,
carminomycin,
adriamycin
- analogous cyclines
These
reduction
agents
iO-keto
deglycosylation
transformations
mammalian
of
group
of
steffimycin-type
anthra-
(64)
- reductive
organisms,
are
of C 7 - O - b o u n d e d commonplace
involving
sugars
to m a n y m i c r o b i a l
nucleotide
coenzymes
but
also
as r e d u c i n g
(65,6,8).
Reduction
of the
cycline-producing as by o t h e r
side
chain
organisms
microbial
by c o n c o m i t a n t
have
of p a r t i c u l a r
been
of c a r b o n y l
carbonyl under
species
companied
city
(succiny-
76 of
reductions
products.
formation and
the
in the
C8,
oxidation
hydroxyl
reaction
the
biosynthetic
reported:
in £ - r h o d o m y c i n o n e
CI,
i (5,6,7,8,62).
characterized,
been
of
subsequent
at p o s i t i o n s
of the g e n e r a l
not
of o x i d a t i o n s
as well
of o x y g e n
parts
types
ly by M e r l i
sugar
O-acylations
cyclisation
nucleus
as s h o w n
in d a u n o m y c i n
of d a u n o s a m i n
aglycone
introduction
constitutive
formylation)
(61).
tetracyclic
anthracyclines
and
reported. occur
at the
the
specific are
(acetylation
e.g.)
Oxidations
moieties
is c a r r i e d
oxygen
and g e n e r a
N-acetylation assistance
reduction
(66),
(67).
to c o n f i r m
of d a u n o m y c i n
out
limitation
by a n t h r a (20)
as well
occasionally
ac-
NMR e x p e r i m e n t s the
stereospecifi-
by S. w i l l m o r i i
to y i e l d
BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS
the
pertinent
Side the
chain
13(S)-hydroxy
carbonyl
excellent
derivative
reductions
surveys
have
of M a r s h a l l
229
(67,68).
been
reviewed
et al.
and
in d e t a i l
Fujiwara
in
and H o s h i n o
(6,7,8). Reductive
deglycosylation
aglycones
is a n o t h e r
and
tissues,
plant
of any chain
a given has
rases type
(69),
and w i t h
under
oxygen
monas
hydrophila,
capable
with
diaphorase, plant
of t r a n s f o r m a t i o n
A number
E. coli
pendent
that
from
the
the
the
feature
capacity
as well.
microbes
of a g i v e n
The
such
as Aero-
glycosides
deglycosylation
microbe
same strains
is l i k e w i s e
anthracycline
of r e d u c t i v e
c-reduc-
streptomyces
freundii
side
s u c h as
cytochrome
reductase
of o t h e r
added
7-O-sugar
flavoproteins
producing
and C i t r o b a c t e r
of d e g l y c o s y l a t i n g
suggesting
within
in m a m m a l i a n
Decomposition
containing
oxidase,
ferredoxin
7-deoxy-
both
(5,6,7,8).
mammalian
xanthin
occurs
limitation.
cells
antibiotic
demonstrated
P450,
the
of a n a e r o b i o s i s
and m i c r o b i a l
anthracycline
been
cytochrome
to g i v e p r e f e r e n t i a l l y
consequence
to form
is inde-
anthracyc-
lines. Studies
onto
the d e c o m p o s i t i o n
preparations as
intermediates
posed has
radical
been
within under
The
end of
completeness,
Redox
a specific enzymatic
full
but
also the
to the
activity
such
recovery
reference
should
the
usually
to o x i d a t i o n
as
beer.
decomposition spec.
of
the
be g i v e n
AM 33352
respiratory
prevented
to form
formed
and
ef-
7-deoxy-akla-
and d e t e r g e n t s not of
Thus,
frequently
sugar
pro-
2,4-dinitrophenol
only with the
on
regard
recovery
of
decomposition
to be a v o i d e d
of the p r o d u c e d
in or-
antibiotic.
to a k r o b o m y c i n
(73)
For as
(VIII).
moieties as m i x t u r e
of a c l a c i n o m y c i n
oxidoreductase conversion
radicals the
9,10-anhydro-13-deoxo-carminomycin
within are
with
2.
detergents
improvement
needs
maximum
microsomal free
7,7"-bis(7-deoxyaklavinone)
interesting
fermentation
of
accord
2,4-dinitrophenol seems
liver
Obviously,
of a c l a c i n o m y c i n s of
fermentation
reactions
B due
requires
effect
occurring
Aclacinomycins and
of
reaction.
of ATP p r o d u c t i o n
from
to a c h i e v e
a naturally
In full
of a c l a c i n o m y c i n - p r o d u c i n g
deglycosylation
its m e c h a n i s m
by rat
involvement
or m e m b r a n e - d i s o r i e n t i n g
anthracyclines at the
the
formation
deglycosylation
(72).
mechanism
with
70,6,7,8).
as a side
limitation
mg/l)
reductive
5;
mechanism,
Uncouplers
fectively
der
(Fig.
observed
oxygen
(60-200
vinone
compatible
the m y c e l i u m
chain.
to
were
subsequent
to a c l a c i n o m y c i n
of c o m p o n e n t s
A to a c l a c i n o m y c i n enzymatic
B (Fig.
or e v e n
2; 4 , 1 8 , 3 4 ) .
A, Y, Y by nonAs a
U. GR,~FE et al.
230
~I
C O O M e •"OH
~
u
c
2e.[e H+
-
ACN-A Cn iA
2,4-dinit rophenol
~ .....
