Advances in bioconversion of anthracycline antibiotics

Advances in bioconversion of anthracycline antibiotics

Biotech. Adv. Vol. 7. pp. 215-239, 1989 0734-9750/89 $O.OO + .50 ~ 1989 Maxwell Pergamon Macmillan plc Printed in Great Britain. All Rights Reserved...

961KB Sizes 52 Downloads 131 Views

Biotech. Adv. Vol. 7. pp. 215-239, 1989

0734-9750/89 $O.OO + .50 ~ 1989 Maxwell Pergamon Macmillan plc

Printed in Great Britain. All Rights Reserved

A D V A N C E S IN B I O C O N V E R S I O N OF ANTHRACYCLINE ANTIBIOTICS* U. GRAFE, K. DORNBERGER, C. WAGNER and K. ECKARDT C e n t r a l Institute

of Microbiology a n d Experimental Therapy, GDH Academy of Sciences, P.O. Box 73, lena 6900, G.D.R.

ABSTRACT During

the

tential

last decade

usefulness

in c a n c e r

new microbial

strains

les

cells

employing

bioconversion late

new anthracycline-type treatment

or e n z y m e s .

transformations

have been

a n d by b i o c o n v e r s i o n s

of a n t h r a c y c l i n e

structures

s u c h as are

supplied

of p r e c u r s o r

We h i g h l i g h t structures

w i t h po-

recent

b o t h by molecu-

advances

w i t h the m a i n

in

f o c u s on

c a r r i e d o u t by o x i d o r e d u c t a s e s .

KEYWORDS

Anthracycline oxidations lations,

antibiotics,

and reductions,

methylations,

bioconversions

by cells

glycosylations,

and enzymes,

reductive

deglycosy-

acylations. INTRODUCTION

The anthracyclines related tes.

form a still

antibiotics

mostly

Some representatives

position

in a n t i c a n c e r

unomycin

and adriamycin

modifications Both state

of

les h a v e

the art been

The continuing fies

leading

the b i o s y n t h e s i s

of t h i s

have

to m o r e

family occupy

been

potent

in b i o c o n v e r s i o n s

more

(1,2,3).

subjected and

of a n t h r a c y c l i n e s

development

f a m i l y of

from cultures

chemotherapy

excellently

highlighting

growing

derived

in the

an o u t s t a n d i n g

In p a r t i c u l a r , so e x t e n s i v e

less (4,5)

toxic

field

findings

derivatives.

215

reviewed

molecu(6,7,8,9).

of a n t h r a c y c l i n e s and evaluating

*To Prof. Dr. F. Bergter on the occasion of his 65th

da-

chemical

a n d the p r e s e n t

of a n t h r a c y c l i n e - t y p e

and comprehensively

recent

structurally of a c t i n o m y c e -

birthday

them

justiin

U. GRAFE etal.

216

comparison

with

Referring

cyclines.

deal

evidence.

pattern

with

Particular

role

cycline

foregoing

to the b a s i c

preferentially

their

the

of b i o s y n t h e s i s ,

late m i c r o b i a l

reference

in r e d u c t i v e

the

cyclines

first and have

tetracyclic

description

Bauer been

aglycone

revealed

with

one p r o p i o n a t e

15,16),

cinones,

acid,

known

The

that

formations Negative

the

one hand,

from

Thus, only

aglycone

and

has

IU-222

been

in the

This

case

the

late

lation

and

splitting

release

the

through

absence

to o t h e r of

supported

mutants

classes the

were

pathway off

of any

a series

5,11, and

of c o n v e r s i o n

of

on the other, precedes

musug-

trans(14).

by S t r e p t o m y c e s

view The

that • - r h o d o m y same

picture

has

~riseus

mu-

found

belonging grown

to be c o s y n t h e -

to d i f f e r e n t

in m i x e d

culture

~on

of a so far u n i d e n t i f i e d

for a s e r i e s catalyzing

the m e t h o x y c a r b o n y l a glycosylated

i;

Streptomyces

were

of d a u n o m y c i n s

(Fig.

daof

7-O-rhodosaminyl-E-rhodo-

(14).

presence

is r e s p o n s i b l e

of

B-pyrromy-

anthracyclines

the

with

i;

many

by b a u m y c i n - n e g a t i v e

MEI30-A4

glycosides

intermedi(Fig.

from e-rhodomycinone

c-rhodomycinone

studies

where

indicated

which

c- and

microorganisms

glycosylated

cosynthetic

during

comitant

of

as

of

H-isorhodomycinones,

and b a u m y c i n s

leading

daunomycinone

complex

but

early

from w h i c h

7-O-daunosaminylaklavinone

rhodomycinone-producing media.

and

coeruleorubidus

mutant

in fact,

drawn

e-

such

stu-

starting

via a s e r i e s

aklaviketone

are d e r i v e d

in the b i o c o n v e r s i o n

aklavin

coeruleorubidus

solid

aglycones

pathway

leads

aklavinone,

at the

Biosynthetic

detected

and

of d a u n o m y c i n

glycosylation

the

results

mycinone,

enzymic

recently

the p r o d u c i n g

to d a u n o m y c i n

at

units

anthra-

substituents

moieties.

ester

intermediate,

of S t r e p t o m y c e s

sized

three

its m e t h y l

within

in the

in 1 9 5 0 by

occurring

the o l i g o k e t i d e

acetate

adriamycinone

on the

daunomycinone

tants.

and

of a n t h r a -

published

150 n a t u r a l l y

sugar

that

nine

biosynthesis

aklavinone,

cinone,

in the

anthracycline

and

bioconversions 12,13).

than

e ,B,~, ~ - r h o d o m y c i n o n e s ,

unomycinone,

been

and

to a u n i q u e

other

and

including

aklanonic

gested

conversions

OF A N T H R A C Y C L I N E S

differing

unambiguously

transformations

tants

and

of a n t h r a c y c l i n e s

(iO) m o r e isolated,

dies

the

of a n t h r a -

to o x i d o r e d u c t a s e s

deglycosylation

will

trisaccharides.

Brockmann

ates

review

bioconversions

is g i v e n

BIOSYNTHESIS

After

this

of c o n v e r s i o n s both

groups,

intermediate

glycosy-

without (17).

con-

ch

co

r,o

(3 0

0

0

c~

(3

o o~ ~<

\

~X

~ OH 0

""

(or tautomeric forms)

o ,onon,c oc,0

~ via methyl ester 0 ~1~ COOMe

OH 0

/

decaketide

~" ~ L [ I /1 J " O H ~ ~ pyrrom,cmon~,~ X ~HT~OH~ "~ \ n alw COOHe a__driamycinone ~ daunfmycinone ~- rhodomycinone ~ ~ "'OH cklavincne .._carmiAnom),cinone. ~_isorhVodom),cinone~~h.l~H ~) 6H OH i3 jsorh'~'od0mycinone 10-demethoxycarbonyI-Erhodomycinone v • -~2- rhodomycinone _j3- rhodomycinone V ~- rhodomycinone

(3-Pyrrom~cinonex

a ,ov,ooo,

4"

1 propionyl-CoA 9 malonyl- CoA

COOCoA

N

N

Z

Z

> Z -]

Z ©

© Z

¢0

218

U. G R A F E et al.

Variations enzyme occur such

of

the scheme depicted

A i n s t e a d of p r o p i o n y l in t h e b i o s y n t h e s i s

as n o g a l a m y c i n s

Until

now,

sugars

tives

Possibly,

amine,

the starting

of a c l a c i n o m y c i n has been

tially

t i o n by a s p e c i f i c

to L - c i n e r u l o s e

to a c l a c i n o m y c i n s

containing

other

the pertinent

pyrromycinones) thracycline sugars

A and,

(Fig.

2;

the

deriva-

in turn,

19).

Similarly,

formed

Other

either of

out w i t h

ini-

2-deoxy-L-fu-

sugar

oxida(L-rhodi-

and L-cinerulose trisaccharides

by g l y c o s y l a t i o n

the a g l y c o n e

during

an-

or a c y l a t i o n s

the g l y c o s i d e s

(18),

information

of

(e.g. c -

late conversions

but d e t a i l e d

triyiel-

SI)

Subsequent

to L - a c u l o s e

s u c h as m e t h y l a t i o n s

free sugars,

(MA 144

could

In the

of a k l a v i n o n e

of t h e t e r m i n a l

a n d B.

are

m a y a l s o be c a r r i e d

than with

(12,18,19).

under-

L-daunos-

conversions.

disaccharide

or o x i d a t i o n

biosynthesis

like

(5) which,

formation

later,

A, Y,

aglycones

aglycones

nucleoside

sugars

of L - r h o d o s a m i n e ,

oxidoreductase

B led

with

been

to be a s t e p by s t e p p r o c e d u r e

composed

nose)

18 d i f f e r e n t

less w e l l

for a d d i t i o n a l

(MA 144 NI)

co-

block

antibiotics

so far k n o w n has

yield

(aklavin),

a trisaccharide

the

starting

biosynthesis

and L-rhodinose

acetyl

building

(7).

and L-rhodinose

shown

via monosaccharide

cose,

of

might

material

1 involving initial

anthracycline-type

aglycones

transformations

2-deoxy-L-fucose,

saccharides ding

pathway

to a n t h r a c y c l i n e

of g l u c o s e - 6 - p h o s p h a t e

provide case

of o t h e r

steffimycins

the b i o g e n e t i c

bound

stood.

and

in Fig.

