Aggregation of stereoregular poly(methyl methacrylates)

Aggregation of stereoregular poly(methyl methacrylates)

Advances in Colloid and Inter/ace Science, 27 (1987) 81-150 81 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands AGGREGATION...

3MB Sizes 3 Downloads 81 Views

Advances in Colloid and Inter/ace Science, 27 (1987) 81-150

81

Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands

AGGREGATION J. S P E V A C E K

OF S T E R E O R E G U L A R

POLY(METHYL

METHACRYLATES)

a n d B. S C H N E I D E R

Institute of M a c r o m o l e c u ~ r Chemistry, Czechos]ovak A c a d e m y 162 06 P r a g u e 6, C Z E C H O S L O V A K I A

of Sciences,

CONTENTS

I.

ABSTRACT

II.

INTNOIXJG~ION ................................ .......................

...........................................................

82

III.

C2-1ARAC'rI~IZATION OF S

83

~

~

A. Configurational structure

(stereoregularity)

B. Confornmtional structure of ~

IV.

V.

............................. of I ~

............

83

................................

85

C. Dynamic properties of stereoregular PMMA ........................

87

METHODS USED IN STUDIES OF RMMA AGGREGATION (A SHORT SURVEY OF THEIR POSSIBILITIES) ............................................

89

A. Methods for dilute solution studies

9]

...........................

B. Methods for studies of concentrated solutions, gels and of the solid state .....................................................

]00

C. Methods of molecular spectroscopy (NMR spectroscopy, vibrational spectroscopy) ...................................................

]04

FORMATION AND CHARACTER OF AGGREGATES OF PMMA ......................

]]0

A. Stoichiometry of ~

.............................

|] 0

B. Effect of degree of stereoregularity on the formation of aggregates (minimtRn length of aggregated sequences) ..................

stereocomplex

] ]3

C. Thermal stability and decomposition of aggregates

]]9

...............

D. Kinetics of aggregation and effects of thermal history E. Effect of solvent on the formation of aggregates VI.

LOCAL S

~

OF A C ~ T E D

.......... ]23

................

]26

SEQUENCES OF PMMA ....................

T30

A. C h a r a c t e r of the interactions of functional groups responsible for aggregation ................................................

VII.

!30

B. Conformmtional structure of the aggregates of stereoregular ...........................................................

]34

ORDERING AND MOBILITY OF CHAINS IN AGf~EGATES OF PMMA .............

]36

A. Effect of aggregation on segmental mobility of the chains

]36

B. Chain ordering VIII.

82

......

.................................................

]38

OF PMMA ..........................................

]4 ]

A. Interactions o f stereoreEular PMMA with MMA monomer o r with dimer model of PMMA ............................................

]4!

OTHER A ~ T E S

B. Replica polymerization of MMA ..................................

T42

C. Other systems

143

0001-8686/87/$24.50

..................................................

© Elsevier Science PublishersB.V.

82

IX.

CONCLUS IONS

X.

REFERENCES

I.

ABSTRACT

.......................................................

]4 3

........................................................

]4 6

I n t h i s r e v i e w , e x p e r i m e n t a l r e s u l t s o b t a i n e d i n s t u d i e s of a g g r e g a t i o n stereoregular evaluated.

of

(PMMA) a r e r e v i e w e d a n d c r i t i c a l l y

B e s i d e s a g g r e g a t i o n in s o l u t i o n , a t t e n t i o n is a l s o p a i d to t h e

corresponding aggregates

poly(methyl methacrylates)

ordered

structures

of s t e r e o r e g u l a r

in t h e solid s t a t e .

PMMA a r e d i s c u s s e d

T h r e e t y p e s of

in p a r a l l e l : 1) t h e

s t e r e o c o m p l e x of PMMA f o r m e d b y t h e m i x i n g of s o l u t i o n s of i s o t a c t i c {i) a n d s y n d i o t a c t i c (s) PMMA; 2) t h e s e l f - a g g r e g a t e s self-aggregates

of s-PMMA; a n d 3) t h e

of i-PMMA.

In the introductory

sections, information on the conformational structure

a n d d y n a m i c b e h a v i o r of s t e r e o r e g u l a r s t a t e is s u m m a r i z e d .

PMMA i n s o l u t i o n s a n d in t h e solid

I n P a r t IV, t h e p o s s i b i l i t i e s of v a r i o u s p h y s i c a l m e t h o d s

in o b t a i n i n g v a r i o u s t y p e s of i n f o r m a t i o n o n PMMA a g g r e g a t e s demonstrated.

PMMA a g g r e g a t e s

are cited.

T h e p r o b l e m s of t h e s t r u c t u r e following three parts.

of PMMA a g g r e g a t e s

t h e r m a l s t a b i l i t y of s t e r e o c o m p l e x a g g r e g a t e s in P a r t V.

a r e t h e s u b j e c t of t h e

I n f o r m a t i o n c o n c e r n i n g t h e s t o i c h i o m e t r y of t h e PMMA

s t e r e o c o m p l e x a n d t h e e f f e c t s of s t e r e o r e g u l a r i t y

discussed

are

With e a c h m e t h o d , t h e m a i n r e s u l t s o b t a i n e d i n s t u d i e s of

on the formation a n d

a n d s-PMMA s e l f - a g g r e g a t e s

is

F o r t h e s e s y s t e m s in v a r i o u s s o l v e n t s , t h e v a l u e s of

t h e m i n i m u m l e n g t h of s - s e q u e n c e s

necessary

for aggregation are given.

A t t e n t i o n i s a l s o p a i d to t h e t i m e - c o u r s e of a g g r e g a t i o n a n d to i t s v a r i o u s stages.

I n P a r t VI, b a s e d o n t h e r e s u l t s of NMR a n d v i b r a t i o n a l

s p e c t r o s c o p y , it i s s h o w n t h a t a g g r e g a t i o n b y i n t e r a c t i o n s of e s t e r g r o u p s . PMMA a g g r e g a t e s stereoregular

of s t e r e o r e g u l a r

PMMA i s c a u s e d

The backbone conformational structure

sequences assume an approximately tt structure.

t h e e f f e c t s of a g g r e g a t i o n o n t h e m o b i l i t y a n d m u t u a l o r d e r i n g in a g g r e g a t e s

are described.

double-helical structures are discussed.

in

i s a l s o d i s c u s s e d i n t h i s c h a p t e r ; it i s s h o w n t h a t t h e I n P a r t VII, of t h e c h a i n s

Experimental results indicating that

are formed in a g g r e g a t i o n

of s t e r e o r e g u l a r

PMMA

I n f o r m a t i o n o n s o m e o t h e r s y s t e m s d i r e c t l y r e l a t e d to t h e

a g g r e g a t i o n of s t e r e o r e g u l a r

PMMA ( i n c l u d i n g t h e " r e p l i c a p o l y m e r i z a t i o n " of

m e t h y l m e t h a c r y l a t e ) is s u m m a r i z e d i n P a r t VIII.

