Annals of Discrete Mathematics 18 (1983) 355-376 0 North-Holland Publishing Company
355
AFFINE GEOMETRIES OBTAINED FROM PROJECTIVE PLANES AND SKEW RESOLUTIONS ON AG( 3 ,q) R. Fuji-Hara and S . A . Vanstone
R
The main r e s u l t o f t h i s paper i s t o g i v e a construction o f AG(nt1,q) from n the p r o j e c t i v e plane PG(2,q ). This construction can be applied t o construct what we c a l l skew r e s o l u t i o n s o f the l i n e s i n AG(n,q)
and p a i r s o f orthogonal resolu-
tions.
Denniston has shown t h a t there e x i s t s a
skew r e s o l u t i o n o f the l i n e s i n
AG(3,q)
by constructing a r e s o l u t i o n o f the l i n e s i n PG(3,q). As an a p p l i c a t i o n of
the main r e s u l t , we g i v e a d i r e c t proof o f t h i s and show t h a t there i s a one t o one correspondence between skew r e s o l u t i o n s o f l i n e s i n AG(3,q) l i n e s i n PG(3,q).
and r e s o l u t i o n o f
A skew r e s o l u t i o n i n AG(n,q) along w i t h the n a t u r a l r e s o l u t i o n
o f l i n e s i n AG(n,q) obtained from p a r a l l e l i s m form a p a i r o f orthogonal resolutions.
Orthogonal r e s o l u t i o n s have r e c e n t l y a t t r a c t e d the i n t e r e s t o f various
authors.
1. INTRODUCTION Although we are p r i m a r i l y i n t e r e s t e d i n BIBDs, we begin by d e f i n i n g a s l i g h t l y more general design.
An (r,l)-design
D i s a c o l l e c t i o n B o f subsets
(blocks) from a f i n i t e s e t V ( v a r i e t i e s ) such t h a t (a) every element o f V i s contained i n p r e c i s e l y r blocks o f B. ( b ) every p a i r o f d i s t i n c t elements o f V i s contained i n e x a c t l y one block. I f a l l blocks o f D have the same c a r d i n a l i t y (block size), then D i s s a i d t o be a balanced incomplete block design (BIBD) w i t h parameters (v,k,l), v =
IVl,
and k i s the block size.
A (u,k,l)-BIB0
s e t V ' i s c a l l e d a subdesign o f a (v,k,l)-BIBD
where
w i t h block s e t B ' and v a r i e t y
w i t h block and v a r i e t y s e t B and V
r e s p e c t i v e l y i f V ' _C V and B ' _C B. An ( r , l ) - d e s i g n D i s s a i d t o be resolvable i f t h e blocks o f B can be p a r t i tioned i n t o classes ( r e s o l u t i o n classes) R,,
R2,
..., Rr
of V i s contained i n p r e c i s e l y one block o f each class.
such t h a t every v a r i e t y Such a p a r t i t i o n i n g i s
356
R . Fuji-Hara and S.A. Vanstone
c a l l e d a r e s o l u t i o n o f D. The f i n i t e a f f i n e geometry AG(n,q)
i s u s u a l l y o b t a i n e d from a v e c t o r space
Here, we s t a t e c o m b i n a t o r i a l axioms f o r AG(n,q)
over a G a l o i s f i e l d .
n
> 3,
taken
from Lenz 1101, as they a r e convenient f o r p r o o f s o f isomorphism which are d i s cussed l a t e r . L e t L be a c o l l e c t i o n o f subsets (blocks o r l i n e s ) o f a f i n i t e s e t o f p o i n t s P.
A paraZZeZisrn o f the system z = (P,L)
i s d e f i n e d t o be an equivalence r e l a -
tion // satisfying
(*) For any l i n e e and p o i n t , t h e r e i s a unique l i n e Let
z be
e'
such t h a t
e//e'
and PE e l .
a system w i t h a p a r a l l e l i s m // s a t i s f y i n g t h e f o l l o w i n g c o n d i t i o n s :
( i ) Any two p o i n t s Ply P2 are i n c i d e n t w i t h (contained i n ) e x a c t l y one l i n e
p1p2
( i i ) If
//
t h e r e i s a p o i n t P ' on
and P i s a p o i n t on
% and
F3 d i s t i n c t from P1 and P3,
( i i i ) I f no l i n e c o n t a i n s more than two p o i n t s and Ply
then
P2, P3 a r e d i s t i n c t
PP 1 2
have a
( v ) There e x i s t two l i n e s n e i t h e r p a r a l l e l nor w i t h a common p o i n t .