C o A as the

of

rather

is not y e t

available. EARLY Much

w o r k has

quence netic The

of

depicted

or t h e r e a f t e r

tetracyclic

the

system,

reader

or s u g a r s ,

of a n t h r a c y c l i n e 3 summarizes

i;

15,16,88).

giving

are

and even

activity.

antibiotics

Transformations

details

cannot

to e a r l i e r

reactions

structural

be g r o u p e d

starting

diversity

be g i v e n

of

here,

(4,5,6,7).

of

reducing as

pro-

of the

to b i o l o g i c a l l y

changes

to d e c o m p o s i t i o n s

They could

parts

reviews

leading

i).

so far

the b i o s y n t h e t i c

at d i f f e r e n t

se-

bioge-

(Fig.

bioconversions

r i s e to the n a t u r a l

Further

to p a r t i c u l a r

the p r o p e r

a n d the g e n e r a l

throughout

oxidations

m a y be r e f e r r e d

transformations

biological

thus

structure.

anthracyclines, nes

(Fig.

BIOSYNTHESIS

to e x p l o r e

biosynthesis

occurring

involve

ANTHRACYCLINE

in the past,

in Fig.

at t h e a g l y c o n e

anthracycline

Late

spent,

in a g l y c o n e

interrelationship

with aklavinone

and

BIOCONVERSIONSIN

been

events

scheme

known cess

AND LATE

their

active aglyco-

or d e l e t i n g

follows:

BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS

~./ Akn- Rhn

~///"

219

yHL-rhodosamine H (Rhn) NMe-2

k / ~ 2OH-L-deoxyf ucose H~)O~H (dFuc)

Akn-Rhn-dFuc

~

~H L_rhodinos e

H

(Rho) Akn-Rhn-dFuc-Rho (MAI44NI)

Akn-Rhn-dFuc- cinerulose A {aclacinornycinA)

!

Akn- Rhn-dFuc-L-aculose(aclacinomycin Y )

~k

~L formationof ether linkage Akn-Rhn-dFuc-cinerulose B (aclacinomycin B)

Fig.

2.

Terminal

steps

of a c l a c i n o m y c i n

by S t r e p t o m y c e s - glycosylations

galilaeus

1

H2

biosynthesis

(17,18)

of a n t h r a c y c l i n o n e s

- oxidations

and

- reductions

of a n t h r a c y c l i n o n e s

- methylations - acylations - oxidations

and

reductions

GLYCOSYLATIONS Investigations

synthesized

confirm

the p r o p o s e d

through

mutant

directed

components

OF A N T H R A C Y C L I N O N E S

into glycosylation

mically

of b l o c k e d

of s u g a r

of n a t u r a l l y

anthracyclinones biosynthetic

strains)

have

pattern

or to i s o l a t e

biosynthesis,

BY I N T A C T C E L L S occurring

been performed (e.g.

either

to

by c o m p l e m e n t a t i o n

new unusual

mutasynthesis,

or c h e -

structures

and hybrid

biosyn-

220

U.GRAFE etal. -demethylation, decarboxylation, !/ oxidation -oxidation

1 ~ J~ C O ~ y Ja t i o n

-oxidation /

COOMe

- methylation 1 ~ '

-oxidation

~

' ~-

- g lucu ronida tion - glucosylation

-deglycosylation, reduction

--~r"~ _gl ycosylat ion s, - ~condory transformations of sugars 0 ~-reduction / II -glycosylation of 13-dihydro

~'i@

-daunomycinone

deri~tive

~

~idation

partial structure

6. Fig.

3.

Biosynthetic cyclinone

thesis

(20).

are only briefly

cells

of b l o c k e d

of

the tetracyclic

CIO,

been tes

of mono,

observed

the g l y c o s y l a t i o n s

strains

nucleus,

and C13 hydroxy

formation

of

mentioned

mutant

similar

have been

while disaccharides

so far r e p o r t e d ,

have been

converting

but

groups

here,

trisaccharides

in t h e b i o s y n t h e s i s

of the a n t h r a -

skeleton

The majority

which

modifications

carried

out by

the C T - h y d r o x y

glycosylations

established.

group

of C4,

In g e n e r a l ,

and even pentasaccharides have

been

shown

of t h e t r i s a c c h a r i d e s

as

(Fig.

has

intermedia2;

18}.

C7-O-glycosides Observed

monoglycosylation

nes b y a g l y c o n e - n e g a t i v e biosynthetic matic

and other cones

Feeding

strains

of a n t h r a c y c l i n e s by

Streptomyces

s u c h as

mycinone

idiotrophic spp.

have

E-rhodomycinone,

sugars

as s h o w n

strains

been

of

confirmed

of

reported

~-pyrromycinone,

fed a g l y c o the o v e r a l l

in Fig. S.

i. E n z y -

coeruleorubidus

for v a r i o u s

agly-

and e-isorhodo-

(20,21). of

synthetic lines

pathway

glycosylations

with different

mutants

aglycones pathway

characteristic

and

adriamycin,

the

fed a g l y c o n e

which

occupy

to b l o c k e d of

the p a r e n t a l

or m o d i f i e d (e.g.

an e a r l i e r

mutants

yielded strain

glycosides

due

isorhodomycinone,

position either

in the b i o -

anthracyc-

s u c h as d a u n o m y c i n to t r a n s f o r m a t i o n s

see b e l o w ) .

However

of

BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS

there

may

be s t r a i n - s p e c i f i c

missing

glycosylation

mutants

of

S. c o e r u l e o r u b i d u s

as E - p y r r o m y c i n o n e genera, fied was

e.g.

were

noticed

procedure,

qoeruleorubidus

E-pyrromycinone

dihydrodaunomycin

from

may

glycosides,

recognize been

provided

by

that

daunosaminyl modified

have

employed

lonolide, biotic

(as an

specificity.

to y i e l d the

by d e s o s a m i n e ,

has

sp.

Further,

appear

yielded

naturally

peucetius In the grown

to p o s s e ~

et al.

(30)

vat.

car-

case

of

in the

biosynthesis) rather

fed e.g.

of

followed

as a p o s s i b l e

anti-

Streptomyces

protylonolide was

broad-

proty-

of the m a c r o l i d e

mutant

biosynthesis

protylonolide

in the

which

(24).

precursor

of h y b r i d

of the a d d e d

could

13-deoxycarminomycinone

23-hydroxy-desosaminyl

product

machinery

of p o l y k e t i d e

a blocked

me-

possibility

s_p_. K A - 4 6 4

inhibitor

from

glycosylation

(I).

formed

via C 2 3 -

by s u b s e q u e n t

intermediate

of d a u n o s -

biosynthesis.

Otherwise, and

(29). as

antibiotics

aglycone

(obtained

This

of S t r e p t o m y c e s

Sadakane

hydroxylation

amine

such

isolated

by c h e m i c a l

B-isorhodomycinone

Streptomyces

a 16-membered

Obviously,

to

to new a n t h r a c y c -

of a S t r e p t o m y c e s

derivatives

by m u t a n t s

aglycones

access

structure.

glycosyltransferase(s)

tylosin

fradiae),

or

new a n t i t u m o r

of c e r u l e n i n

substrate

mu-

to l - h y d r o x y - 1 3 -

the g l y c o s y l a t i n g

aglycones

the d a u n o m y c i n - p r o d u c i n g

range

employed

biosynthesis

or s y n t h e s i z e d

fermentation

but

the p e r t i n e n t

(21)

of u n u s u a l

for g e t t i n g

unusual

the p e r t i n e n t

to y i e l d

et al.

in d a u n o m y c i n

(23,24,25,26)

occurring

presence

and

of m o d i -

N-formyl-l-hydroxy-13-dihydrodaunomycin.

of ~ - c i t r o m y c i n o n e

been

such

species

formation

E-isorhodomycinone

be u s e f u l

demonstrated

minatus

aglycones

of o t h e r

MuWI,

Yoshimoto

blocked

and

the p e r t i n e n t

presence

when

by

through

l-hydroxy-ll-deoxy-carminomycin

glycosylations

mutants

(27,28)

line

and

enzymatic

blocked

thods

Otherwise,

to c u l t u r e s

as

instance,

(22).

of S,

In future,

such

for

~rhodomycinone

roseoviolacea

structures

In a m u t a s y n t h e t i c

convert

shown,

and

(20).

supplied

Actinomadura

glycoside

Cants

differences

of a k l a v i n o n e

221

mutations

aglycone

cosides

could

could

formation

alter

in s u c h

be o b t a i n e d .

The

the

intensely

(~-L-Daunosaminyl)-B-rhodomycinone) from

cultures

myces

strain

Barminomycins cinone

of m u t a n t D788 (32)

obtained

specifity

a manner

OXA-1874

(II)

that

potent was

of g l y c o s y l a t i o n

new u n u s u a l

monogly-

oxaunomycin

recently

(7-0-

isolated

of a b a u m y c i n - p r o d u c i n g

Strepto-

(31). and

unusual

by c u l t i v a t i o n

glycoside of

derivatives

S. p e u c e t i u s

of d a u n o m y -

in p r e s e n c e

of

222

U. GRAFEet al. NHe 2

~

:

HO ---0 ~ 0

---

CH20 H thio-

and

newly

discovered

I

fluorobarbituric

acid

anthracyclines

0

(33)

are a d d i t i o n a l

from m i c r o b i a l

OH

examples

of

sources.

OH

"'OH it

OH 7-O-Triqlycosides Aklavinone

and e - p y r r o m y c i n o n e

trisaccharides

mycins

cinerubins

formed

and

cosides by Oki

though et al.