II.

INTRODUCTION I n 1961, W a t a n a b e e t al. ( r e f . 1) r e p o r t e d

t h a t i n s o m e s o l v e n t s , m i x i n g of

t h e s o l u t i o n s of s y n d i o t a c t i c (s) PMMA a n d i s o t a c t i c (i) PMMA l e a d s to t h e f o r m a t i o n of a g g r e g a t e s ,

connected with pronounced

c h a n g e s of t h e

83 rheological properties

of t h e m i x t u r e .

c a l l e d " s t e r e o c o m p l e x PMMA". aggregation

solvent.

Further

and the properties

with the stereoregularity

The aggregates

thus formed were

r e s u l t s i n d i c a t e d t h a t t h e d e g r e e of

of t h e a g g r e g a t e s

of t h e i n t e r a c t i n g

are critically connected

p o l y m e r s a n d with the kind of

O p i n i o n s o n t h e n a t u r e of t h e i n t e r a c t i o n s l e a d i n g to s t e r e o c o m p l e x

formation have undergone

c o n s i d e r a b l e c h a n g e s in t h e c o u r s e of time.

N e v e r t h e l e s s , s i n c e t h e v e r y f i r s t p u b l i c a t i o n s , it h a s b e e n q u i t e c l e a r t h a t the aggregation

is c a u s e d b y w e a k i n t e r a c t i o n s , w i t h t h e i r r e s u l t s

by cooperative effects.

geometrical and dynamical structure of p a p e r s .

enhanced

T h e c o n d i t i o n s of s t e r e o c o m p l e x f o r m a t i o n a n d i t s h a v e b e e n t h e s u b j e c t of a g r e a t n u m b e r

I n t h e c o u r s e s of t h e s e s t u d i e s , it w a s a l s o f o u n d t h a t s-PMMA

a n d i-PMMA a l o n e c a n f o r m a g g r e g a t e s

i n s o m e s o l v e n t s ( r e f . 2,3).

it w a s r e c o g n i z e d t h a t i n t h e a g g r e g a t e s chains form helical structures helical structures

Gradually,

of s t e r e o r e g u l a r

PMMA, t h e PMMA

which are in some r e s p e c t s

a n a l o g o u s to t h e

of b i o l o g i c a l p o l y m e r s .

B e c a u s e of t h i s a n a l o g y a n d the

circumstance that stereocomplex formation strongly affects the properties PMMA m e m b r a n e s ( r e f . 4), s t u d i e s of t h e p r o p e r t i e s streoregular

PMMA a g g r e g a t e s

still a t t r a c t

In the s t u d i e s of s t e r e o r e g u l a r

and structure

considerable attention.

PMMA a g g r e g a t e s ,

various physical and physico-chemical methods.

u s e h a s b e e n m a d e of

I n t h i s r e v i e w , we h a v e

m a d e a n a t t e m p t to d i s c u s s all t h e m o r e i m p o r t a n t f i n d i n g s i r r e s p e c t i v e the method by which they were obtained.

of

of

of

Nevertheless, the conclusions are

certainly strongly affected by the circumstance that our own speciality is NMR a n d v i b r a t i o n a l s p e c t r o s c o p y .

III.

CHARACTERIZATION OF STEREOREGULAR

Of the structural parameters affecting P M M A

PMMA aggregation, the most

important factors are the configurational and conformational structure of PMMA

and the mobility of the various P M M A

functional groups; therefore, in

this part, the most important results of the studies of these parameters and the conventions used in their description will be summarized.

A. C o n f i ~ u r a t i o n a l s t r u c t u r e

(stereoregularity)

of PMMA

T h e d i f f e r e n c e s in t h e c o n f i g u r a t i o n a l s t r u c t u r e

o f PMMA a r e t h e r e s u l t o f

t h e c i r c u m s t a n c e t h a t C~ c a r b o n s o f t h e PMMA m o n o m e r u n i t s f o r m pseudoassymmetric centers.

A l t h o u g h t h e Ca c a r b o n i s n o t o p t i c a l l y a c t i v e ,

t h e d a n d 1 c o n f i g u r a t i o n of t h e Ca a t o m s c a n b e d i f f e r e n t i a t e d of the chain.

by inspection

A d i a d c o n t a i n i n g two C~ c a r b o n s of e q u a l c o n f i g u r a t i o n ( d d o r

U) i s d e s c r i b e d a s a n i s o t a c t i c d i a d ( s o m e t i m e s a l s o a m e s o [m] d i a d ) . d i a d f o r m e d b y two Ca c a r b o n s of u n e q u a l c o n f i g u r a t i o n (dl o r Id) is d e s c r i b e d a s a s y n d i o t a c t i c diad (sometimes also as a racemic [r] diad).

The

84 I 3 Ca

--

CH 2

I C

=

0

I

0

\ CH 3

B y configurational structure of P M M A , diads in the polymer. a linear b a c k b o n e chain.

T h e purely i - P M M A

we mean

the distribution of m a n d

consists of m diads only a n d with

structure, all ester g r o u p s are situated on one side of the

T h e purely s - P M M A

consists of r diads only; with a linear b a c k b o n e

structure, the ester g r o u p s alternate on both sides of the chain. configurational determination

r

structure of P M M A

can be most simply described

of the content of m a n d r diads.

The b y the

This result alone does not

yield a n y information on the distribution of m a n d r diads in longer sequences

which

determine

the content of i- a n d s-sequences

strongly affects the aggregation

information on the m e c h a n i s m

the sequence parameter

unit is independent

chain, then the g r o w t h is determined length distribution is determined

Pm(PrZl-Pm)

In order to

of the g r o w t h of the polymer chain is needed.

If the addition of a n y m o n o m e r the polymer

of P M M A .

of various length, some

of the configuration of b y Bernoulli statistics a n d

b y a single probability

which is defined b y the content of m a n d r diads

( r e f . 5). A l r e a d y in 1H NMR s p e c t r a m e a s u r e d a t 60 MHz, t h e c o n t e n t o f ram, m r a n d rr triads

( o f t e n d e s i g n a t e d a s I,H a n d S, r e s p e c t i v e l y , a n d g i v e n i n %) c a n

be d e t e r m i n e d f r o m t h e r e l a t i v e i n t e n s i t i e s of t h e =-CH 3 b a n d c o m p o n e n t s (ref. 5).