0 0
OOMe
COOMe
"'"OH
552 COOOMeH
7- DAK N
BDAKN
Fig.
5. Reductive cleavage of 7-O-glycosides of various anthracyclinones ACM-A:
aclacinomycin
7DAKN:
7-deoxyaklavinone;
A;
BDAKN:
7.7"-bis(7-deoxyaklavinone)
BIOCONVERS1ON OF ANTHRACYCLINE ANTIBIOTICS
0
side
effect,
tion
of the
rubin
Y
specific
activity
was
oxidoreductase
A to L - a c u l o s e at
later
mogeneity
(m.w.
MAI44-MI
72000)
molecular
aclacinomycin, et al.
isolated
B. The
causes
forma-
corresponding
recently
(77)
shown
and
from
cine-
streptomyces
tail
possible
that
medium
from
cytoplasm.
strain, iOOOO
the
the
shown
been
culture
highly
lacinomycin
A has
In fact,
effective been
(76).
(48)
which
Recently,
it
to the
occurrence (78).
in the
mycelia
the
(76)
be s e c r e t e d
AM 3 3 3 5 2
localized
Aretz
the C I O ~ t r i g l y -
intracellular spec.
producing
specifically
while
could
conversion
carried
out
of a c l a c i n o m y c i n - p r o d u c i n g AM 33352
was
has
In this
supernatant higher
cultures, fractions
(80). was
The
S.
activity,
associated
were
with
inactive.
of a c l a c i n o m y c i n
by w a s h e d
qalilaeus
the
than
in
converting
aclacinomycin
versa,
localized
compartments
such
This
are
as the
finding
intra
and
supported
OBB-III
the
cells,
extracellular
and
in y o u n g
while
B and,
different
speculations
(79)
activities
A to Y and
within
B to ac-
or c o m p l e t e
a maximum
entire
Apparently,
spectively
vice
mycelia
attaining
oxidoreductases
membrane.
Streptomyces
enzyme,
oxidizes
of d i s r u p t e d
cultures
cellular
ho-
From Yoshimoto's data
for S t r e p t o m y c e s
S.
growing
of
to near
medium.
Conversely,
spec.
of
A of a c l a -
maximum
to s t r e p t o m y c e t e s
enzyme
activity
purified
the
rhodirubins
the
affected.
intramycelial
was
filtrate
the o x i d o r e d u c t a s e
g centrifugation
L-cinerulose Y attaining
of
of c y t o r h o d i n s
seemed
been
not
culture
occurrence restricted
that
coside
recently
has
the
The was
chain
the
fermentation
from
(76).
cinerubins,
have
converting
of
oxygen,
7-O-trisaccharide
the
fermentation
A and
in a c l a c i n o m y c i n
stages
galilaeus
of
during
(74,75).
cinomycin
needs
(71)
cinerubins
(pyrraculomycin)
strains The
OH
Cl-oxidation pertinent
231
subof
re-
cellular
spaces
concerning
and
the
a role
232
U. GRAFE et al.
of o x i d o r e d u c t a s e s
in the
transport
of a k l a v i n o n e
glycosides
(80). In the too,
cytorhodin-producing
Aretz
et al.
oxidoreductase lose
in b o t h
occurrence observed (see The
(48,77)
oxidizing
diversity
chains,
enzyme
was
DSM
2658,
of a p a r t i c u l a t e A and L-acu-
to L - c i n e r u l o s e
at C7 a n d CIO p o s i t i o n s .
apparently
of n a t u r a l l y
DurDl]rasc~ns
the p r e s e n c e
L-rhodinose
trisaccharide
of this
StreDtomvces showed
the m a i n
occurring
cause
cytorhodin
The
of the
structures
IV). same
authors
to s p e c i f i c a l l y
used
oxidoreductase
oxidize
f r o m S_. g a l i l a e u s
the C 7 - s u g a r
chain
ATCC
for p r o d u c t i o n
+) torhodins
U (ClO-O-rhn-rod-rod;
C7-O-rhn-dfuc-cin
B)
31133
of cy-
and V
(ClO-
+) O-rhn-rod-rod, as e.g.
C7-O-rhn-rod-acu)
cytorhodin
B
from other
cytorhodins
(ClO-O-rhn-rod-rod; C 7 - O - r h n - d f u c - c i n
fermentation broth:
such A) +).
mixture of
aclocinomycins A , Y a n d B
I chromcltography ~. aclacinomycin A
aclocinom,,cin B
conversion within the / mycelium by dich
enzymic conver sion by oxidoreductas
/silica
~
.
enzymicconversion
/ Qclacinom'
gel
ohron'~-tography
fcin
by oxidoreductase
Y
conversion by mycelium Fig.
6.
Mutual
conversions
chemical
+)
footnote:
and
rhn:
procedures
L-rhodosamine
dfuc: cinA,
of a c l a c i n o m y c i n s
enzymatic
2-deoxy-L-fucose cinB:
L-cineruloses
rod:
L-rhodinose
acu:
L-aculose
A and
B
by
BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS
233
By use of procedures
involving
similar
enzymatic
and non-enzyma-
tic conversions,
formation
of a c l a c i n o m y c i n s
A, Y, and B has
been
achieved
(Fig.
the
on the basis
of one fermentation
(80)
6). FUTURE
PERSPECTIVES
IN B I O C O N V E R S I O N
AND RELATED The advances sight
of modern
genetics
into the structures
k e t ~ e synthetases, well.