C34)

a step (18)

by s t e p

several

by a p i g m e n t - n e g a t i v e aclacinomycins he,

(34)~

with chain

growth

different

mutant

of

Aglycones

~-isorhodomycinone,

by m u t a n t

are

e- and

MAI44-MI-KE303

from of

the

sugar

as ~ -,

glycosylation of e x p e r i m e n t s galilaeus,

Surprisingly,

were

the p e r t i n e n t

feeding

at C I O p o s i t i o n with

blocked

the h y b r i d

(35)

antibiotics

of

CGIO

As s h o w n

were

formed

transformed

A as sugar led

In a n o t h e r

S. c o e r u l e o r u b i d u s and

of

triglycosides

of y - r h o d o m y c i n o n e

(see below).

mutants

chain.

B- and e - r h o d o m y c i n o -

L-rhodosaminyl-2-deoxy-L-fucosyl-L-cinerulose (35,36).

monogly-

as a p r o d u c e r

B-pyrromycinone

to y i e l d

as a c l a c i n o -

pertinent

trisaccharides

S. g a l i l a e u s such

such

the

CGII

to series

and 2.

7-O-(L-rhodos-

aminyl-2-deoxyiL-fucosyl-L-cinerosyl. A)-B-isorhodomycinone

and

BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS

-~2-rhodomycinone ever,

feeding

cinone,

and

obtained

and

strain,

KE303,

4;

mutant

not

yield

trisarubicinol

aglycones

qalilaeus

such

added

carsame

was

triglycosides

obtained

(a p i g m e n t - l e s s

strain)

able

was

auramycinone,

to c o n v e r t

sulfurmyci-

and

e-pyrro-

ll-hydroxysulfurmycinone

containing

sugar

chains

either

of L - r h o d o s a m i n e - 2 - d e o x y - L - f u c o s e - L - c i n e r u l o s e

L-rhodosamino-2-deoxy-L-fucose-L-cinerulose

B (Fig.

Feeding

mutant

laeus

When

to the

l-hydroxysulfurmycinone,

ll-hydroxy-auramycinone,

to the p e r t i n e n t composed

adriamy-

glycoside.

were

of

2-hydroxyaklavinone

MAI44-MI

yielded,

to a b l o c k e d

quite

How-

OBB-III-838

as a k l a v i n o n e ,

l-hydroxy-auramycinone,

mycinone,

any

A)-13-dihy~rocarminomycinone)

Streptomyces

223

(37).

(7-O-(L-rhodosaminyl-2-deoxy-

of an a c l a c i n o m y c i n - p r o d u c i n g

several ~one,

38).

et al.

13-deoxodaunomycinone,

did

13-dihydrocarminomycinone

L-fucosyl-L-cinerosyl (Fig.

by Y o s h i m o t o

of d a u n o m y c i n o n e ,

steffimycinone

minomycinone mutant

were

similar,

A or of

4;

28/39).

of ~.

gali-

2-hydroxyaclacinomycin

A

(40).

If c h e m i c a l l y occurred IOR

synthesized

solely

with

configuration.

specificity 111-848, tion:

type

Despite

and

the

were

not

cinerubins

production

strains.

For

by S t r e p t o m y c e s

aklavinone

possessing

the a p p a r e n t

chemically

Ro-22-8507)

gesting

racemic isomer

of g l y c o s y l a t i n g

several

cinomycins

the

enzyme(s)

linones

instance,

the k e s a r i r h o d i n s DSM

2658

cer

cell

lines

been

(L1210,

P388

A and

etc.),

excep-

to a c l a sug-

by w i l d -

B produced

of

13-deoxy-

containing

other

( $-rhodomycinone-7-O-(rho-

described

in v i t r o

OBB-

7-O-L-rhodosaminyl-2-

a trisaccharide

trisaccharide

promising

so.

information

A or B d e r i v a t i v e s

Further,

new

are

9R,

substrate

In a d d i t i o n

trisaccharides

previously

possess

(28).

7S,

(with one

recent

purpurascens

these

Streptomyces

is m o r e

with e-rhodomycinone

of

of

natural

sugars

some

range

there

(41).

Though

conversion

of o t h e r

carminomycinone

d i n o s e ) 3) has

fed,

natural

aglycones

glycosylated

deoxy-b-fucosyl-L-cinerulosyl

combined

broad of

synthesized

was

the

(42). derivatives

activities so

of a n t h r a c y c -

against

far n o n e h a v e

some

been

can-

employ-

ed t h e r a p e u t i c a l l y . CiO-O-glycosides An

interesting

CiO-O-monoglycoside

aminyl)-y-rhodomycinone) specific

recombinant

iremyceticus

(III)

because

strain (43,44).

is i r e m y c i n of

its

of S t r e p t o m y c e s Other

rare

(iO-O-(L-rhodos-

isolation

cases

from

violaceus in w h i c h

an

inter-

subsD. only

C10-

224

U. GRAFE et al,

%

.0

I

~I0

i

11

0

R1

Rg

)H

R4

R7

R9

RIO

RII

RI2

aklavinone

H

OH

OH

Et

COOMe

H

H

B-rhodomycinone

H

OH

OH

Et

OH

OH

H H

e-rhodomycinone

H

OH

OH

Et

COOMe

OH

e-isorhodomycinone

OH

OH

OH

~%

COOMe

OH

H

c-pyrromycinone

OH

OH

OH

Et

COOMe

H

H H

~-pyrromycinone

OH

OH

OH

Et

OH

H

B-isorhodomycinone

OH

OH

OH

Et

OH

OH

H

~2-rhodomycinone

OH

OH

OH

Et

OH

OH

H

carminomycinone

H

OH

OH

COMe

H

H

H OH

2-OH-aklavinone

H

OH

OH

Et

COOMe

H

auramycinone

H

OH

OH

Me

COOMe

H

H

sulfurmycinone

H

OH

OH

CH2COMe

COOMe

H

H

l-OH-auramycinone

OH

OH

OH

Me

COOMe

H

H

l-OH-sulfurmycinone

OH

OH

OH

CH2COMe

COOMe

H

H

ll-OH-auramycinone

H

OH

OH

Me

COOMe

OH

H

ll-OH-sulfurmycinone

H

OH

OH

CH2COMe

OGOMe

OH

H

Fig.

4.

7-O-Triglycosylation mutants

of 2.

of a g l y c o n s

qalilaeus

and 2.

by b l o c k e d

coeruleorubidus

225

BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS

OH

0

glycosides

have

been

OH

formed

0

are CG8

compound

(iO-O-(L-rhodos-

aminyl-2-deoxy-L-fucosyl-L-cinerosyl

A)-Y-rhodomycinone)

tained

to a b l o c k e d

by

feeding

galilaeus

(18)

of y - r h o d o m y c i n o n e

and

the

naturally

occurring

ob-

mutant

cosmomycins

of 2.

A

(iO-O-

(L-rhodosaminyl-L-rhodinosyl-L-rhodinosyl)-y-rhodomycinone)

and

B (iO-O-(L-rhodosaminyl-2-deoxy-L-fucosyl-L-rhodinosyl)-Y-rhodomycinone)

(45,46).

(For

the

occurrence

of y - r h o d o m y c i n o n e

see M a t s u z a w a

Serirubicins

ditrisarubicins

MG344-hF49, different

and

several

from

in

(47)

moieties

chains

A447

both

aglycones.

as a g l y c o n e s

~ I~

while

cyaneus

cyaneus

SD.

representing

see

C and

IV) D

(48)

(49)

the

from ~.

are

complexes

containing

either

at 7-0 and

iO-O positions

Thus,

contain ~ -citromycinone

Streptomyces

(i) c.f.)

from ~.

formula

hexasaccharides

anthracycline

respectively A447

of s u g a r

trisaccharide

droxyserirubicin

cited

(general

D S M and a n t i b i o t i c s

of d i f f e r e n t

or m o d i f i e d of

cytorhodins

combinations

purpurascens composed

(47),

of a i O - O - p e n t a g ~ y c o s i d e

serirubicin

identical

and

l-hy-

and ~ 2 - r h o d o m y c i n o n e

cytorhodins,

ditrisarubicin,

are d e r i v a t i v e s

of

and

B-rhodomycinone

'"OH

R1.R2=sugarl-sugar2-sug or3 $ugarl"Rhn s u g a r 2 : d F u c or Rho sugar3" Rho or CinAor Acu or Cin B

228

U. GRAFE et al.

(49).

The

cosmocarcins

biosynthetic cells

studies

or e n z y m e s

possesssimilar

on e n z y m a t i c

have

not

been

structures

(50).

Up to now,

ClO-O-glycosylations

by e n t i r e

reported.

C4-O-glycosides Recently,

a new

class

of b i o s y n t h e t i c

of e - r h o d o m y c i n o n e

and

et al.

of

as p r o d u c t s

Earlier, lacea

by way

MuWI

succeeded

none

(V).

e-glycosides, compounds. too,

the

of

that

transformation

same

routes

(glucuronides

been

by C a s s i n e l l i

described

peucetius

employing

vat.

castaneus

Actinomadura

e-rhodomycinone,

known

or by

compounds

appears

anthracyclines

(51).

roseovio-

Nakagawa

et al.

4-O-(B-D-glucopyranosyl)-e-rhodomyci-

previously

new

It thus

the

cyclines

the

fermentations

microbial

ciple,

Streptomyces

in i s o l a t i n g

Unlike from

has

of g l u c o s y l a t i o n

for b i o c o n v e r s i o n

(52)

isolated

aklavinone

anthracyclinone

feeding

were

found

with

respect

which

are

to be B - g l y c o s i d i c to 4 - O - g l y c o s y l a t i o n ,

of a n t h r a c y c l i n e s

as d e s c r i b e d

glycosides

experiments,

follows,

for t r a n s f o r m a t i o n

in p r i n -

of a n t h r a -

in m a m m a l s .