D e t e r m i n a t i o n s of t h e c o n t e n t of I,H,S t r i a d s h a v e s h o w n t h a t o n l y

PMMA s a m p l e s p r e p a r e d

by radical polymerization exhibit sequence

populations corresponding samples prepared

to B e r n o u l l i s t a t i s t i c s .

I n o t h e r c a s e s (PMMA

b y a n i o n i c p o l y m e r i z a t i o n ) , t h e c o n f i g u r a t i o n of t h e c h a i n

e n d h a s to b e c o n s i d e r e d i n t h e d e s c r i p t i o n of c h a i n g r o w t h . h a s to be d e s c r i b e d depends

by Markov statistics.

Such growth

In c a s e s w h e r e monomer a d d i t i o n

o n t h e c o n f i g u r a t i o n of o n l y t h e l a s t d i a d , f i r s t o r d e r M a r k o v

s t a t i s t i c s a r e s u f f i c i e n t f o r t h e d e s c r i p t i o n of c h a i n g r o w t h a n d t h e two necessary

probability parameters

I,H,S t r i a d s .

c a n b e d e t e r m i n e d f r o m t h e c o n t e n t of t h e

By m e a n s of 1H a n d 13C NMR s p e c t r a m e a s u r e d a t h i g h e r

magnetic fields, the content of e v e n longer sequences

can be determined

(e.g., tetrads a n d pentads from the analysis of the C H 2 a n d a - C H 3 b a n d s in IH N M R

spectra m e a s u r e d

of first order M a r k o v

higher order prepared

at 220 MHz) in order either to verify the validity

statistics or to determine the parameters

s t a t i s t i c s ( r e f . 5).

For most s t e r e o r e g u l a r

of s o m e

PMMA s a m p l e s

by conventional methods, first order Markov statistics are adequate

f o r t h e d e s c r i p t i o n of t h e c o n f i g u r a t i o n a l s t r u c t u r e

of PMMA.

85 T h e e q u a t i o n s r e l a t i n g t h e c o n t e n t s of I,H,S t r i a d s w i t h t h e two independent first order

probability parameters

d e t e r m i n i n g c h a i n g r o w t h a c c o r d i n g to

M a r k o v s t a t i s t i c s a n d p e r m i t t i n g t h e c a l c u l a t i o n of t h e c o n t e n t of

i- and s-sequences

of v a r i o u s l e n g t h a r e g i v e n in P a r t V-B.

B. C o n f o r m a t i o n a l s t r u c t u r e

of PMMA

I n PMMA, c o n f o r m a t i o n a l i s o m e r s c a n be g e n e r a t e d

by rotation about three

t y p e s of s i n g l e b o n d s : 1) t h e b o n d s b e t w e e n t h e m e t h y l e n e g r o u p a n d t h e quaternary

c a r b o n , CH2-C; 2) t h e b o n d s b e t w e e n t h e q u a t e r n a r y

and carbonyl

c a r b o n s , C-CO; a n d 31 t h e b o n d s b e t w e e n t h e c a r b o n y l c a r b o n a n d o x y g e n , CO-O.

R o t a t i o n a b o u t b o n d 1 (CH2-C) d e t e r m i n e s t h e c o n f o r m a t i o n a l s t r u c t u r e

of t h e c h a i n b a c k b o n e a n d r o t a t i o n a b o u t b o n d 2 (C-CO) d e t e r m i n e s t h e o r i e n t a t i o n of t h e e s t e r g r o u p s w i t h r e s p e c t

to t h e c h a i n .

Rotation about

b o n d 3 (CO-O) n e e d n o t b e c o n s i d e r e d i n s t u d i e s of t h e c o n f o r m a t i o n a l structure

of PMMA b e c a u s e in all s i m p l e m e t h y l e s t e r s a n a l y z e d so f a r , t h e

e s t e r g r o u p w a s f o u n d to h a v e a p l a n a r s t r u c t u r e g r o u p in cis o r i e n t a t i o n with r e s p e c t assumed that this structure

with the ester methyl

to t h e c a r b o n y l ; t h e r e f o r e , it m a y b e

of t h e e s t e r g r o u p i s p r e s e r v e d

CH

CH

131

- c

a l s o in PMMA.

1- i 3 cH

c

--

2

The structures described

generated

i n t e r m s of t r a n s

b y r o t a t i o n a b o u t CH2-C b o n d s a r e o f t e n (t) a n d g a u c h e (g) f o r m s e v e n if t h e y d e v i a t e

somewhat from the strictly staggered In this

chain with a planar arrangement a s tt, t h e s t r u c t u r e s by & 120"as tg.

of t h e b a c k b o n e c a r b o n a t o m s i s d e s i g n a t e d

w i t h o n e of t h e b o n d s 1 o r 2 t u r n e d

o u t of t h e p l a n e

By r o t a t i o n a b o u t b o n d 2 (C-CO), s i x d i f f e r e n t o r i e n t a t i o n s

of t h e e s t e r g r o u p w i t h r e s p e c t structure

structures.

"staggered a p p r o x i m a t i o n " , t h e c o n f o r m a t i o n a l f o r m of t h e PMMA

to t h e c h a i n c a n be g e n e r a t e d

(ref. 61.

The

w i t h t h e ~-CH 3 g r o u p c o p l a n a r w i t h t h e e s t e r g r o u p a n d o r i e n t e d

t o w a r d s t h e c a r b o n y l is d e s i g n a t e d a s " c i s (or s y n ) o r i e n t a t i o n of t h e e s t e r group with respect

to a-CII3"; t h e s t r u c t u r e

w i t h t h e a-CH 3 g r o u p c o p l a n a r

with t h e e s t e r g r o u p a n d o r i e n t e d a w a y from t h e c a r b o n y l is d e s i g n a t e d as "trans

(or a n t i ) o r i e n t a t i o n o f t h e e s t e r g r o u p w i t h r e s p e c t

Structures

to ~-CH3".

with -CH2-groups coplanar with the ester group can also appear

in PMMA, a s t h e s e c a n a g a i n b e e i t h e r of c i s ( s y n ) o r t r a n s

(anti) t y p e .