Genetic
by s w i t c h i n g - o n triguing
picture
tics
involving
gress
in this
efficient
structures
systems
streptomycetes
will profit
and polyketide
terest
pool
the t h e r a p e u t i c
value
(84,85)
of any given
the b i o s y n t h e t i c
alternate
chemical
for anthra-
future
could
steps
by the finding
However
of
inexhaus-
the practical
will mainly
product,
without
such as tetra-
from the seemingly
procedure
Proof
and actinorhodin
In addition,
of a n t h r a c y c l i n e s
advantage
antibio(81).
future work,
antibiotics
of the m i c r o o r g a n i s m s ( 8 7 , 8 8 ) .
or
the in-
work on biosynthesis
be stimulated
antibiotics
in b i o c o n v e r s i o n
The
genetic
related
fusion
by the elaboration
(82,83).
(77,86).
could
new hybrid
has been drawn
glaucescens
coelicolor
biotransformations
gene
and t r a n s f e c t i o n
as
of creating
At the horizon,
created
from extended
from Streptomyces
anthracyclines
by h e t e r o l o g o u s
structures
in-
such as poly-
the advantage
(43,44,63).
of t r a n s f o r m a t i o n
new a n t h r a c y c l i n e - t y p e tible
either
us to gain deeper enzymes,
and modify
field has been d e m o n s t r a t e d
Streptomyces
towards
enable
of b i o s y n t h e t i c a l l y
of a n t h r a c y c l i n e cenomycin
will
will offer
genes
anthracycline
cycline-producing any doubt,
ANTIBIOTICS
and to overproduce
"silent"
OF A N T H R A C Y C L I N E S
of b i o c o n v e r t i n g
recombinations
new a n t h r a c y c l i n e
from
procedure
depend
in-
on
and on the particular offer
in relation
to
routes. REFERENCES
i. H. S. E 1 K h a d e m (Ed), A n t h r a c y c l i n e antibiotics, Academic Press, New York (1982). 2. F. Arcamone, Properties of antitumor anthracyclines and new d e v e l o p m e n t s in their application: Cain Memorial Award Lecture, Cancer Res., 45, 5995-5999 (1985). 3. S. Tsuhagosni, T. Takeuchi and H. Umezawa, Antitumor Substances, in Biotechnology, H. J. Rehm et al. (Eds.), Verlag Chemie, Weinheim, Vol. 4, 509-530 (1986). 4. T. Oki, Recent d e v e l o p m e n t s in the process improvement of production of antitumor a n t h r a c y c l i n e antibiotics, in Adv. Biotechnol. Processes, Alan R. Liss, Inc., New York, Vol. 3, 163-196 (1984). 5. Z. Van~k, J. Mateju, J. Cudlin, M. BlumauerovA, P. Sedmera, J. Jizba, E. Kralovcov6, J. Tax and G. F. Gauze, Biosynthesis
234
6.
7. 8.
9.
iO. ii.
12.
13.
14.
15.
16. 17.
18.
19.
20.
21.
22.
U. GR.~FE et al.
of d a u n o m y c i n - r e l a t e d a n t h r a c y c l i n e s , in O v e r p r o d u c t i o n of M i c r o b i a l P r o d u c t s , V. K r u m p h a n z l et al. (Eds.), A c a d e m i c Press, New York, 2 8 3 - 3 0 0 (1982). V. P. M a r s h a l l , M i c r o b i a l t r a n s f o r m a t i o n s of a n t h r a c y c l i n e ant i b i o t i c s and analogs, Dev. Ind. M i c r o b i o l . , 26, 1 2 9 - 1 4 2 (1985). A. F u j i w a r a and T. Hoshino, A n t h r a c y c l i n e a n t i b i o t i c s . CRC Crit. Rev. B i o t e c h . , ~, 1 3 3 - 1 5 7 (1986). V. P. M a r s h a l l and P. W. Wiley, B i o m o d i f i c a t i o n of a n t i b i o t i c s by S t r e p t o m y c e s , in The B a c t e r i a , A c a d e m i c Press, New York, Vol. IX, 3 2 3 - 3 5 3 (1986). O. K. Sebek, D i r e c t e d b i o s y n t h e s i s of a n t i b i o t i c s , in Biot e c h n o l o g y , H. J. R e h m et al. (Eds.), V e r l a g Chemie, W e i n h e i m , Vol. 6a, 2 3 9 - 2 7 6 (1984). H. B r o c k m a n n and K. Bauer, R h o d o m y c i n , ein r o t e s A n ~ i b i o t i k u m aus A c t i n o m y c e t e n , N a t u r w i s s e n s c h a f t e n , 37, 4 9 2 - 4 9 3 (1950). R. J. W h i t e and R. M. S t r o s h a n e , D a u n o r u b i c i n and a d r i a m y c i n : p r o p e r t i e s , b i o s y n t h e s i s , and f e r m e n t a t i o n , in B i o t e c h n o l o g y of I n d u s t r i a l A n t i b i o t i c s , E. J. V a n d a m m e (Ed), M a r c e l Dekker, Inc., New Y o r k and Basel, 5 6 9 - 5 9 4 (1984). I. K i t a m u r a , H. Tobe, A. Y o s h i m o t o , T. Oki, H. N a g a n a w a , T. T a k e u c h i and H. Umezawa, B i o s y n t h e s i s of a k l a v i n o n e and a c l a c i n o m y c i n s , J. A n t i b i o t . , 3_~4, 1 4 9 8 - 1 5 0 0 (1981). A. Y o s h i m o t o , T. Oki and H. Umezawa, B i o s y n t h e s i s of daunomycin o n e from a k l a v i n o n e and £,-rhodomycinone, J. A n t i b i o t . , 3__33, 1 1 9 9 - 1 2 0 1 (1980). A. Y o s h i m o t o , T. Oki, T. T a k e u c h i and H. Umezawa, M i c r o b i a l c o n v e r s i o n of a n t h r a c y c l i n o n e s to d a u n o m y c i n by b l o c k e d mutants of S t r e p t o m y c e s c o e r u l e o r u b i d