_

R2

H H '~O

~

0

0

%

~00Me

OH

OH

RI:HOrOH OH

R2= COOH or CH20H

vE Cl3-O-glycosides Recently, ted

to

4-demethoxydaunomycinone

of S.

peucetius

A~uga

reptans

were

found

cinone

way

The cell

(M-99-FCE)

L (labiateae)

(53).

and

Daucus

latter

example

cultures

above

Similarly, carota

reduce

were

conver-

by a m u t a n t

L.

plant

strain

cells

of

(Umbr@lliferae)

and g l y c o s y l a t e

daunomy-

13(S)-dihydro-O(B-D-glycopyranosyl)-daunomycinone

of b i o c o n v e r s i o n

scribed

(VI)

to s t e r e o s p e c i f i c a l l y

to y i e l d

(VII). plant

and d a u n o m y c i n o n e

13-(S)-dihydro-13-O-B-D-glucopyranosides

illustrates

for the p r o d u c t i o n (54).

In a n a l o g y

the C l 3 - O - g l y c o s i d e s

are

nicely

the p o t e n t i a l

of

of new a n t h r a c y c l i n e s to the C 4 - O - d e r i v a t i v e s B-glycosides.

by de-

BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS

OH

0

227

0

""OH

Ivie~

0

O, R

o.

R=h.leorH

6 'JT'

~

o"

"OH

ONe 0

OH

OH

VI_/I Other The

glycosylations

newly

discovered

cilorubicin) galamine

moiety

7-O-bonded enzymatic

An e a r l y

of

methylation

cosides

similar

common

structures bound

aglycone,

type

sugar

to the

occurrence

of an

(55).

anthracyclinones ester

is a late

instance,

and

adriamycin

step

during (Fig.

in d a u n o conversion i;

56). of

or a d r i a m y c i n

4-O-demethyl-ll-desoxyadriamycin

is the

(15,16,17).

or by a d d i t i o n

to d a u n o m y c i n

4-O-demethyldaunomycinone

no-

in a d d i t i o n

the

for

in m u t a n t s

de-

moieties

to m o s t

group

(e.g.

to b i c y c l i c

of g l y c o s y l a t i o n

to its m e t h y l

to d a u n o m y c i n blocked

chain

suggesting

this and

acid

or s u l p h a n i l a m i d e

strains, of

out

occurring,

was

the

chain

the C 4 - h y d r o x y

carminomycin

ducing

step

of a k l a n o n i c

biosynthesis

ethionine

C2 of

aglycone

methylation

Methylation

of

carrying

at the

and

a trisaccharide

at C1 and

system

conversion

When

arugomycin

tetrasaccharide

Methylations

mycin

contain

(57)

(carminomycinone)

pro-

and g l y -

228

U. GRAFE et 01.

(58)

were

vine

was

produced.

As a p r o o f

synthesized

via

of N - m e t h y l a t i o n

N-methylation

of sugars,

of d a u n o s a m i n y l

akla-

aklavinone

(59). Acylations

of

sugar

N-acylations (14,60) lation

have

Oxidation part

of

been may

at C12

volved

have

In some

prior

to the

cases,

so far

group

e.g.

in Fig. been

have

steps

as

to c a r b o n y l

and

subsequent

oxidation

to y i e l d

adriamycin

(doxorubicin)

a single

step

e£ al.

(1988)

adriamycin

by m u t a n t

Reductions

of

As

the

rule,

inactive

of

latter

showing

aromatic and

pathway

The

two o t h e r

(5,16)

of C l 4 - m e t h y l

published

the c o n v e r s i o n

aglycone

constituents

of a n t h r a c y c l i n e s

at the

aglycone

reactions

lead

for

recent-

of d a u n o m y c i n

(63).

to m u c h

less

as

to C14

proof

S. p e u c e t i u s

The m a i n

such

group

Final

was

the in-

of C l 3 - m e t h y l e n e

function

process

of

oxidases

In a d d i t i o n ,

(56).

strain-

C I O and CII

to

or e v e ~

are

13S-dihydroderivatives

of d a u n o m y c i n ,

carminomycin,

adriamycin

- analogous cyclines

These

reduction

agents

iO-keto

deglycosylation

transformations

mammalian

of

group

of

steffimycin-type

anthra-

(64)

- reductive

organisms,

are

of C 7 - O - b o u n d e d commonplace

involving

sugars

to m a n y m i c r o b i a l

nucleotide

coenzymes

but

also

as r e d u c i n g

(65,6,8).

Reduction

of the

cycline-producing as by o t h e r

side

chain

organisms

microbial

by c o n c o m i t a n t

have

of p a r t i c u l a r

been

of c a r b o n y l

carbonyl under

species

companied

city

(succiny-

76 of

reductions

products.

formation and

the

in the

C8,

oxidation

hydroxyl

reaction

the

biosynthetic

reported:

in £ - r h o d o m y c i n o n e

CI,

i (5,6,7,8,62).

characterized,

been

of

subsequent

at p o s i t i o n s

of the g e n e r a l

not

of o x i d a t i o n s

as well

of o x y g e n

parts

types

ly by M e r l i

sugar

O-acylations

cyclisation

nucleus

as s h o w n

in d a u n o m y c i n

of d a u n o s a m i n

aglycone

introduction

constitutive

formylation)

(61).

tetracyclic

anthracyclines

and

reported. occur

at the

the

specific are

(acetylation

e.g.)

Oxidations

moieties

is c a r r i e d

oxygen

and g e n e r a

N-acetylation assistance

reduction

(66),

(67).

to c o n f i r m

of d a u n o m y c i n

out

limitation

by a n t h r a (20)

as well

occasionally

ac-

NMR e x p e r i m e n t s the

stereospecifi-

by S. w i l l m o r i i

to y i e l d

BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS

the

pertinent

Side the

chain

13(S)-hydroxy

carbonyl

excellent

derivative

reductions

surveys

have

of M a r s h a l l

229

(67,68).

been

reviewed

et al.

and

in d e t a i l

Fujiwara

in

and H o s h i n o

(6,7,8). Reductive

deglycosylation

aglycones

is a n o t h e r

and

tissues,

plant

of any chain

a given has

rases type

(69),

and w i t h

under

oxygen

monas

hydrophila,

capable

with

diaphorase, plant

of t r a n s f o r m a t i o n

A number

E. coli

pendent

that

from

the

the

the

feature

capacity

as well.

microbes

of a g i v e n

The

such

as Aero-

glycosides

deglycosylation

microbe

same strains

is l i k e w i s e

anthracycline

of r e d u c t i v e

c-reduc-

streptomyces

freundii

side

s u c h as

cytochrome

reductase

of o t h e r

added

7-O-sugar

flavoproteins

producing

and C i t r o b a c t e r

of d e g l y c o s y l a t i n g

suggesting

within

in m a m m a l i a n

Decomposition

containing

oxidase,

ferredoxin

7-deoxy-

both

(5,6,7,8).

mammalian

xanthin

occurs

limitation.

cells

antibiotic

demonstrated

P450,

the

of a n a e r o b i o s i s

and m i c r o b i a l

anthracycline

been

cytochrome

to g i v e p r e f e r e n t i a l l y

consequence

to form

is inde-

anthracyc-

lines. Studies

onto

the d e c o m p o s i t i o n

preparations as

intermediates

posed has

radical

been

within under

The

end of

completeness,

Redox

a specific enzymatic

full

but

also the

to the

activity

such

recovery

reference

should

the

usually

to o x i d a t i o n

as

beer.

decomposition spec.

of

the

be g i v e n

AM 33352

respiratory

prevented

to form

formed

and

ef-

7-deoxy-akla-

and d e t e r g e n t s not of

Thus,

frequently

sugar

pro-

2,4-dinitrophenol

only with the

on

regard

recovery

of

decomposition

to be a v o i d e d

of the p r o d u c e d

in or-

antibiotic.

to a k r o b o m y c i n

(73)

For as

(VIII).

moieties as m i x t u r e

of a c l a c i n o m y c i n

oxidoreductase conversion

radicals the

9,10-anhydro-13-deoxo-carminomycin

within are

with

2.

detergents

improvement

needs

maximum

microsomal free

7,7"-bis(7-deoxyaklavinone)

interesting

fermentation

of

accord

2,4-dinitrophenol seems

liver

Obviously,

of a c l a c i n o m y c i n s of

fermentation

reactions

B due

requires

effect

occurring

Aclacinomycins and

of

reaction.

of ATP p r o d u c t i o n

from

to a c h i e v e

a naturally

In full

of a c l a c i n o m y c i n - p r o d u c i n g

deglycosylation

its m e c h a n i s m

by rat

involvement

or m e m b r a n e - d i s o r i e n t i n g

anthracyclines at the

the

formation

deglycosylation

(72).

mechanism

with

70,6,7,8).

as a side

limitation

mg/l)

reductive

5;

mechanism,

Uncouplers

fectively

der

(Fig.

observed

oxygen

(60-200

vinone

compatible

the m y c e l i u m

chain.

to

were

subsequent

to a c l a c i n o m y c i n

of c o m p o n e n t s

A to a c l a c i n o m y c i n enzymatic

B (Fig.

or e v e n

2; 4 , 1 8 , 3 4 ) .

A, Y, Y by nonAs a

U. GR,~FE et al.

230

~I

C O O M e •"OH

~

u

c

2e.[e H+

-

ACN-A Cn iA

2,4-dinit rophenol

~ .....