86

R

C

C C

0 syn R

0 anti

(cis R)

(trans

R R)

I. i-PMMA. T h e f i r s t c o n s i d e r a t i o n s a b o u t t h e c o n f o r m a t i o n a l s t r u c t u r e i-PMMA w e r e c o n n e c t e d w i t h t h e a n a l y s i s of X - r a y p a t t e r n s i-PMMA w h i c h w e r e o r i g i n a l l y i n t e r p r e t e d

of

of c r y s t a l l i n e

b a s e d o n t h e a s s u m p t i o n ( r e f . 7)

t h a t t h e c h a i n s of i-PMMA i n t h e c r y s t a l l i n e s t a t e f o r m a h e l i x w i t h f i v e m o n o m e r u n i t s p e r two t u r n s the conformational structure as tg.

([5/2] helix).

I n t e r m s of t h e s t a g g e r e d

forms,

of t h e c h a i n in s u c h a helix c a n be a p p r o x i m a t e d

A better agreement with the X-ray patterns

c o u l d be o b t a i n e d w i t h

t h e ( 5 / i ) h e l i x ( r e f . 8) b u t e v e n t h i s model d i d n o t a g r e e w i t h t h e t h e o r e t i c a l c a l c u l a t i o n s ( r e f . 9,10), a c c o r d i n g to w h i c h t h e e n e r g e t i c a l l y m o s t f a v o r e d f o r m of i-PMMA c h a i n s is e v e n m o r e e x t e n d e d t h a n t h e 5/1 helix. ordering 11).

of t h e 5 / 1 h e l i c e s i n t h e u n i t cell p r e s e n t e d

some difficulties (ref.

T h e r e f o r e , a t h i r d model w a s p r o p o s e d w h i c h d e s c r i b e d

patterns,

the X-ray

a s s u m i n g t h a t t h e u n i t cell of c r y s t a l l i n e i-PMMA i s f o r m e d b y two

double-stranded

helices d i s p l a c e d by c/2 along the c axis (fiber axis) with

r e s p e c t to o n e a n o t h e r

( r e f . 11,12).

Each double strand

helices with identical sense and direction. structure

Also, t h e

c o m p r i s e s two 10/1

I n t h e 10/1 helix, t h e c h a i n

c a n b e d e s i g n a t e d a s t t , w i t h t h e a n g l e s ~ a n d ~' d e v i a t i n g f r o m

the strictly staggered

t t f o r m b y 25" a n d I 0 " , r e s p e c t i v e l y .

This is in v e r y

g o o d a g r e e m e n t w i t h t h e t h e o r e t i c a l c a l c u l a t i o n s of V a c a t e l l o a n d F l o r y ( r e f . 13), a c c o r d i n g to w h i c h i n t h e e n e r g e t i c a l l y m o s t f a v o r e d f o r m of i-PMMA t h e a n g l e s ~ a n d ~' d e v i a t e f r o m t h e s t a g g e r e d

t t f o r m b y 23" a n d I I ' ,

g r o u p s a r e c o p l a n a r w i t h ~-CH 3 w i t h a l t e r n a t i n g

the ester

syn(cis) and anti(trane)

ester group orientation. M e a s u r e m e n t s of w i d e - a n g l e X - r a y s c a t t e r i n g of a m o r p h o u s solid i-PMMA s a m p l e s i n d i c a t e ( r e f . 14) t h a t a l s o h e r e t h e t t c o n f o r m a t i o n a l s t r u c t u r e most populated with alternating

syn- and anti-ester

groups.

is t h e

Besides the tt

form, a m o r p h o u s s a m p l e s also c o n t a i n tg a n d g t forms, in a g r e e m e n t with t h e o r e t i c a l p r e d i c t i o n s of S u n d a r a r a j a n al. ( r e f . 15).

a n d F l o r y ( r e f . 9) a n d o f G r i g o r e v a e t

M e a s u r e m e n t s of e n d - t o - e n d

indicate that tt chain structures s o l u t i o n (ref. 16).

d i s t a n c e s i n s o l u t i o n s of i-PMMA

are the most highly populated even in

87 2. s-PMMA. F o r a l o n g time, c r y s t a l l i n e s-PMMA c o u l d n o t be p r e p a r e d ; therefore,

the first information on the conformational structure

of s-PMMA

w a s o b t a i n e d f r o m t h e o r e t i c a l c a l c u l a t i o n s ( r e f . 9,10), f r o m small a n g l e n e u t r o n and X-ray scattering

( r e f . 17) a n d f r o m w i d e - a n g l e X - r a y s c a t t e r i n g

a m o r p h o u s solid s a m p l e s ( r e f . 18). energetically most favored structure

Theoretical calculations indicated that the of s-PMMA i s t h e s l i g h t l y d e f o r m e d t t

f o r m of t h e c h a i n , w i t h s y n o r i e n t a t i o n of e s t e r g r o u p s w i t h r e s p e c t ( r e f . 9,10,19).

of

Calculations have further

to =-CH 3

s h o w n t h a t in a m o r p h o u s s-PMMA

a n d in s-PMMA s o l u t i o n s , t h e p r e s e n c e of t g f o r m s of t h e c h a i n a n d s y n a n d a n t i o r i e n t a t i o n s of e s t e r g r o u p s w i t h r e s p e c t

to t h e c h a i n a r e a l s o to be

expected.

T h e r e s u l t s of w i d e - a n g l e s c a t t e r i n g

( r e f . 18), of n e u t r o n

scattering

( r e f . 17) a n d d i e l e c t r i c m e a s u r e m e n t s

(ref. 20) h a v e c o n f i r m e d t h e

r e s u l t s of t h e t h e o r e t i c a l c a l c u l a t i o n s .

A n a l y s i s of i n f r a r e d

(IR) s p e c t r a

has

s h o w n ( r e f . 21,22) t h a t s-PMMA i n s o l u t i o n c o n t a i n s a l a r g e p r o p o r t i o n of l o n g sequences

of t h e t t s t r u c t u r e .

T h e c o n t e n t of l o n g t t s e q u e n c e s

d i f f e r s in

v a r i o u s s o l v e n t s b u t it i s a l w a y s l a r g e r t h a n in solod a m o r p h o u s PMMA. f i n d i n g i s in a g r e e m e n t w i t h t h e r e s u l t s of i n t e r m e d i a t e - a n g l e scattering

This

X-ray

(ref. 23) w h i c h i n d i c a t e s a c o n s i d e r a b l e c o n t e n t of 9 - to

ll-membered

s e q u e n c e s of t t s t r u c t u r e s

of t h e c h a i n in s o l u t i o n s of s-PMMA.