u s J. A n t i b i o t . , 33, 11581166 (1980). C. Wagner, K. Eckardt, G. S c h u m a n n , W. Ihn and D. T r e s s e l t , M i c r o b i a l t r a n s f o r m a t i o n of a k l a n o n i c acid, a p o t e n t i a l e a r l y i n t e r m e d i a t e in the b i o s y n t h e s i s of a n t h r a c y c l i n e s , J. Antibiot., 37, 6 9 1 - 6 9 2 (1984), K. E c k a r d t and C. Wagner, B i o s y n t h e s i s of a n t h r a c y c l i n o n e s , J. B a s i c M i c r o b i o l , 28, 1 3 7 - 1 4 4 (1988). C. Wagner, U n t e r s u c h u n g e n zur B i o s y n t h e s e der D a u n o m y c i n o n G l y c o s i d e des L e u k a e m o m y c i n - K o m p l e x e s in den S t r e p t o m y c e s gris e u s - S t ~ m m e n IMET JA 3933, IMET JA 5142 und IMET JA 5570: Eine Charakterisierung Daunomycin-geblockter Mutanten, Dissertation, J e n a (1987). T. Oki, A. Y o s h i m o t o , Y. M a t s u z a w a , T. T a k e u c h i and H. Umezawa, B i o s y n t h e s i s of a n t h r a c y c l i n e a n t i b i o t i c s by S t r e p t o m y c e s gal i l a e u s I. G l y c o s i d a t i o n of v a r i o u s a n t h r a c y c l i n o n e s by an aclacinomycin-negative m u t a n t and b i o s y n t h e s i s of a c l a c i n o m y cins from a k l a v i n o n e , J. A n t i b i o t . , 33, 1 3 3 1 - 1 3 4 0 (1980). A. Y o s h i m o t o , Y. M a t s u z a w a , T. Oki, T. T a k e u c h i and H. U m e z a w a New a n t h r a c y c l i n e m e t a b o l i t e s from m u t a n t s t r a i n s of S t r e p t o myces galilaeus MA 144-MI I. I s o l a t i o n and c h a r a c t e r i z a t i o n of v a r i o u s b l o c k e d m u t a n t s , J. A n t i b i o t . , 3__~4, 9 5 1 - 9 5 8 (1981). M. B l u m a u e r o v ~ , E. K r i l o v c o v l , E. Mateju, J. J i z b a and Z. Van6k, B i o t r a n s f o r m a t i o n s of a n t h r a c y c l i n o n e s in S t r e p t o m y c e s coeruleorubidus and ~. g a l i l a e u s , F o l i a M i c r o b i o l , 2_~4, 1 1 7 - 1 2 7 (1979). A. Y o s h i m o t o , Y. M a t s u z a w a , T. Oki, H. N a g a n a w a , T. T a k e u c h i and H. Umezawa, M i c r o b i a l c o n v e r s i o n of e - p y r r o m y c i n o n e and e-iso-rhodomycinone to l - h y d r o x y - 1 3 - d i h y d r o d a u n o m y c i n and Nformyl-l-hydrmxy-13-dihydrodaunomycin and their b i o a c t i v i t i e s , J. A n t i b i o t . , 3__~3, 1 1 5 0 - 1 1 5 7 (1980). M. N a k a g a w a , Y. H a y a k a w a , K. Imamura, H. Seto and N. Otake, M i c r o b i a l c o n v e r s i o n of e - p y r r o m y c i n o n e to l - h y d r o x y - l l - d e oxycarminomycin II, J. A n t i b i o t . , 3_88, 8 2 1 - 8 2 2 (1985).
BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS
23.
24.
25.
26.
27.
28.
29.
30.
31.
235
C. Wagner, K. hckardt, D. Tresselt, W. Ihn, G. Schumann und W. F. Fleck, L e u k a e m o m y c i n - g e b l o c k t e Mutanten des Streptomyces griseus und ihre Pigmente III. l l - D e s o x y d a u n o m y c i n o n d e r i v a t e aus der Mutante ZIMET 43699/G44, J. Basic Microbiol., 25, 687-693 (1985). G. Cassinelli, S. Forenza, G. Rivola and F. Arcamone, 13-Deoxocarminomycin, a new b i o s y n t h e t i c anthracycline, J. Natl. Products, 48, 435-439 (1985). W. Ihn, C. Wagner, W. F. Fleck, D. Tresselt, I. Eritt und P. Sedmera, L e u k a e m o m y c i n - g e b l o c k t e Mutanten des S. griseus und ihre Pigmente II. Neue 7 - H y d r o x y - b i s a n h y d r o - r h o d o m y c i n o n e aus der Mutante ZIMET 41707/IP, J. Basic Microbiol., 24, 525-532 (1984). S. Fuji, K. Kubo, O. Johdo, A. Yoshimoto, T. Ishikura, M. Naganawa, T. Sawa, T. Takeuchi and H. Hmezawa, A new anthracycline m e t a b o l i t e D788-I ( l O - c a r b o x y - 1 3 - d e o x o c a r m i n o m y c i n ) in d a u n o r u b i c i n beer, J. Antibiot., 39, 473-475 (1986). K. Krohn und B. Behnke, (Hoechst AG), Verfahren zur Herstelstellung yon Anthracyclinonen, Get. Offenschr. 3329185 (28.2. i985). T. Hoshino, Y. Setoguchi and A. Fujiwara, Microbial conversion of a n t h r a c y c l i n e antibiotics III. G l y c o s i d a t i o n of natural and chemically synthesized a n t h r a c y c l i n e aglycones, J. Antibiot., 37, 1469-1472 (1984). A. Yoshimoto, O. Johdo, Y. Watanabe, T. Ishikura, T. Sawa, T. Takeuchi and H. Umezawa, (Sanraku Ocean Co.), New anthracycline derivatives DCP-I and 2 p r e p a r a t i o n by fermentation of streptomyces with ~ - c i t r o m y c i n o n e or B-isorhodom~cinone, EP 242695 (28.10.1987). N. Sadakane, Y. Tanaka and S. Omura, Hybrid b i o s y n t h e s i s of a new m a c r o l i d e antibiotic by a d a u n o m y c i n - p r o d u c i n g microorganism, J. Antibiot., 36, 921-922 (1983).