Then
p o i n t s , then the l i n e
e2
and k3 such as P2 E t2 //
3'
P3 E k3 / /
p o i n t i n comnon. ( i v ) Some l i n e s c o n t a i n s e x a c t l y q 2 2 p o i n t s .
I = AG(n,q) f o r some n 2 3. I f E i s a BIBD, then i t i s e a s i l y seen t h a t every p a r a l l e l class, t h a t i s , every c l a s s o f t h e equivalence r e l a t i o n //, contains e q u a l l y many blocks.
But
p a r a l l e l i s m o f BIBD's may n o t be unique, since any r e s o l u t i o n i s a p a r a l l e l i s m . L
A f i n i t e a f f i n e plane i s more simply d e f i n e d t o be a ( q ,q,l)-BIBD.
It i s
w e l l known t h a t an a f f i n e plane has a unique r e s o l u t i o n ( p a r a l l e l i s m ) . I f / / i s a p a r a l l e l i s m o f an a f f i n e geometry s a t i s f y i n g t h e axioms, then
d i s j o i n t l i n e s which a r e n o t p a r a l l e l a r e c a l l e d skew Zines.
A resolution o f
l i n e s i n an a f f i n e geometry, i n which each c l a s s c o n s i s t s o f skew l i n e s , i s c a l l e d
a skew r e s o l u t i o n .
We d i s p l a y a c o n s t r u c t i o n f o r a skew r e s o l u t i o n o f AG(3,q)
in
Section 4.
'+'
2. CONSTRUCTION OF RESOLVABLE ((9 -1 ) / ( q - 1 ) ,1 )-DESIGNS 2 A p r o j e c t i v e plane o f o r d e r m i s an (m +m+l,m+l,l)-BIBD, v a r i e t i e s and b l o c k
blocks i n the design are c a l l e d p o i n t s and l i n e s o f t h e p r o j e c t i v e plane, respec-
357
Affine geometries obtained from projective planes tively.
L e t P be a p r o j e c t i v e p l a n e o f o r d e r q
n
,q
a p r i m e power.
L e t am and llo
be two l i n e s i n P i n t e r s e c t i n g a t a p o i n t z. U i s a s e t o f p o i n t s on am - { z } , n 2 Q I U I = u G q , L e t V(a), a E U, be a s e t o f l i n e s i n P-am p a s s i n g t h r o u g h a p o i n t a. We show c o n s t r u c t i o n f o r ((q V =
U
n+l
-l)/(q-l),l)-designs
on t h e v a r i e t y s e t
V(a).
aEU Since e v e r y l i n e o f V meets t h e l i n e
go
V(a) can be r e p r e s e n t e d b y a pair, V = {
-
Iz 1, a
a t a p o i n t o f a. x E
-
-
{z}, any element o f
Therefore,
{z}.
E U}.
L e t AG(n,q) be an a f f i n e geometry o f dimension n and o r d e r q. S i n c e l l 0 - I z } n n 1 correspondence c o n t a i n s q p o i n t s , t h e q p o i n t s i n AG(n,q) can be p u t i n t o 1
-
w i t h t h e p o i n t s on a o - { z } .
L e t L be a c o l l e c t i o n o f q-subsets i n a o - I d . w h i c h Hence, l e t G = ( a - { z l , L ) be an a f f i n e geometry
corresponds t o l i n e s o f AG(n,q). on L~-{Z}i s o m o r p h i c t o AG(n,q).
Now, we d e f i n e two t y p e s o f b l o c k s on V. BI(Y) where
3/a
=
{G; a
E
F o r each p o i n t y E P-a
,
u}, F o r e v e r y l i n e a E L and e v e r y
i s a l i n e p a s s i n g through p o i n t s y and a.
a E U BII(a,a)
= {;
x E a}.