P a r t l y c r y s t a l l i n e s-PMMA c o u l d be p r e p a r e d crystallization.

A n a l y s i s of X - r a y p a t t e r n s

by solvent-induced h a s i n d i c a t e d ( r e f . 24) t h a t i n

c r y s t a l l i n e s-PMMA t h e p o l y m e r c h a i n s f o r m h e l i c e s w i t h a l a r g e n u m b e r of monomer units per turn

( f o r m o r e d e t a i l , s e e P a r t VI-B).

From this s h o r t s u r v e y ,

it c a n be s e e n t h a t t h e c o n f o r m a t i o n a l s t r u c t u r e s

of t h e c h a i n i n t h e e n e r g e t i c a l l y m o s t f a v o r e d f o r m s of i - a n d s-PMMA d i f f e r v e r y little; in b o t h c a s e s i n t h e m o s t f a v o r e d f o r m , t h e c h a i n s t r u c t u r e be a p p r o x i m a t e d a s t t .

can

T h i s f i n d i n g is i n a g r e e m e n t w i t h t h e a n a l y s i s of t h e

conformational structures

of d i m e t h y l e s t e r s o f g l u t a r i c a c i d d e r i v a t i v e s , t h e

s i m p l e s t m o d e l s of PMMA d i a d s ( r e f . 25).

In these models, represented

by the

g e n e r a l f o r m u l a (RI,R2,R3)C1-CH2-C3(R4,R5,R6), t h e r e l a t i v e s t a b i l i t y of c o n f o r m e r s i s l a r g e l y d e t e r m i n e d b y t h e i n t e r a c t i o n s of s u b s t i t u e n t s p a r a l l e l C1-Ri a n d C3-Rj b o n d s ( p a r a l l e l 1-3 i n t e r a c t i o n s ) .

on

It was s h o w n t h a t

p a r a l l e l 1-3 i n t e r a c t i o n s of t w o e s t e r g r o u p s a r e a p p r o x i m a t e l y e q u a l to t h o s e of o n e m e t h y l a n d o n e e s t e r g r o u p . possible straight models. structures

with the longest

s e q u e n c e of s p 3 c a r b o n a t o m s a r e p r e f e r r e d

in t h e s e

B o t h t h e s e e f f e c t s l e a d to t h e s i m i l a r i t y of t h e c o n f o r m a t i o n a l of s - a n d i-PMMA c h a i n s .

C. D y n a m i c p r o p e r t i e s PMMA

Moreover, structures

of s t e r e o r e g u l a r

PMMA

contains several types of single bond rotations, which lead to

various internal motions of the polymer.

The barriers to rotation about the

88 v a r i o u s t y p e s of b o n d s a r e of c o n s i d e r a b l y d i f f e r i n g h e i g h t a n d t h e r e f o r e t h e m o l e c u l a r m o t i o n s of PMMA a r e c o m p l i c a t e d a n d e x h i b i t a s t r o n g dependence.

T h e d y n a m i c b e h a v i o r of PMMA c a n be d e s c r i b e d

f u n c t i o n s of t h e i n t e r n a l m o t i o n s G(T).

by correlation

U s u a l l y it is a s s u m e d t h a t t h e

c o r r e l a t i o n f u n c t i o n i s of e x p o n e n t i a l c h a r a c t e r

so t h a t the d y n a m i c b e h a v i o r

of t h e v a r i o u s f u n c t i o n a l g r o u p s of PMMA c a n be c h a r a c t e r i z e d c o r r e l a t i o n time Tc o r b y t h e c o r r e l a t i o n f r e q u e n c y The temperature

temperature

by the

vc, w h e r e 1 / r c = 2~v c.

d e p e n d e n c e o f t h e c o r r e l a t i o n f r e q u e n c i e s o f s o l i d PMMA

o b t a i n e d f r o m NMR r e l a x a t i o n p a r a m e t e r s , d i e l e c t r i c m e a s u r e m e n t s a n d m e c h a n i c a l m e a s u r e m e n t s i s s h o w n i n Fig. 1, w h i c h is b a s e d o n t h e d a t a o f McCall ( r e f . 26).

F r o m t h i s f i g u r e , it c a n b e s e e n t h a t t h e e s t e r m e t h y l

g r o u p i s t h e m o s t mobile, e x h i b i t i n g l a r g e c o r r e l a t i o n f r e q u e n c i e s

e v e n below

90"K; t h e a - m e t h y l g r o u p i s s o m e w h a t l e s s mobile, w i t h t h e r o t a t i o n a b o u t t h e C-CH 3 b o n d s t o p p i n g

(on t h e NMR time s c a l e , Vc<104-105Hz) a t t e m p e r a t u r e s

ca. 140"K; c h a i n b a c k b o n e m o t i o n s e x h i b i t t h e l o w e s t c o r r e l a t i o n f r e q u e n c i e s and thus the lowest mobility at a given temperature;

somewhat h i g h e r is the

m o b i l i t y of t h e e s t e r g r o u p a s a whole, w h i c h i s p r o b a b l y c o u p l e d w i t h t h e backbone motions.

T h e d y n a m i c b e h a v i o r of solid PMMA i s s t r o n g l y a f f e c t e d

by stereoregularity.

The glass transition

in) l i e s a t t h e t e m p e r a t u r e i-PMMA ( r s f . 27).

around

{where the b a c k b o n e motions set

115"C f o r s-PMMA a n d a r o u n d 45°C f o r

The data on the glass transition temperature

Tg d i f f e r

s o m e w h a t a c c o r d i n g to t h e m e t h o d b y w h i c h t h e y w e r e o b t a i n e d ; w i t h e a c h s i n g l e m e t h o d , h o w e v e r , T g of s-PMMA is a l w a y s h i g h e r b y a b o u t 70°C t h a n Tg of i-PMMA.

T h e m i n i m a i n NMR r e l a x a t i o n time m e a s u r e m e n t s , of l o s s

a n g l e s in mechanical m e a s u r e m e n t s a n d in dielectric m e a s u r e m e n t s corresponding temperatures 27).

to v a r i o u s f u n c t i o n a l g r o u p s f o r s-PMMA t h a n

of PMMA a l w a y s lie a t h i g h e r

the corresponding

m i n i m a f o r i-PMMA ( r e f .

This difference indicates that the resistance

to t h e r e o r i e n t a t i o n of all

g r o u p s i s h i g h e r i n s-PMMA t h a n i n i-PMMA. I n g e l s c o n t a i n i n g 60% w / w o r m o r e of t h e p o l y m e r , i n t e r n a l m o b i l i t y i s s i m i l a r to t h e m o b i l i t y in a solid p o l y m e r ( r e f . 28). backbone appears mobile.