A. Yoshimoto, S. Fujii, O. Johdo, K. Kubo, T. Ishikura, H. Naganawa, T. Sawa, T. Takeuchi and H. Umezawa, Intensely potent a n t h r a c y c l i n e antibiotic o x a u n o m y c i n produced by a blokked mutant of the d a u n o m y c i n - p r o d u c i n g microorganism, J. Antibiot., 39, 902-909 (1986). 32. T. Uchida, M. Imoto, Y. Takahashi, H. Odagawa, T. Sawa, K. Tatsuta, H. Naganawa, M. Hamada, T. Takeuchi and H. Umezawa, New potent anthracyclines, b a r m i n o m y c i n s I and II, J.Antibiot., 4_! , 404-408 (1988). 33. G. Cassinelli, A. Grein, S. Merli and G. Rivola, (Farmitalia Carlo Erba S.p.A.), M a n u f a c t u r e of new a n t h r a c y c l i n e glycosides related to d a u n o r u b i c i n by Streptomyces peucetius fermentation, and testing of their biological activity, EP 239774 (7.10.1987). 34. T. Oki, I. Kitamura, Y. Matsuzawa, N. Shibamoto, T. Ogasawara, A. Yoshimoto, T. Inui, H. Naganawa, T. Takeuchi and H. Umezawa, Antitumor a n t h r a c y c l i n e antibiotics, aclacinomycins A and analogues II. structural determination, J. Antibiot., 32, 801-819 (1979). 35. Y. Matsuzawa, A. Yoshimoto, T. Oki, H. Naganawa, T. Takeuchi and H. Umezawa, Biosynthesis of a n t h r a c y c l i n e antibiotics by Streptomyces galilaeus II. Structure of new a n t h r a c y c l i n e antibiotics obtained by microbial g l y c o s y l a t i o n and biological activity, J. Antibiot., 3__33, 1341-1347 (1980). 36. C. A. Claridge, M u t a s y n t h e s i s and directed b i o s y n t h e s i s for the production of new antibiotics, in Basic M i c r o b i o l o g y and New Developments in Biotechnology, A. Holaender et al. (Eds.), Plenum Publishing Corporation, 231-269 (1983).
236
37.
38.
39.
40.
41.
42.
43.
44.
45.
46. 47.
48.
49.
50.
51.
52.
53.
U. GRAFE et al.
A. Yoshimoto, O. Johdo, Y. Takatsuki, T. Ishikura, T. Sawa, T. Takeuchi and H. Umezawa, New a n t h r a c y c l i n e antibiotics obtained by microbial g l y c o s y l a t i o n of B - i s o r h o d o m y c i n o n e and a -rhodomycinone J Antibiot 37, 935-938 (1984) A. Yoshimoto, Y. Matsuzawa, Y. M ~ s u h a s h i , T. Oki, T. Takeuchi and H. Umezawa, Trisarubicinol, new antitumor a n t h r a c y c l i n e antibiotic, J. Antibiot., 34, 1492-1494 (1981). T. Hoshino and A. Fujiwara, Microbial conversion of anthracycline antibiotics IV. Study on the g l y c o s i d a t i o n of e - p y r r o mycinone by Streptomyces galilaeus 0B-III-848, J. Antibiot., 37, 1473-1474 (1984). T. Oki, A. Yoshimoto, Y. Matsuzawa, T. Takeuchi and H. Umezawa New a n t h r a c y c l i n e antibiotic: 2 - h y d r o x y a c l a c i n o m y c i n A, J. Antibiot., 3__44, 916-918 (1981). H. W. Fehlhaber, H. P. Kraemer, Ch. M. M. Franco, T. Mukhop a d h y a y and B. N. Ganguli (Hoechst AG), A n t h r a c y c l i n e antibiotics, Get. Offenschr. DE 3446052 (17.6.1986). G. C. S. Reddy, R. Sahai, H. W. Fehlhaber and B. N. Ganguli, Isolation and structure of a new £-rhodomycin compound produced by a Streptomyces species HPL Y-I1472, J. Antibiot., 3_88, 1423-1425 (1985). B. Schlegel and W. F. Fleck, New a n t h r a c y c l i n e antibiotics produced by i n t e r s p e c i f i c recombinants of streptomycetes. I. Selection of Streptomyces violaceus subsp, iremyceticus, an i r e m y c i n - p r o d u c i n g subspecies, J. Basic Microbiol., 2_00, 527530 (1980). W. Ihn, B. Schlegel, W. F. Fleck and P. Sedmera, New a n t h r a c y c line antibiotics produced by i n t e r s p e c i f i c recombinants of streptomycetes. III. Isolation and structure of iremycin, J. Antibiot., 33, 1457-1461 (1980). T. Ando, K. Hirayama, R. Takahashi, I. Horino, H. Shibai and A. Mural, The structure of a n t h r a c y c l i n e antibiotics, cosmomycins A and B, Agric. Biol. Chem., 49, 1207-1209 (1985). M. Li and Y. Chen, Structural studies on rhodilunancins A and B, J. Antibiot., 39, 430-436 (1986). T. Uchida, M. Imoto, H. Masuda, H. Yoshimoto, K. Imamura, T. Sawa, H. Naganawa, T. Takeuchi