These two t y p e s o f b l o c k s a r e s a i d t o be b l o c k s o f t y p e I and b l o c k s o f t y p e 11, respectively. By g e n e r a l i z i n g Lemma 1 i n Dickey and F u j i - H a r a [ 31, we have ( r , l ) - d e s i g n s on V. LEMMA 2.1:
IBI(y);
y E P-.to}
((q"+'-l)/(q-l),l)-design PROOF: L e t L~ and
B
{BII(xya);
a E L, a E U 3 is the
D on V w i t h block sizes q and
n2 be any two d i s t i n c t l i n e s o f V.
a2 i s i n U o r i n P a m . x and y.
U
set
of blocks of a
U.
The common p o i n t o f
t1
and
If a
n a = a E U, and L meet lo a t d i s t i n c t p o i n t s , 1 2 1 2 o f G which c o n t a i n s x and y. Then, t h e b l o c k There i s a u n i q u e l i n e
I 1 ( 6 , a ) i s a u n i q u e b l o c k c o n t a i n i n g a1 and a2.
If a n L ~ a= E P1
then
R. Fuji-Hara and S.A. Vanstone
358
B ( a ) i s the unique b l o c k c o n t a i n i n g I
and t2. 0
E~
We show t h a t t h e design D has a r e s o l u t i o n i f I U I
Q
qn.
Since AG(n,q)
has
( q n - l ) / ( q - l ) p a r a l l e l c l a s s o f l i n e s , G a l s o has p a r a l l e l classes, denoted by
..., St-l’
SO’ S1’
L e t U = (0,l 7...,u-l
t = (qn-l)/(q-l).
A c o l l e c t i o n of blocks o f type 11,
k.
T . = (BII(k,j); z E S 1
i’
i s a resolution class f o r 0 o f those classes.
Q
i s a p a r t i t i o n o f t h e s e t o f type I1 blocks. t-1 which i s n o t i n U, and l e t M be t h e s e t o f l i n e s i n P-im
krn
passing through t h e p o i n t c.
any l i n e m
Rm =
E
Every block o f type I1 i s contained i n one
i G t-1.
T O y Tl,...yT
L e t c be a p o i n t on
the l i n e s o f M.
j E U)
Every p o i n t i n P-tm i s contained i n e x a c t l y one o f
Any l i n e o f V meets each l i n e o f M a t a p o i n t .
Therefore, f o r
My
{BI(x); x
E in}
i R : m E M I forms a p a r t i t i o n o f t h e s e t of type I blocks. m i 4 t - 1 1 U R{;, m E M } i s a r e s o l u t i o n o f D.
i s a r e s o l u t i o n class. Hence, R = {T.;
1
0 G
We can s t a t e the f o l l o w i n g r e s u l t :
THEOREM: ?he ( ( 9
n+1 -l)/(q-l),l)-design
D of L e m 1 has a resoZution if / U I 4 q
n
.
(Note: The type I blocks form a t r a n s v e r s a l design).
3. ISOMORPHISM RESULTS I f u = q 7 t h e design D c o n s t r u c t e d i n t h e previous s e c t i o n has t h e same
parameters as a order q.
BIBD obtained from a f i n i t e a f f i n e geometry o f dimension n+l and
I n t h i s section, we show c e r t a i n c o n d i t i o n s under which D i s isomorphic
t o the a f f i n e geometry. L e t u = q.
For each p o i n t i E U, t h e s e t o f l i n e s V ( i ) i s i n 1 - 1 c o r r e -
spondence w i t h t h e s e t o f p o i n t s i n G = (I - [ z } , = (V(i),tBII(L,i);
e
E L } ) i s isomorphic t o G.
L).
Therefore H ( i ) =
Then, H(0)yH(l),...yH(q-l)
d i s j o i n t n dimensional a f f i n e geometries i n U, where U = tO,l,...,q-l}. every b l o c k o f type I meets any H ( i ) , 0 6 i G q-1,
2
any ( q ,q,l)-subdesign
are Since
a t one element o f V ( i ) , then
(plane) i n D c o n t a i n i n g a b l o c k o f type I meets H ( i ) i n a
block of t y p e I 1 f o r any i E U.
359
Affine geometries obtained from projective planes L e t c ( x ) by a s e t o f p o i n t s on L example, c ( x ) = Iao,a2,