At r o o m t e m p e r a t u r e ,

the

a s r i g i d o n t h e NMR s c a l e a n d o n l y t h e m e t h y l g r o u p s a r e

T h e m o t i o n s of t h e CH2 g r o u p s

representing

backbone motions only

s e t i n a t c o n c e n t r a t i o n s of 60-50% of t h e p o l y m e r a t room t e m p e r a t u r e . more dilute solutions where aggregation

In

d o e s n o t t a k e p l a c e , t h e m o t i o n of

t h e c h a i n is i s o t r o p i c (ref. 29), t h e m o t i o n of t h e =-CIt 3 g r o u p c a n b e described

b y t h e m o d e l of d o u b l e r e o r i e n t a t i o n w i t h two c o r r e l a t i o n t i m e s , Vg,

characterizing

r o t a t i o n a b o u t t h e b o n d C-CH 3 a n d To, c h a r a c t e r i z i n g

i s o t r o p i c m o t i o n of t h e r o t a t i o n a x i s ( r e f . 28,29). model i s n o t a d e q u a t e f o r c h a r a c t e r i z i n g

the

The double reorientation

t h e m o t i o n of t h e e s t e r CH3 g r o u p ;

in v e r y d i l u t e s o l u t i o n s , i t s m o t i o n c a n b e d e s c r i b e d

b y m e a n s of t h e log ×2

89

8

6 ~4 2 0

I.

-2 -4

'

I

I

I

1031T K q

F i g . 1. T e m p e r a t u r e dependence of the correlation frequency, ~c, f o r t h e m o t i o n s i n PMMA: m a i n c h a i n m o t i o n (o); m o t i o n o f t h e e s t e r g r o u p a s a w h o l e (e); r o t a t i o n o f t h e = - C H 3 g r o u p (z~); a n d r o t a t i o n o f t h e e s t e r CH 3 g r o u p (m). T h e d a t a b a s e d o n t h e r e s u l t s o f NMR s p e c t r o s c o p y , dielectric studies a n d d y n a m i c m e c h a n i c a l m e a s u r e m e n t s a r e t a k e n f r o m r e f . 26. distribution depends

of correlation

on the stereoregularity

temperatures, than

t i m e s ( r e f . 30).

the values

for s-PMMA.

correlation

frequencies

i-PMMA a n d

IV.

of the chains

of correlation

Therefore,

Even in solutions,

in chloroform,

of the a-CH 3 group

Vo=2.6xl08Hz , ~g=l.6xl08Hz

( r e f . 29,31).

frequencies

self-aggregates various

and

structure

f o r i-PMMA

are

uo=Sxl08Hz, vg:l.6xl09Hz

for

f o r s - P M M A ( r e f . 29).

AGGREGATION

of the stereocomplexes

(A S H O R T

o f PMMA a n d o f t h e

o f i-PMMA, s - P M M A o r a t - P M M A * a l o n e h a s b e e n f o l l o w e d b y

physical

methods.

references

of papers

included.

This section

basic principles monographs

At corresponding

higher

for example, at 27"C the

METHODS U S E D IN S T U D I E S O F P M M A S U R V E Y O F T H E I R POSSIBILITIES)

The formation

are

the mobility

They are exhaustively

in which the respective will n o t b e c o n c e r n e d

of the various

methods

( e . g . , i n r e f . 32) b u t

the aggregation

of stereoregular

methods.

In this

section,

in studies

of the aggregation

rather

summarized

in Table 1 and

method was applied with the explanation

which

can be found

with a review

of

of the information

on

some specific

o f PMMA w h i c h w e r e g a r d

of the

in a number

PMMA w h i c h c a n b e o b t a i n e d

we shall also include

are

by these results

as interesting

obtained and

* T h e t e r m a t - P M M A will b e u s e d t o d e s c r i b e PMMAs w i t h s u c h low stereoregularity that they cannot be designated as i- or s-PMMA. Besides samples with relatively high contents of both S- and I-triads, we use this designation also for conventional radical-polymerized PMMA, a l t h o u g h t h i s would also be described as s-PMMA of lower steroregularity, in view of the low c o n t e n t o f I - t r i a d s .

90 TABLE 1 S u r v e y of m e t h o d s u s e d in s t u d i e s of f o r m a t i o n a n d s t r u c t u r e

of PMMA

s t e r e o c o m p l e x a n d PMMA s e l f - a g g r e g a t i o n Method

PMMA s t e r e o c o m p l e x PMMA s e l f - a g g r e g a t i o n

(ref.)

(ref.)

turbidimetry

33-37

38b

light scattering

39-45,157,158

38b,42a,46a,47a,b158 b

sedimentation

40,48-51

osmometry

37,43

s p i n l a b e l m e t h o d s (EPR, fluorescence,luminescence)

56-58

52c,53c,54b,55 c

t h i n - l a y e r a n d GPC c h r o m a t o g r a p h y 4 3 , 4 9 , 5 9 flow b i r e f r i n g e n c e

42,60,61

42a,46a,62a,63 c

viscometry

34-37,39-44,51,52, 64-77

38b,42a,46a,47a, b, 52c,53c,54b,66c,70 a, 76b,78c,79c,80b,81b, c

m e a s u r e m e n t of gel m e l t i n g p o i n t and cloud point

1,67,82-85

53c

dielectric measurements and thermally stimulated depolarization c u r r e n t s

52,86,87

52 c

d y n a m i c o - m e c h a n i c a l m e a s u r e m e n t s 85,88-91,154 c a l o r i m e t r y a n d similar m e t h o d s

35-37,50,51,90-99, 154,156

x-ray diffraction

33,37,49,50,69,83, 90,94,95,97,100, 154

spectrroscopy

22b,23b,c,24b,38b, 95b$97b,100b,101b, 102 ° , 22 b

electron microscopy

NMR

91 c

29,65,69,103-108

2a,b 3a, b,c,3 b, 47a,~,c,54b,102 b, 1 0 9 a , b , l l 0 a , b , l l 1b

i n f r a r e d a n d Raman s p e c t r o s c o p y

21,22,29,41, 112-114,129

other

61,155

22b~lo1b~102b~111 b,

I15U,116o,129 o

ai-PMMA

bs-PMMA Cat-PMMA w h i c h , b y t h e i r c h a r a c t e r , do n o t f i t i n t o a n y of t h e p a r a g r a p h s following s e c t i o n s { P a r t s V - VII}.

of t h e

We did n o t r e f r a i n from d e m o n s t r a t i n g

e v e n some c o n t r a d i c t o r y r e s u l t s o b t a i n e d b y t h e same m e t h o d b y v a r i o u s authors.