0 0

OOMe

COOMe

"'"OH

552 COOOMeH

7- DAK N

BDAKN

Fig.

5. Reductive cleavage of 7-O-glycosides of various anthracyclinones ACM-A:

aclacinomycin

7DAKN:

7-deoxyaklavinone;

A;

BDAKN:

7.7"-bis(7-deoxyaklavinone)

BIOCONVERS1ON OF ANTHRACYCLINE ANTIBIOTICS

0

side

effect,

tion

of the

rubin

Y

specific

activity

was

oxidoreductase

A to L - a c u l o s e at

later

mogeneity

(m.w.

MAI44-MI

72000)

molecular

aclacinomycin, et al.

isolated

B. The

causes

forma-

corresponding

recently

(77)

shown

and

from

cine-

streptomyces

tail

possible

that

medium

from

cytoplasm.

strain, iOOOO

the

the

shown

been

culture

highly

lacinomycin

A has

In fact,

effective been

(76).

(48)

which

Recently,

it

to the

occurrence (78).

in the

mycelia

the

(76)

be s e c r e t e d

AM 3 3 3 5 2

localized

Aretz

the C I O ~ t r i g l y -

intracellular spec.

producing

specifically

while

could

conversion

carried

out

of a c l a c i n o m y c i n - p r o d u c i n g AM 33352

was

has

In this

supernatant higher

cultures, fractions

(80). was

The

S.

activity,

associated

were

with

inactive.

of a c l a c i n o m y c i n

by w a s h e d

qalilaeus

the

than

in

converting

aclacinomycin

versa,

localized

compartments

such

This

are

as the

finding

intra

and

supported

OBB-III

the

cells,

extracellular

and

in y o u n g

while

B and,

different

speculations

(79)

activities

A to Y and

within

B to ac-

or c o m p l e t e

a maximum

entire

Apparently,

spectively

vice

mycelia

attaining

oxidoreductases

membrane.

Streptomyces

enzyme,

oxidizes

of d i s r u p t e d

cultures

cellular

ho-

From Yoshimoto's data

for S t r e p t o m y c e s

S.

growing

of

to near

medium.

Conversely,

spec.

of

A of a c l a -

maximum

to s t r e p t o m y c e t e s

enzyme

activity

purified

the

rhodirubins

the

affected.

intramycelial

was

filtrate

the o x i d o r e d u c t a s e

g centrifugation

L-cinerulose Y attaining

of

of c y t o r h o d i n s

seemed

been

not

culture

occurrence restricted

that

coside

recently

has

the

The was

chain

the

fermentation

from

(76).

cinerubins,

have

converting

of

oxygen,

7-O-trisaccharide

the

fermentation

A and

in a c l a c i n o m y c i n

stages

galilaeus

of

during

(74,75).

cinomycin

needs

(71)

cinerubins

(pyrraculomycin)

strains The

OH

Cl-oxidation pertinent

231

subof

re-

cellular

spaces

concerning

and

the

a role

232

U. GRAFE et al.

of o x i d o r e d u c t a s e s

in the

transport

of a k l a v i n o n e

glycosides

(80). In the too,

cytorhodin-producing

Aretz

et al.

oxidoreductase lose

in b o t h

occurrence observed (see The

(48,77)

oxidizing

diversity

chains,

enzyme

was

DSM

2658,

of a p a r t i c u l a t e A and L-acu-

to L - c i n e r u l o s e

at C7 a n d CIO p o s i t i o n s .

apparently

of n a t u r a l l y

DurDl]rasc~ns

the p r e s e n c e

L-rhodinose

trisaccharide

of this

StreDtomvces showed

the m a i n

occurring

cause

cytorhodin

The

of the

structures

IV). same

authors

to s p e c i f i c a l l y

used

oxidoreductase

oxidize

f r o m S_. g a l i l a e u s

the C 7 - s u g a r

chain

ATCC

for p r o d u c t i o n

+) torhodins

U (ClO-O-rhn-rod-rod;

C7-O-rhn-dfuc-cin

B)

31133

of cy-

and V

(ClO-

+) O-rhn-rod-rod, as e.g.

C7-O-rhn-rod-acu)

cytorhodin

B

from other

cytorhodins

(ClO-O-rhn-rod-rod; C 7 - O - r h n - d f u c - c i n

fermentation broth:

such A) +).

mixture of

aclocinomycins A , Y a n d B

I chromcltography ~. aclacinomycin A

aclocinom,,cin B

conversion within the / mycelium by dich

enzymic conver sion by oxidoreductas

/silica

~

.

enzymicconversion

/ Qclacinom'

gel

ohron'~-tography

fcin

by oxidoreductase

Y

conversion by mycelium Fig.

6.

Mutual

conversions

chemical

+)

footnote:

and

rhn:

procedures

L-rhodosamine

dfuc: cinA,

of a c l a c i n o m y c i n s

enzymatic

2-deoxy-L-fucose cinB:

L-cineruloses

rod:

L-rhodinose

acu:

L-aculose

A and

B

by

BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS

233

By use of procedures

involving

similar

enzymatic

and non-enzyma-

tic conversions,

formation

of a c l a c i n o m y c i n s

A, Y, and B has

been

achieved

(Fig.

the

on the basis

of one fermentation

(80)

6). FUTURE

PERSPECTIVES

IN B I O C O N V E R S I O N

AND RELATED The advances sight

of modern

genetics

into the structures

k e t ~ e synthetases, well.

Genetic

by s w i t c h i n g - o n triguing

picture

tics

involving

gress

in this

efficient

structures

systems

streptomycetes

will profit

and polyketide

terest

pool

the t h e r a p e u t i c

value

(84,85)

of any given

the b i o s y n t h e t i c

alternate

chemical

for anthra-

future

could

steps

by the finding

However

of

inexhaus-

the practical

will mainly

product,

without

such as tetra-

from the seemingly

procedure

Proof

and actinorhodin

In addition,

of a n t h r a c y c l i n e s

advantage

antibio(81).

future work,

antibiotics

of the m i c r o o r g a n i s m s ( 8 7 , 8 8 ) .

or

the in-

work on biosynthesis

be stimulated

antibiotics

in b i o c o n v e r s i o n

The

genetic

related

fusion

by the elaboration

(82,83).

(77,86).

could

new hybrid

has been drawn

glaucescens

coelicolor

biotransformations

gene

and t r a n s f e c t i o n

as

of creating

At the horizon,

created

from extended

from Streptomyces

anthracyclines

by h e t e r o l o g o u s

structures

in-

such as poly-

the advantage

(43,44,63).

of t r a n s f o r m a t i o n

new a n t h r a c y c l i n e - t y p e tible

either

us to gain deeper enzymes,

and modify

field has been d e m o n s t r a t e d

Streptomyces

towards

enable

of b i o s y n t h e t i c a l l y

of a n t h r a c y c l i n e cenomycin

will

will offer

genes

anthracycline

cycline-producing any doubt,

ANTIBIOTICS

and to overproduce

"silent"

OF A N T H R A C Y C L I N E S

of b i o c o n v e r t i n g

recombinations

new a n t h r a c y c l i n e

from

procedure

depend

in-

on

and on the particular offer

in relation

to

routes. REFERENCES

i. H. S. E 1 K h a d e m (Ed), A n t h r a c y c l i n e antibiotics, Academic Press, New York (1982). 2. F. Arcamone, Properties of antitumor anthracyclines and new d e v e l o p m e n t s in their application: Cain Memorial Award Lecture, Cancer Res., 45, 5995-5999 (1985). 3. S. Tsuhagosni, T. Takeuchi and H. Umezawa, Antitumor Substances, in Biotechnology, H. J. Rehm et al. (Eds.), Verlag Chemie, Weinheim, Vol. 4, 509-530 (1986). 4. T. Oki, Recent d e v e l o p m e n t s in the process improvement of production of antitumor a n t h r a c y c l i n e antibiotics, in Adv. Biotechnol. Processes, Alan R. Liss, Inc., New York, Vol. 3, 163-196 (1984). 5. Z. Van~k, J. Mateju, J. Cudlin, M. BlumauerovA, P. Sedmera, J. Jizba, E. Kralovcov6, J. Tax and G. F. Gauze, Biosynthesis

234

6.

7. 8.

9.

iO. ii.

12.

13.

14.

15.

16. 17.

18.

19.

20.

21.

22.