and H. Umezawa, New anthracycline antibiotics: serirubicin and l-hydroxyserirubicin, J. Antibiot., 38, 795-798 (1985). W. Aretz, H. G. Berscheid, G. Huber, H. W. Fehlhaber, H. P. Kraemer, H. H. Sedlacek and B. N. Ganguli, M i c r o b i o l o g i c a l production of a n t h r a c y c l i n e derivatives and their cytostatic use, Get. Offenschr. DE 3323025 (25.6.1983). A. Shimosaka, Y. Hayakawa, M. Nakagawa, K. Furihata, H. Seto and N. Otake, Isolation ofnew a n t h r a c y c l i n e antibiotics A447C and D, J. Antibiot., 40, 116-121 (1987). T. Tsuji, M. Takezawa, H. Morioka, T. Kida, I. Horino, Y. Eto and H. Shibai, A new a n t h r a c y c l i n e antibiotic CosmocarcJn A, Agric. Biol. Chem., 48, 3181-3184 (1984). G. Cassinelli, M. Ballabio, A. Grein, S. Merli, G. Rivola, F. Arcamone, B. Barbieri and T. Bordoni, A new class of biosynthetic anthracyclines: a n t h r a c y c l i n o n e glucuronides, J. Antibiot., 40, 1071-1074 (1987). M. Nakagawa, H. Kawai, Y. Hayakawa, H. Seto and N. Otake, 4-O-(B-D-glucopyranosyl)- c-rhodomycinone, a new microbial t r a n s f o r m a t i o n product of rhodomycinone, J. Antibiot., 38, 1622-1624 (1985). G. Cassinelli, A. Grein, S. Merli and G. Rivola (Farmitalia Co.), Microbial conversion of a n t h r a c y c l i n o n e s into the corresponding 1 3 ( S ) - d i h y d r o - 1 3 - O - B - D - g l u c o p y r a n o s i d e and their biological activity, GB 2187732 (16.9.1987). 2
'
'
' '
"
BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS
54.
237
S. Merli, b. G a r a f o n o and A. Guicciardi, A. new class of ant h r a c y c l i n e glycosides, Poster p r e s e n t e d on the 2nd International S y m p o s i u m on New B i o a c t i v e M e t a b o l i t e s from M i c r o o r g a nisms, Gera, GDR, May 2-7, 1988. 55. H. Kawai, Y. Hayakawa, M. Nakagawa, K. Furihata, H. Seto and N. Otake, Arugomycin, a new a n t h r a c y c l i n e antibiotic. II. S t r u c t u r a l elucidation, J. Antibiot., 40, 1273-1282 (1987). 56. T. Oki, Y. Takatsuki, H. Tobe, A. Yoshimoto, T. Takeuchi and H. Umezawa, M i c r o b i a l c o n v e r s i o n s of daunomycin, c a r m i n o m y c i n I and f e u d o m y c i n A to adriamycin, J. Antibiot., 3_~4, 1229-1231 (1981). 57. G. Cassinelli, G. Rivola, D. Ruggieri, F. Arcamone, A. Grein, S. Merli, C. Spalla, A. M. Casazza, A. Di Marco and G. Pratesi, New a n t h r a c y c l i n e glycosides: 4 - O - d e m e t h y l - l l - d e o x y d o x o r u b i c i n and a n a l o g u e s from S t r e p t o m y c e s p e u c e t i u s var. aureus, J. Antibiot., 35, 176-183 (1982). 58. M. Blumauerovi, J. Jizba, K. Stajner and Z. Van~k, Effect of D , L - e t h i o n i n e on the b i o s y n t h e s i s of a n t h r a c y c l i n e s in Streptom¥ces c o e r u l e o r u b i d u s Biotechnol. Leth., ~, 471-476 (1979). 59. T. Oki, M i c r o b i a l t r a n s f o r m a t i o n of a n t h r a c y c l i n e a n t i b i o t i c s and d e v e l o p m e n t of new a n t h r a c y c l i n e s , in A n t h r a c y c l i n e antibiotics, H. S. E1 K h a d e m (Ed), A c a d e m i c Press, New York, 75-96 (1982). 60. B. K. Hamilton, M. S. Sutphin, M. C. Thomas, D. A. W a r e h e i m and A. A. Aszalos, M i c r o b i a l N - a c e t y l a t i o n of d a u n o r u b i c i n and d a u n o r u b i c i n o l , J. Antibiot., 30, 425-426 (1977). 61. K. Ishii, S. Kondo, Y. Nishimura, M. Hamada, T. Takeuchi and H. Umezawa, D e c i l o r u b i c i n , a new a n t h r a c y c l i n e antibiotic, J. Antibiot., 3_~6, 451-453 (1983). 62. W. D. Ollis, I. O. Sutherland, R. C. Cordner, J. J. Gordon and G. A. Miller, The i n c o r p o r a t i o n of p r o p i o n a t e in the b i o s y n t h e sis of e - p y r r o m y c i n o n e (rutilantinone), Proc. Chem. Soe. London, 347-349 (1960). 