The l a r g e n u m b e r of m e t h o d s a n d of p a p e r s d e v o t e d to s t u d i e s of

t h e s t e r e o c o m p l e x (73 r e f e r e n c e s ) a n d to s t u d i e s of t h e e i n g l e s t e r e o r e g u l a r

91 PMMA's, including the aggregation of at-PMMA

(34 references) prevent a more

detailed analysis of various papers. In this section, all methods summarized in Table i have been divided into three groups: 1) methods for dilute solution studies (turbidimetry, light scattering, osmometry, sedimentation, chromatography,

spin label methods, thin-layer and GPC

mixing calorimetry, flow birefringence, viscometry);

2)

methods for studies of concentrated solutions, gels and of the solid state (viscometry, measurements of the gel melting point, dielectric measurements and thermally stimulated depolarization currents, dynamic-mechanical measurements, D S C calorimetry, X-ray diffraction, electron microscopyl; 3) methods of molecular spectroscopy (NMR spectroscopy, IR and R a m a n spectroscopyl. In our classification, solutions with a concentration less than ~1% were considered as dilute; naturally, this limit should not be regarded dogmatically.

The methods of molecular spectroscopy have been separated

partly because of their specific character and partly because this is our o w n specialization.

A. Methods for dilute solution studies I. Turbidity. Liquori et al. (ref. 33) have already shown that the formation of the P M M A

stereocomplex in polar solvents (DMF, acetonitrile) is manifested

by enhanced turbidity.

In these media, the size of the stereocomplex

aggregate particles evidently reaches such values that the particles precipitate from solution (size ranges ~i00 n m to several micrometers).

The

dependences of the turbidity on the composition of the i/s-PMMA mixtures exhibit a maximum which is used to estimate the stoichiometry

of the

stereocomplex (ref. 33-35,37). Turbidity increases also with increasing concentration of the solution (ref. 33). During heating, an abrupt decrease of turbidity is observed in a certain temperature range (refs. 33,36), indicating deaggregation of stereocomplex particles. The turbidimetric methods have been applied in a more complex manner in studies of s - P M M A

seif-aggregation in butyl acetate (BAC) (ref. 38).

In this

case, the integral and differential turbidity ratio methods were applied for characterization

of the aggregating particles; the turbidities were measured

at three different wavelengths.

The solution of s - P M M A which was studied in

B A C was dissolved at high temperature where aggregates are not present in the system and aggregate formation was then followed by the measurement of the time dependence of turbidity at various temperatures for solutions of various concentration;

attention was also paid to the effect of the thermal

history of the solution. From the ratios of turbidities measured at various wavelengths, the size of the aggregating particles could be determined (i.e.,

92 t h e m e a n p a r t i c l e d i a m e t e r , t h e i r c o n c e n t r a t i o n c [g cm - 3 ] a n d / o r number N [cm-3])--all this for various aggregation

times.

2. C l a s s i c a l l i g h t s c a t t e r i n g . A n g u l a r l i g h t s c a t t e r i n g m e t h o d of d e t e c t i n g t h e p r e s e n c e of a g g r e g a t e s c a s e s w h e r e t h e f r a c t i o n of t h e a g g r e g a t e d

their

is a v e r y s e n s i t i v e

in t h e s y s t e m e v e n in t h o s e

m a c r o m o l e c u l e s is so s m a l l t h a t it

c a n n o t be d e t e c t e d b y o t h e r m e t h o d s like o s m o m e t r y , v i s c o m e t r y o r NMR spectroscopy

( r e f . 38).

of t h e a g g r e g a t i o n transparent.

T h e f o r m a t i o n of a g g r e g a t e s

the self-aggregates apparent

C o n t r a r y to t u r b i d i m e t r y ,

it p e r m i t s c h a r a c t e r i z a t i o n

p r o c e s s e v e n a t i t s b e g i n n i n g w h e n t h e s o l u t i o n is q u i t e of t h e PMMA s t e r e o c o m p l e x (or of

of i - o r s-PMMA) l e a d s to a m a r k e d i n c r e a s e in t h e

v a l u e s of molecular w e i g h t ( l ~ ) a p p .

t h e v a l u e s of ( l ~ ) a p p

which are dependent

F o r t h e PMMA s t e r e o c o m p l e x ,

on the composition (i/s) exhibit a

maximum; s i m i l a r l y , a s in t h e c a s e of t u r b i d i t y ,

t h i s i s u s e d f o r e s t i m a t e s of

t h e s t e r e o c o m p l e x s t o i c h i o m e t r y (ref. 39,42}.

D u r i n g h e a t i n g , a d e c r e a s e of

( l ~ } a p p is o b s e r v e d

w h i c h i s a c o n s e q u e n c e of t h e

at certain temperatures,

d e c o m p o s i t i o n of t h e s t e r e o c o m p l e x a g g r e g a t e s i n c r e a s e of ( ~ ) a p p

( r e f . 40,42}.

The absolute

a s c o m p a r e d to t h e a d d i t i v e v a l u e of t h e m i x t u r e d e p e n d s

a l s o o n t h e c o n c e n t r a t i o n o f t h e s o l u t i o n ( r e f . 43).

T h e r e s u l t s o f Katime e t

al. ( r e f . 45) i n d i c a t e t h a t e q u i l i b r i u m v a l u e s of ( H ~ ) a p p a n d of t h e r a d i u s of g y r a t i o n Rg f o r t h e s t e r e o c o m p l e x i n DMF a r e r e a c h e d o n l y a f t e r a b o u t 10 days. Increased

v a l u e s of ( l ~ } a p p w e r e a l s o o b s e r v e d

in DMF ( r e f . 42,46) a n d i n BAC ( r e f . 47). certain critical temperature,

w i t h s o l u t i o n s of i-PMMA

By h e a t i n g t h e s o l u t i o n a b o v e a

a p a r t of t h e i-PMMA a g g r e g a t e s

is i r r e v e r s i b l y

d e c o m p o s e d ( r e f . 46,47} a n d in t h e f o l l o w i n g t h e r m a l c y c l e s t h e s c a t t e r i n g d i a g r a m s do not differ.