U. GR.~FE et al.

of d a u n o m y c i n - r e l a t e d a n t h r a c y c l i n e s , in O v e r p r o d u c t i o n of M i c r o b i a l P r o d u c t s , V. K r u m p h a n z l et al. (Eds.), A c a d e m i c Press, New York, 2 8 3 - 3 0 0 (1982). V. P. M a r s h a l l , M i c r o b i a l t r a n s f o r m a t i o n s of a n t h r a c y c l i n e ant i b i o t i c s and analogs, Dev. Ind. M i c r o b i o l . , 26, 1 2 9 - 1 4 2 (1985). A. F u j i w a r a and T. Hoshino, A n t h r a c y c l i n e a n t i b i o t i c s . CRC Crit. Rev. B i o t e c h . , ~, 1 3 3 - 1 5 7 (1986). V. P. M a r s h a l l and P. W. Wiley, B i o m o d i f i c a t i o n of a n t i b i o t i c s by S t r e p t o m y c e s , in The B a c t e r i a , A c a d e m i c Press, New York, Vol. IX, 3 2 3 - 3 5 3 (1986). O. K. Sebek, D i r e c t e d b i o s y n t h e s i s of a n t i b i o t i c s , in Biot e c h n o l o g y , H. J. R e h m et al. (Eds.), V e r l a g Chemie, W e i n h e i m , Vol. 6a, 2 3 9 - 2 7 6 (1984). H. B r o c k m a n n and K. Bauer, R h o d o m y c i n , ein r o t e s A n ~ i b i o t i k u m aus A c t i n o m y c e t e n , N a t u r w i s s e n s c h a f t e n , 37, 4 9 2 - 4 9 3 (1950). R. J. W h i t e and R. M. S t r o s h a n e , D a u n o r u b i c i n and a d r i a m y c i n : p r o p e r t i e s , b i o s y n t h e s i s , and f e r m e n t a t i o n , in B i o t e c h n o l o g y of I n d u s t r i a l A n t i b i o t i c s , E. J. V a n d a m m e (Ed), M a r c e l Dekker, Inc., New Y o r k and Basel, 5 6 9 - 5 9 4 (1984). I. K i t a m u r a , H. Tobe, A. Y o s h i m o t o , T. Oki, H. N a g a n a w a , T. T a k e u c h i and H. Umezawa, B i o s y n t h e s i s of a k l a v i n o n e and a c l a c i n o m y c i n s , J. A n t i b i o t . , 3_~4, 1 4 9 8 - 1 5 0 0 (1981). A. Y o s h i m o t o , T. Oki and H. Umezawa, B i o s y n t h e s i s of daunomycin o n e from a k l a v i n o n e and £,-rhodomycinone, J. A n t i b i o t . , 3__33, 1 1 9 9 - 1 2 0 1 (1980). A. Y o s h i m o t o , T. Oki, T. T a k e u c h i and H. Umezawa, M i c r o b i a l c o n v e r s i o n of a n t h r a c y c l i n o n e s to d a u n o m y c i n by b l o c k e d mutants of S t r e p t o m y c e s c o e r u l e o r u b i d u s J. A n t i b i o t . , 33, 11581166 (1980). C. Wagner, K. Eckardt, G. S c h u m a n n , W. Ihn and D. T r e s s e l t , M i c r o b i a l t r a n s f o r m a t i o n of a k l a n o n i c acid, a p o t e n t i a l e a r l y i n t e r m e d i a t e in the b i o s y n t h e s i s of a n t h r a c y c l i n e s , J. Antibiot., 37, 6 9 1 - 6 9 2 (1984), K. E c k a r d t and C. Wagner, B i o s y n t h e s i s of a n t h r a c y c l i n o n e s , J. B a s i c M i c r o b i o l , 28, 1 3 7 - 1 4 4 (1988). C. Wagner, U n t e r s u c h u n g e n zur B i o s y n t h e s e der D a u n o m y c i n o n G l y c o s i d e des L e u k a e m o m y c i n - K o m p l e x e s in den S t r e p t o m y c e s gris e u s - S t ~ m m e n IMET JA 3933, IMET JA 5142 und IMET JA 5570: Eine Charakterisierung Daunomycin-geblockter Mutanten, Dissertation, J e n a (1987). T. Oki, A. Y o s h i m o t o , Y. M a t s u z a w a , T. T a k e u c h i and H. Umezawa, B i o s y n t h e s i s of a n t h r a c y c l i n e a n t i b i o t i c s by S t r e p t o m y c e s gal i l a e u s I. G l y c o s i d a t i o n of v a r i o u s a n t h r a c y c l i n o n e s by an aclacinomycin-negative m u t a n t and b i o s y n t h e s i s of a c l a c i n o m y cins from a k l a v i n o n e , J. A n t i b i o t . , 33, 1 3 3 1 - 1 3 4 0 (1980). A. Y o s h i m o t o , Y. M a t s u z a w a , T. Oki, T. T a k e u c h i and H. U m e z a w a New a n t h r a c y c l i n e m e t a b o l i t e s from m u t a n t s t r a i n s of S t r e p t o myces galilaeus MA 144-MI I. I s o l a t i o n and c h a r a c t e r i z a t i o n of v a r i o u s b l o c k e d m u t a n t s , J. A n t i b i o t . , 3__~4, 9 5 1 - 9 5 8 (1981). M. B l u m a u e r o v ~ , E. K r i l o v c o v l , E. Mateju, J. J i z b a and Z. Van6k, B i o t r a n s f o r m a t i o n s of a n t h r a c y c l i n o n e s in S t r e p t o m y c e s coeruleorubidus and ~. g a l i l a e u s , F o l i a M i c r o b i o l , 2_~4, 1 1 7 - 1 2 7 (1979). A. Y o s h i m o t o , Y. M a t s u z a w a , T. Oki, H. N a g a n a w a , T. T a k e u c h i and H. Umezawa, M i c r o b i a l c o n v e r s i o n of e - p y r r o m y c i n o n e and e-iso-rhodomycinone to l - h y d r o x y - 1 3 - d i h y d r o d a u n o m y c i n and Nformyl-l-hydrmxy-13-dihydrodaunomycin and their b i o a c t i v i t i e s , J. A n t i b i o t . , 3__~3, 1 1 5 0 - 1 1 5 7 (1980). M. N a k a g a w a , Y. H a y a k a w a , K. Imamura, H. Seto and N. Otake, M i c r o b i a l c o n v e r s i o n of e - p y r r o m y c i n o n e to l - h y d r o x y - l l - d e oxycarminomycin II, J. A n t i b i o t . , 3_88, 8 2 1 - 8 2 2 (1985).

BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS

23.

24.

25.

26.

27.

28.

29.

30.

31.

235

C. Wagner, K. hckardt, D. Tresselt, W. Ihn, G. Schumann und W. F. Fleck, L e u k a e m o m y c i n - g e b l o c k t e Mutanten des Streptomyces griseus und ihre Pigmente III. l l - D e s o x y d a u n o m y c i n o n d e r i v a t e aus der Mutante ZIMET 43699/G44, J. Basic Microbiol., 25, 687-693 (1985). G. Cassinelli, S. Forenza, G. Rivola and F. Arcamone, 13-Deoxocarminomycin, a new b i o s y n t h e t i c anthracycline, J. Natl. Products, 48, 435-439 (1985). W. Ihn, C. Wagner, W. F. Fleck, D. Tresselt, I. Eritt und P. Sedmera, L e u k a e m o m y c i n - g e b l o c k t e Mutanten des S. griseus und ihre Pigmente II. Neue 7 - H y d r o x y - b i s a n h y d r o - r h o d o m y c i n o n e aus der Mutante ZIMET 41707/IP, J. Basic Microbiol., 24, 525-532 (1984). S. Fuji, K. Kubo, O. Johdo, A. Yoshimoto, T. Ishikura, M. Naganawa, T. Sawa, T. Takeuchi and H. Hmezawa, A new anthracycline m e t a b o l i t e D788-I ( l O - c a r b o x y - 1 3 - d e o x o c a r m i n o m y c i n ) in d a u n o r u b i c i n beer, J. Antibiot., 39, 473-475 (1986). K. Krohn und B. Behnke, (Hoechst AG), Verfahren zur Herstelstellung yon Anthracyclinonen, Get. Offenschr. 3329185 (28.2. i985). T. Hoshino, Y. Setoguchi and A. Fujiwara, Microbial conversion of a n t h r a c y c l i n e antibiotics III. G l y c o s i d a t i o n of natural and chemically synthesized a n t h r a c y c l i n e aglycones, J. Antibiot., 37, 1469-1472 (1984). A. Yoshimoto, O. Johdo, Y. Watanabe, T. Ishikura, T. Sawa, T. Takeuchi and H. Umezawa, (Sanraku Ocean Co.), New anthracycline derivatives DCP-I and 2 p r e p a r a t i o n by fermentation of streptomyces with ~ - c i t r o m y c i n o n e or B-isorhodom~cinone, EP 242695 (28.10.1987). N. Sadakane, Y. Tanaka and S. Omura, Hybrid b i o s y n t h e s i s of a new m a c r o l i d e antibiotic by a d a u n o m y c i n - p r o d u c i n g microorganism, J. Antibiot., 36, 921-922 (1983).

A. Yoshimoto, S. Fujii, O. Johdo, K. Kubo, T. Ishikura, H. Naganawa, T. Sawa, T. Takeuchi and H. Umezawa, Intensely potent a n t h r a c y c l i n e antibiotic o x a u n o m y c i n produced by a blokked mutant of the d a u n o m y c i n - p r o d u c i n g microorganism, J. Antibiot., 39, 902-909 (1986). 32. T. Uchida, M. Imoto, Y. Takahashi, H. Odagawa, T. Sawa, K. Tatsuta, H. Naganawa, M. Hamada, T. Takeuchi and H. Umezawa, New potent anthracyclines, b a r m i n o m y c i n s I and II, J.Antibiot., 4_! , 404-408 (1988). 33. G. Cassinelli, A. Grein, S. Merli and G. Rivola, (Farmitalia Carlo Erba S.p.A.), M a n u f a c t u r e of new a n t h r a c y c l i n e glycosides related to d a u n o r u b i c i n by Streptomyces peucetius fermentation, and testing of their biological activity, EP 239774 (7.10.1987). 34. T. Oki, I. Kitamura, Y. Matsuzawa, N. Shibamoto, T. Ogasawara, A. Yoshimoto, T. Inui, H. Naganawa, T. Takeuchi and H. Umezawa, Antitumor a n t h r a c y c l i n e antibiotics, aclacinomycins A and analogues II. structural determination, J. Antibiot., 32, 801-819 (1979). 35. Y. Matsuzawa, A. Yoshimoto, T. Oki, H. Naganawa, T. Takeuchi and H. Umezawa, Biosynthesis of a n t h r a c y c l i n e antibiotics by Streptomyces galilaeus II. Structure of new a n t h r a c y c l i n e antibiotics obtained by microbial g l y c o s y l a t i o n and biological activity, J. Antibiot., 3__33, 1341-1347 (1980). 36. C. A. Claridge, M u t a s y n t h e s i s and directed b i o s y n t h e s i s for the production of new antibiotics, in Basic M i c r o b i o l o g y and New Developments in Biotechnology, A. Holaender et al. (Eds.), Plenum Publishing Corporation, 231-269 (1983).