63. S. Merli, L. Garofano, M. Caruso, A. C o l o m b o and F. Torti, P h y s i o l o g i c a l and g e n e t i c study on S t r e p t o m y c e s p e u c e t i u s and its mutants, in Abstract of 2nd I n t e r n a t i o n a l S y m p o s i u m on O v e r p r o d u c t i o n of M i c r o b i a l Products, Ceske Budejovice, Czechoslovakia, July 3-8, 1988, p. 57. 64.P. F. Wiley, D. W. Elrod, J. M. S l a v i c e k and V. P. Marshall, M i c r o b i a l c o n v e r s i o n of s t e f f i m y c i n and s t e f f i m y e i n B to i O - d i h y d r o s t e f f i m y c i n and i O - d i h y d r o s t e f f i m y c i n B, J. Antibiot., 33, 819-823 (1981). 65. A. A. Aszalos, N. R. Bachur, B. K. Hamilton, A. F. Langlykhe, P. P. Roller, M. Y. Sheikh, M. S. Sutphin, M. C. Thomas, D. A. W a r e h e i m and L. H. Wright, M i c r o b i a l r e d u c t i o n of the side chain carbonyl of d a u n o r u b i c i n and N - a c e t y l d a u n o r u b i c i n , J. Antibiot., 30, 50-58 (1977). 66. Y. Ogawa, S. M i z u k o s h i and H. Mort, M i c r o b i a l c o n v e r s i o n of r u b e o m y c i n A to r u b e o m y c i n B, J. Antibiot., 36, 1561-1563 (1983). 67. K. Dornberger, R. Hdbener, W. Ihn, H. T h r u m and L. Radics, M i c r o b i a l c o n v e r s i o n of d a u n o r u b i c i n into N - a c e t y l - 1 3 ( S ) - d i h y d r o d a u n o m y c i n and b i s a n h y d r o - 1 3 - d i h y d r o d a u n o m y c i n o n e , J. Antibiot. 38, 1219-1225 (1985). 68. S. Penco, G. Cassinelli, A. Vigevani, P. Zini, G. Rivola and F. Arcamone, D a u n o r u b i c i n A l d o - K e t o r e d u c t a s e s : E n a n t i o f a c e d i f f e r e n t i a l r e d u c t i o n of the s i d e - c h a i n carbonyl g r o u p of a n t i t u m o r a n t h r a c y c l i n e s . C o r r e c t i o n of the s t e r e o c h e m i s t r y at C(13) of 4 - d e m e t h o x y - 1 3 - d i h y d r o d a u n o r u b i c i n , Gazz. Chim. Ital., 115, 195-197 (1985). 69. T. Oki, T. Komiyama, H. Tone, T. Inui, T. Takeuchi and H.
238
70.
71.
72.
73. 74.
75.
76,
77.
78.
79.
80.
81.
82.
83.
84.
85.
U. GRAFE et al.
Umezawa, R e d u c t i v e c l e a v a g e of a n t h r a c y c l i n e g l y c o s i d e s by m i c r o s o m a l N A D P H c y t o c h r o m e C r e d u c t a s e , J. A n t i b i o t . , 30, 6 1 3 - 6 1 5 (1977). T. K o m i y a m a , T. Oki and T. Inui, A p r o p o s e d r e a c t i o n m e c h a n i s m for the e n z y m a t i c r e d u c t i v e c l e a v a g e of g l y c o s i d i c b o n d in a n t h r a c y c l i n e a n t i b i o t i c s , J. A n t i b i o t . , 32, 1 2 1 9 - 1 2 2 2 (1979). E. K r ~ l o v c o v l and Z. Van~k, E f f e c t of a e r a t i o n e f f i c i e m c y and c a r b o n s o u r c e on the p r o d u c t i o n of a n t h r a c y c l i n e s in S t r e p t o m y c e s g a l i l a e u s , F o l i a m i c r o b i o l . , 2__44, 3 0 1 - 3 0 7 (1979). U. Gr~fe, K. D o r n b e r g e r , W. F. F l e c k and G. Schumann, I n h i b i tors of the c l e a v a g e of a c l a c i n o m y c i n s , B i o t e c h n o l . Lett., ~, 8 3 7 - 8 4 2 (1987). K. Imamura, A. O d a g a w a and K. Tanabe, A k r o b o m y c i n , a new ant h r a c y c l i n e a n t i b i o t i c , J, A n t i b i o t . , 37, 8 3 - 8 4 (1984). N. N a k a g a w a , K. F u r i h a t a , H. F u r i h a t a , K. Adachi, H. Seto and N. Otake, The s t r u c t u r e of new a n t h r a c y c l i n e , c i n e r u b i n X, p r o d u c e d by a b l o c k e d m u t a n t of S t r e p t o m y c e s v i o l a c e o c h r o m o genes, J. A n t i b i o t . , 39, 1 1 7 8 - 1 1 7 9 (1986). D. T r e s s e l t , W. Ihn, B. S c h l e g e l und W. F. Fleck, P y r r a c u l o mycin, ein n e u e s A n t i b i o t i k u m aus A c t i n o m y c e t e n , Z. Chem., 27, 4 4 4 - 4 4 5 (1987). A. Y o s h i m o t o , T. O g a s a w a r a , I. K i t a m u r a , T. Oki, T. Inui, T. T a k e u c h i and H. Umezawa, E n z y m a t i c c o n v e r s i o n of a c l a c i n o m y c i n A to Y by a s p e c i f i c o x i d o r e d u c t a s e in S t r e p t o m y c e s , J. A n t i bio%., 32, 4 7 2 - 4 8 1 (1979). W. A r e t z and H. G. B e r s c h e i d , O x i d a t i o n of c y t o r h o d i n g l y c o s i des, in A b s t r a c t s 2nd I n t e r n a t i o n a l S y m p o s i u m on O v e r p r o d u c t i o n of M i c r o b i a l P r o d u c t s , C e s k e B u d e j o v i c e , C z e c h o s l o v a k i a , July 2-8, 1988, p. 71. U. Gr~fe, K. D o r n b e r g e r , W. F. Fleck, E. J. B o r m a n n and W. Ihn, B i o c o n v e r s i o n of a c l a c i n o m y c i n A to Y by an i n t r a c e l l u l a r enzyme of 5 t r e p t o m y c e s spec. AM 33352, B i o t e c h n o l . Left., i_00, 1 6 7 - 1 7 0 (1988). T. Hoshino, Y. S e k i n e and A. F u j i w a r a , M i c r o b i a l c o n v e r s i o n of a n t h r a c y c l i n e a n t i b i o t i c s I. M i c r o b i a l c o n v e r s i o n of a c l a c i n o m y c i n B to a c l a c i n o m y c i n A, J. A n t i b i o t . , 36, 1 4 5 8 - 1 4 6 2 (1983). U. Gr~fe, K. D o r n b e r g e r , W. F. F l e c k and C. F r e y s o l d t , C o m p a r t m e n t a t i o n of e n z y m e s i n t e r c o n v e r t i n g a c l a c i n o m y c i n s in S t r e p t o m y c e s s p e c i e s AM 33352, J. B a s i c M i c r o b i o l . , 2__9, 17-23 (1988). S. Omura, H. Ikeda, F. M a l p a r t i d a , H. M. K i e s e r and D. Hopwood, P r o d u c t i o n of new h y b r i d a n t i b i o t i c s , m e d e r r h o d i n s A and B, by a g e n e t i c a l l y e n g i n e e r e d strain, A n t i m i c r o b i a l Agents, C h e m o ther., 2_99, 13-19 (1986). S. L a m p e l and W. R. Strohl, T r a n s f o r m a t i o n and t r a n s f e c t i o n of anthracycline-producing s t r e p t o m y c e t e s , Appl. Environ. M i c r o biol., 51, 1 2 6 - 1 3 1 (1986). G. S c h u m a n n , C. W a g n e r and H. KrOgel, S e l f - c l o n i n g in S t r e p t o m y c e s g r i s e u s of g e n e s i n v o l v e d in d a u n o m y c i n b i o s y n t h e s i s , A b s t r a c t s of 2nd I n t e r n a t i o n a l S y m p o s i u m on New B i o a c t i v e Met a b o l i t e s from M i c r o o r g a n i s m s , Gera, GDR, May 2-7, 1988, p. 152. S. Yue, H. M o t a m e d i , E. W e n d t - P i e n k o w s k i and C. R. H u t c h i n s o n , A n t h r a c y c l i n e M e t a b o l i t e s of T e t r a c e n o m y c i n C - n o n p r o d u c i n g S t r e p t o m y c e s g l a u c e s c e n s m u t a n t s . J. B a c t e r i o l . , 167, 5 8 1 - 5 8 6 (1986). H. M o t a m e d i and C. R. H u t c h i n s o n , C l o n i n g and h e t e r o l o g e o u s e x p r e s s i o n of a g e n e c l u s t e r for the b i o s y n t h e s i s of t e t r a c e n o m y c i n C, the a n t h r a c y c l i n e a n t i t u m o r a n t i b i o t i c of S t r e p t o m y c e s g l a u c e s c e n s , Proc. Natl. Acad. Sci. USA, 84, 44454449 (1987).
BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS 86.
H. G. F l o s s , S. P. C o l e , X. G. H e , B. A. M. R u d d , J . D u n c a n , S. Fujii, C. J. Chang and P. J. Keller, Biosynthesis of polyketide antibiotics. In Regulation of secondary metabolite formation, H. Kleinkauf et al. (Eds), Verlag Chemie, WeJnheim, 283-304 (1986). 87. H. Drautz, P. R e u s c h e n b a c h and H. Z~hner, Metabolic products of microorganisms. Elloramycin, a new a n t h r a c y c l i n e - l i k e antibiotic from Streptomyces olivaceus. Isolation, characterization structure and biological properties, J. Antibiot., 3__88, 1291-1301 (1985). 88. K. H~tter, E. Baader, K. Frobel, A. Zeek, K. Bauer, W. Gau, J. Kurz, T. Schr6der, Ch. Wfinsche, W. Karl and D. Wendisch, V i r i p l a n i n A, a new a n t h r a c y c l i n e antibiotic of the nogalamycin group. I. Isolation, characterization, degradation reactions and biological properties, J. Antibiot., 39, 1193-1204 (1986). 89. K. Eckardt, G. Schumann, D. Tresselt and W. Ihn, Biosynthesis of anthracyclinones: Isolation of a new early cyclization product aklaviketone, J. Antibiot., 4__~i, 788-793 (1988).
239