236

37.

38.

39.

40.

41.

42.

43.

44.

45.

46. 47.

48.

49.

50.

51.

52.

53.

U. GRAFE et al.

A. Yoshimoto, O. Johdo, Y. Takatsuki, T. Ishikura, T. Sawa, T. Takeuchi and H. Umezawa, New a n t h r a c y c l i n e antibiotics obtained by microbial g l y c o s y l a t i o n of B - i s o r h o d o m y c i n o n e and a -rhodomycinone J Antibiot 37, 935-938 (1984) A. Yoshimoto, Y. Matsuzawa, Y. M ~ s u h a s h i , T. Oki, T. Takeuchi and H. Umezawa, Trisarubicinol, new antitumor a n t h r a c y c l i n e antibiotic, J. Antibiot., 34, 1492-1494 (1981). T. Hoshino and A. Fujiwara, Microbial conversion of anthracycline antibiotics IV. Study on the g l y c o s i d a t i o n of e - p y r r o mycinone by Streptomyces galilaeus 0B-III-848, J. Antibiot., 37, 1473-1474 (1984). T. Oki, A. Yoshimoto, Y. Matsuzawa, T. Takeuchi and H. Umezawa New a n t h r a c y c l i n e antibiotic: 2 - h y d r o x y a c l a c i n o m y c i n A, J. Antibiot., 3__44, 916-918 (1981). H. W. Fehlhaber, H. P. Kraemer, Ch. M. M. Franco, T. Mukhop a d h y a y and B. N. Ganguli (Hoechst AG), A n t h r a c y c l i n e antibiotics, Get. Offenschr. DE 3446052 (17.6.1986). G. C. S. Reddy, R. Sahai, H. W. Fehlhaber and B. N. Ganguli, Isolation and structure of a new £-rhodomycin compound produced by a Streptomyces species HPL Y-I1472, J. Antibiot., 3_88, 1423-1425 (1985). B. Schlegel and W. F. Fleck, New a n t h r a c y c l i n e antibiotics produced by i n t e r s p e c i f i c recombinants of streptomycetes. I. Selection of Streptomyces violaceus subsp, iremyceticus, an i r e m y c i n - p r o d u c i n g subspecies, J. Basic Microbiol., 2_00, 527530 (1980). W. Ihn, B. Schlegel, W. F. Fleck and P. Sedmera, New a n t h r a c y c line antibiotics produced by i n t e r s p e c i f i c recombinants of streptomycetes. III. Isolation and structure of iremycin, J. Antibiot., 33, 1457-1461 (1980). T. Ando, K. Hirayama, R. Takahashi, I. Horino, H. Shibai and A. Mural, The structure of a n t h r a c y c l i n e antibiotics, cosmomycins A and B, Agric. Biol. Chem., 49, 1207-1209 (1985). M. Li and Y. Chen, Structural studies on rhodilunancins A and B, J. Antibiot., 39, 430-436 (1986). T. Uchida, M. Imoto, H. Masuda, H. Yoshimoto, K. Imamura, T. Sawa, H. Naganawa, T. Takeuchi and H. Umezawa, New anthracycline antibiotics: serirubicin and l-hydroxyserirubicin, J. Antibiot., 38, 795-798 (1985). W. Aretz, H. G. Berscheid, G. Huber, H. W. Fehlhaber, H. P. Kraemer, H. H. Sedlacek and B. N. Ganguli, M i c r o b i o l o g i c a l production of a n t h r a c y c l i n e derivatives and their cytostatic use, Get. Offenschr. DE 3323025 (25.6.1983). A. Shimosaka, Y. Hayakawa, M. Nakagawa, K. Furihata, H. Seto and N. Otake, Isolation ofnew a n t h r a c y c l i n e antibiotics A447C and D, J. Antibiot., 40, 116-121 (1987). T. Tsuji, M. Takezawa, H. Morioka, T. Kida, I. Horino, Y. Eto and H. Shibai, A new a n t h r a c y c l i n e antibiotic CosmocarcJn A, Agric. Biol. Chem., 48, 3181-3184 (1984). G. Cassinelli, M. Ballabio, A. Grein, S. Merli, G. Rivola, F. Arcamone, B. Barbieri and T. Bordoni, A new class of biosynthetic anthracyclines: a n t h r a c y c l i n o n e glucuronides, J. Antibiot., 40, 1071-1074 (1987). M. Nakagawa, H. Kawai, Y. Hayakawa, H. Seto and N. Otake, 4-O-(B-D-glucopyranosyl)- c-rhodomycinone, a new microbial t r a n s f o r m a t i o n product of rhodomycinone, J. Antibiot., 38, 1622-1624 (1985). G. Cassinelli, A. Grein, S. Merli and G. Rivola (Farmitalia Co.), Microbial conversion of a n t h r a c y c l i n o n e s into the corresponding 1 3 ( S ) - d i h y d r o - 1 3 - O - B - D - g l u c o p y r a n o s i d e and their biological activity, GB 2187732 (16.9.1987). 2

'

'

' '

"

BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS

54.

237

S. Merli, b. G a r a f o n o and A. Guicciardi, A. new class of ant h r a c y c l i n e glycosides, Poster p r e s e n t e d on the 2nd International S y m p o s i u m on New B i o a c t i v e M e t a b o l i t e s from M i c r o o r g a nisms, Gera, GDR, May 2-7, 1988. 55. H. Kawai, Y. Hayakawa, M. Nakagawa, K. Furihata, H. Seto and N. Otake, Arugomycin, a new a n t h r a c y c l i n e antibiotic. II. S t r u c t u r a l elucidation, J. Antibiot., 40, 1273-1282 (1987). 56. T. Oki, Y. Takatsuki, H. Tobe, A. Yoshimoto, T. Takeuchi and H. Umezawa, M i c r o b i a l c o n v e r s i o n s of daunomycin, c a r m i n o m y c i n I and f e u d o m y c i n A to adriamycin, J. Antibiot., 3_~4, 1229-1231 (1981). 57. G. Cassinelli, G. Rivola, D. Ruggieri, F. Arcamone, A. Grein, S. Merli, C. Spalla, A. M. Casazza, A. Di Marco and G. Pratesi, New a n t h r a c y c l i n e glycosides: 4 - O - d e m e t h y l - l l - d e o x y d o x o r u b i c i n and a n a l o g u e s from S t r e p t o m y c e s p e u c e t i u s var. aureus, J. Antibiot., 35, 176-183 (1982). 58. M. Blumauerovi, J. Jizba, K. Stajner and Z. Van~k, Effect of D , L - e t h i o n i n e on the b i o s y n t h e s i s of a n t h r a c y c l i n e s in Streptom¥ces c o e r u l e o r u b i d u s Biotechnol. Leth., ~, 471-476 (1979). 59. T. Oki, M i c r o b i a l t r a n s f o r m a t i o n of a n t h r a c y c l i n e a n t i b i o t i c s and d e v e l o p m e n t of new a n t h r a c y c l i n e s , in A n t h r a c y c l i n e antibiotics, H. S. E1 K h a d e m (Ed), A c a d e m i c Press, New York, 75-96 (1982). 60. B. K. Hamilton, M. S. Sutphin, M. C. Thomas, D. A. W a r e h e i m and A. A. Aszalos, M i c r o b i a l N - a c e t y l a t i o n of d a u n o r u b i c i n and d a u n o r u b i c i n o l , J. Antibiot., 30, 425-426 (1977). 61. K. Ishii, S. Kondo, Y. Nishimura, M. Hamada, T. Takeuchi and H. Umezawa, D e c i l o r u b i c i n , a new a n t h r a c y c l i n e antibiotic, J. Antibiot., 3_~6, 451-453 (1983). 62. W. D. Ollis, I. O. Sutherland, R. C. Cordner, J. J. Gordon and G. A. Miller, The i n c o r p o r a t i o n of p r o p i o n a t e in the b i o s y n t h e sis of e - p y r r o m y c i n o n e (rutilantinone), Proc. Chem. Soe. London, 347-349 (1960). 63. S. Merli, L. Garofano, M. Caruso, A. C o l o m b o and F. Torti, P h y s i o l o g i c a l and g e n e t i c study on S t r e p t o m y c e s p e u c e t i u s and its mutants, in Abstract of 2nd I n t e r n a t i o n a l S y m p o s i u m on O v e r p r o d u c t i o n of M i c r o b i a l Products, Ceske Budejovice, Czechoslovakia, July 3-8, 1988, p. 57. 64.P. F. Wiley, D. W. Elrod, J. M. S l a v i c e k and V. P. Marshall, M i c r o b i a l c o n v e r s i o n of s t e f f i m y c i n and s t e f f i m y e i n B to i O - d i h y d r o s t e f f i m y c i n and i O - d i h y d r o s t e f f i m y c i n B, J. Antibiot., 33, 819-823 (1981). 65. A. A. Aszalos, N. R. Bachur, B. K. Hamilton, A. F. Langlykhe, P. P. Roller, M. Y. Sheikh, M. S. Sutphin, M. C. Thomas, D. A. W a r e h e i m and L. H. Wright, M i c r o b i a l r e d u c t i o n of the side chain carbonyl of d a u n o r u b i c i n and N - a c e t y l d a u n o r u b i c i n , J. Antibiot., 30, 50-58 (1977). 66. Y. Ogawa, S. M i z u k o s h i and H. Mort, M i c r o b i a l c o n v e r s i o n of r u b e o m y c i n A to r u b e o m y c i n B, J. Antibiot., 36, 1561-1563 (1983). 67. K. Dornberger, R. Hdbener, W. Ihn, H. T h r u m and L. Radics, M i c r o b i a l c o n v e r s i o n of d a u n o r u b i c i n into N - a c e t y l - 1 3 ( S ) - d i h y d r o d a u n o m y c i n and b i s a n h y d r o - 1 3 - d i h y d r o d a u n o m y c i n o n e , J. Antibiot. 38, 1219-1225 (1985). 68. S. Penco, G. Cassinelli, A. Vigevani, P. Zini, G. Rivola and F. Arcamone, D a u n o r u b i c i n A l d o - K e t o r e d u c t a s e s : E n a n t i o f a c e d i f f e r e n t i a l r e d u c t i o n of the s i d e - c h a i n carbonyl g r o u p of a n t i t u m o r a n t h r a c y c l i n e s . C o r r e c t i o n of the s t e r e o c h e m i s t r y at C(13) of 4 - d e m e t h o x y - 1 3 - d i h y d r o d a u n o r u b i c i n , Gazz. Chim. Ital., 115, 195-197 (1985). 69. T. Oki, T. Komiyama, H. Tone, T. Inui, T. Takeuchi and H.

238

70.

71.

72.

73. 74.

75.

76,

77.

78.

79.

80.

81.

82.

83.

84.

85.

U. GRAFE et al.

Umezawa, R e d u c t i v e c l e a v a g e of a n t h r a c y c l i n e g l y c o s i d e s by m i c r o s o m a l N A D P H c y t o c h r o m e C r e d u c t a s e , J. A n t i b i o t . , 30, 6 1 3 - 6 1 5 (1977). T. K o m i y a m a , T. Oki and T. Inui, A p r o p o s e d r e a c t i o n m e c h a n i s m for the e n z y m a t i c r e d u c t i v e c l e a v a g e of g l y c o s i d i c b o n d in a n t h r a c y c l i n e a n t i b i o t i c s , J. A n t i b i o t . , 32, 1 2 1 9 - 1 2 2 2 (1979). E. K r ~ l o v c o v l and Z. Van~k, E f f e c t of a e r a t i o n e f f i c i e m c y and c a r b o n s o u r c e on the p r o d u c t i o n of a n t h r a c y c l i n e s in S t r e p t o m y c e s g a l i l a e u s , F o l i a m i c r o b i o l . , 2__44, 3 0 1 - 3 0 7 (1979). U. Gr~fe, K. D o r n b e r g e r , W. F. F l e c k and G. Schumann, I n h i b i tors of the c l e a v a g e of a c l a c i n o m y c i n s , B i o t e c h n o l . Lett., ~, 8 3 7 - 8 4 2 (1987). K. Imamura, A. O d a g a w a and K. Tanabe, A k r o b o m y c i n , a new ant h r a c y c l i n e a n t i b i o t i c , J, A n t i b i o t . , 37, 8 3 - 8 4 (1984). N. N a k a g a w a , K. F u r i h a t a , H. F u r i h a t a , K. Adachi, H. Seto and N. Otake, The s t r u c t u r e of new a n t h r a c y c l i n e , c i n e r u b i n X, p r o d u c e d by a b l o c k e d m u t a n t of S t r e p t o m y c e s v i o l a c e o c h r o m o genes, J. A n t i b i o t . , 39, 1 1 7 8 - 1 1 7 9 (1986). D. T r e s s e l t , W. Ihn, B. S c h l e g e l und W. F. Fleck, P y r r a c u l o mycin, ein n e u e s A n t i b i o t i k u m aus A c t i n o m y c e t e n , Z. Chem., 27, 4 4 4 - 4 4 5 (1987). A. Y o s h i m o t o , T. O g a s a w a r a , I. K i t a m u r a , T. Oki, T. Inui, T. T a k e u c h i and H. Umezawa, E n z y m a t i c c o n v e r s i o n of a c l a c i n o m y c i n A to Y by a s p e c i f i c o x i d o r e d u c t a s e in S t r e p t o m y c e s , J. A n t i bio%., 32, 4 7 2 - 4 8 1 (1979). W. A r e t z and H. G. B e r s c h e i d , O x i d a t i o n of c y t o r h o d i n g l y c o s i des, in A b s t r a c t s 2nd I n t e r n a t i o n a l S y m p o s i u m on O v e r p r o d u c t i o n of M i c r o b i a l P r o d u c t s , C e s k e B u d e j o v i c e , C z e c h o s l o v a k i a , July 2-8, 1988, p. 71. U. Gr~fe, K. D o r n b e r g e r , W. F. Fleck, E. J. B o r m a n n and W. Ihn, B i o c o n v e r s i o n of a c l a c i n o m y c i n A to Y by an i n t r a c e l l u l a r enzyme of 5 t r e p t o m y c e s spec. AM 33352, B i o t e c h n o l . Left., i_00, 1 6 7 - 1 7 0 (1988). T. Hoshino, Y. S e k i n e and A. F u j i w a r a , M i c r o b i a l c o n v e r s i o n of a n t h r a c y c l i n e a n t i b i o t i c s I. M i c r o b i a l c o n v e r s i o n of a c l a c i n o m y c i n B to a c l a c i n o m y c i n A, J. A n t i b i o t . , 36, 1 4 5 8 - 1 4 6 2 (1983). U. Gr~fe, K. D o r n b e r g e r , W. F. F l e c k and C. F r e y s o l d t , C o m p a r t m e n t a t i o n of e n z y m e s i n t e r c o n v e r t i n g a c l a c i n o m y c i n s in S t r e p t o m y c e s s p e c i e s AM 33352, J. B a s i c M i c r o b i o l . , 2__9, 17-23 (1988). S. Omura, H. Ikeda, F. M a l p a r t i d a , H. M. K i e s e r and D. Hopwood, P r o d u c t i o n of new h y b r i d a n t i b i o t i c s , m e d e r r h o d i n s A and B, by a g e n e t i c a l l y e n g i n e e r e d strain, A n t i m i c r o b i a l Agents, C h e m o ther., 2_99, 13-19 (1986). S. L a m p e l and W. R. Strohl, T r a n s f o r m a t i o n and t r a n s f e c t i o n of anthracycline-producing s t r e p t o m y c e t e s , Appl. Environ. M i c r o biol., 51, 1 2 6 - 1 3 1 (1986). G. S c h u m a n n , C. W a g n e r and H. KrOgel, S e l f - c l o n i n g in S t r e p t o m y c e s g r i s e u s of g e n e s i n v o l v e d in d a u n o m y c i n b i o s y n t h e s i s , A b s t r a c t s of 2nd I n t e r n a t i o n a l S y m p o s i u m on New B i o a c t i v e Met a b o l i t e s from M i c r o o r g a n i s m s , Gera, GDR, May 2-7, 1988, p. 152. S. Yue, H. M o t a m e d i , E. W e n d t - P i e n k o w s k i and C. R. H u t c h i n s o n , A n t h r a c y c l i n e M e t a b o l i t e s of T e t r a c e n o m y c i n C - n o n p r o d u c i n g S t r e p t o m y c e s g l a u c e s c e n s m u t a n t s . J. B a c t e r i o l . , 167, 5 8 1 - 5 8 6 (1986). H. M o t a m e d i and C. R. H u t c h i n s o n , C l o n i n g and h e t e r o l o g e o u s e x p r e s s i o n of a g e n e c l u s t e r for the b i o s y n t h e s i s of t e t r a c e n o m y c i n C, the a n t h r a c y c l i n e a n t i t u m o r a n t i b i o t i c of S t r e p t o m y c e s g l a u c e s c e n s , Proc. Natl. Acad. Sci. USA, 84, 44454449 (1987).

BIOCONVERSION OF ANTHRACYCLINE ANTIBIOTICS 86.

H. G. F l o s s , S. P. C o l e , X. G. H e , B. A. M. R u d d , J . D u n c a n , S. Fujii, C. J. Chang and P. J. Keller, Biosynthesis of polyketide antibiotics. In Regulation of secondary metabolite formation, H. Kleinkauf et al. (Eds), Verlag Chemie, WeJnheim, 283-304 (1986). 87. H. Drautz, P. R e u s c h e n b a c h and H. Z~hner, Metabolic products of microorganisms. Elloramycin, a new a n t h r a c y c l i n e - l i k e antibiotic from Streptomyces olivaceus. Isolation, characterization structure and biological properties, J. Antibiot., 3__88, 1291-1301 (1985). 88. K. H~tter, E. Baader, K. Frobel, A. Zeek, K. Bauer, W. Gau, J. Kurz, T. Schr6der, Ch. Wfinsche, W. Karl and D. Wendisch, V i r i p l a n i n A, a new a n t h r a c y c l i n e antibiotic of the nogalamycin group. I. Isolation, characterization, degradation reactions and biological properties, J. Antibiot., 39, 1193-1204 (1986). 89. K. Eckardt, G. Schumann, D. Tresselt and W. Ihn, Biosynthesis of anthracyclinones: Isolation of a new early cyclization product aklaviketone, J. Antibiot., 4__~i, 788-793 (1988).

239