A c c o r d i n g to K u s a k o v e t al. ( r e f . 46), t h e a g g r e g a t e s

of i-PMMA i n DMF d e c o m p o s e a t 50"C; h o w e v e r , in s t u d i e s of i-PMMA in BAC, it w a s f o u n d t h a t a m o l e c u l a r s o l u t i o n c a n be p r e p a r e d heating at temperatures

a b o v e 100-130"C ( r e f . 47).

By m e a n s of l i g h t s c a t t e r i n g , a g g r e g a t i o n methylethylketone

of s-PMMA w a s p r o v e d i n

(MEK}, 2 - e t h o x y e t h a n o l a n d BAC ( r e f . 38,47).

yields molecular solutions at temperatures temperature,

only by prolonged

aggregation

t a k e s place.

s-PMMA

a b o v e 60"C; b y c o o l i n g to a l o w e r

T h e time c o u r s e of a g g r e g a t i o n of

s-PMMA i n BAC a t 55"C f o l l o w e d b y m e a s u r e m e n t s of l i g h t s c a t t e r i n g i n Fig. 2, w h i c h c l e a r l y s h o w s t h e g r a d u a l g r o w t h of s c a t t e r e d w i t h time.

E v e n w i t h s-PMMA, a g g r e g a t i o n

characterized aggregation

turns

light intensity

c a n be a p p r o x i m a t e l y

b y t h e i n c r e a s e i n t h e v a l u e s o f (Nl~)app.

from solution.

is s h o w n

into macroscopic separation

A f t e r s o m e time,

( p r e c i p i t a t i o n } of t h e p o l y m e r

93

I

I

I

1:=10

×

40

1'0

0'5

1"5

2"0

2'5

S,n 2 (el2} * c-~

F i g . 2. D e p e n d e n c e o f t h e r a d i a t i o n e n v e l o p e s o f s e l f - a g g r e g a t i n g s - P M M A (S = 91.5%, H = 7.5%) i n BAC a t 55"C o n t i m e T {rain); c o n c . 5 x l 0 - 3 g c m - 3 ; C : 0.02 m i n - 1 ( r e f . 47).

3. Osmometry. From t h e concentration dependence of osmotic pressure, the n u m b e r average molecular weight, Mn, can be determined.

The intermolecular

interactions of macromolecules in stereocomplex formation are manifested by an increase of the Fin values, while the absolute effect depends on the ratio (i/s) in the mixture (ref. 37,43). Osmometry was also applied in a study of aggregation of s - P M M A in toluene (ref. 54). Also in this case, several-fold higher values of FIn were observed, indicating participation of intermolecular interactions in the aggregation process.

The decomposition of s - P M M A

aggregates with increasing temperature is manifested by a decrease of FIn values. Aggregation of a t - P M M A polymerization)

was studied

s-PMMA, also in this case exists

concerning

aaddition

to papers

This could probably

finding

the solvent

plays

claiming aggregation be explained

prepared by radical

(ref. 52-55). a major role.

measurements

no aggregation

i n r e f . 52, o r p o s s i b l y

4. Sedimentation.

PMMA

in a similar way

the osmometric

also exists one paper

defined

(conventional

Some discrepancy

of at-PMMA in toluene.

in this

system

stereoregularity

different

molecular

In

(ref. 53,54), there

at at-PMMA in toluene

by different

by very

Similarly as with

( r e f . 52).

which is not

weight.

Similarly as in the preceding methods, the increase of

the weight of the aggregated molecules in the stereocomplex of P M M A

makes

possible their detection by the method of sedimentation velocities (ref. 40,48,49). From the areas under the gradient curves, the weight fraction of

94 stereocomplex aggregates

can be e s t i m a t e d .

d i a g r a m s , Miyamoto a n d I n a g a k i d e m o n s t r a t e

On t h e b a s i s o f s e d i m e n t a t i o n ( r e f . 49} t h a t in a d d i t i o n to t h e

s t e r e o c o m p l e x , f r e e m o l e c u l e s of PMMA a r e p r e s e n t

i n m i x t u r e s of i / s - P M M A in

a c e t o n e w i t h t h e r a t i o i / s = 1/1 a n d 2 / 1 , t h e n u m b e r of f r e e m o l e c u l e s b e i n g c o n s i d e r a b l y h i g h e r in t h e l a t t e r c a s e .

Ultracentrifugation was also applied

f o r t h e p h a s e s e p a r a t i o n of t h e p r e c i p i t a t e d of t h e y i e l d i n d e p e n d e n c e

stereocomplex and determination

o n t h e r a t i o (i/s} {ref, 50} a n d o n t h e c o m p o s i t i o n

of t h e mixed s o l v e n t (ref. 51}.

5. S p i n l a b e l m e t h o d s (EPR, f l u o r e s c e n c e ~ l u m i n e s c e n c e } .

A common f e a t u r e

of t h e s e m e t h o d s i s t h e a t t a c h m e n t , b y c h e m i c a l r e a c t i o n , of a l a b e l d e t e c t a b l e by the respective

m e t h o d , to i - o r s-PMMA.

T h e a t t a c h m e n t of a n i t r o x i d e

r a d i c a l to i-PMMA h a s m a d e PMMA s t e r e o c o m p l e x f o r m a t i o n a m e n a b l e to EPR studies

( r e f . 56}.

F r o m t h e i n t e n s i t y of t h e b r o a d l i n e d u e to l i m i t e d m o b i l i t y

of t h e r a d i c a l in t h e s t e r e o c o m p l e x , s t u d i e d i n d e p e n d e n c e o n t h e r a t i o {i/s} and on temperature,

the authors

m a k e c o n c l u s i o n s a b o u t t h e s t o i c h i o m e t r y of

the steroecomplex and about its "melting". i - a n d s-PMMA m a c r o m o l e c u l e s c a r r y i n g

T h e i n t e r m o l e c u l a r i n t e r a c t i o n s of

l u m i n i s c e n c e l a b e l s in d i l u t e DMF

s o l u t i o n s a r e a l s o m a n i f e s t e d i n t h e m e t h o d of p o l a r i z e d l u m i n e s c e n c e d u e to reduced

m o b i l i t y {ref. 58).

The authors

of t h i s p a p e r c h a r a c t e r i z e

q u a n t i t a t i v e l y t h e i n t r a m o l e c u l a r m o b i l i t y of t h e s y n d i o t a c t i c c o m p o n e n t of t h e s t e r e o c o m p l e x in d e p e n d e n c e on the s t e r e o r e g u l a r i t y solvent.

By t h i s m e t h o d , t h e time d e p e n d e n c e

c o u l d a l s o b e followed.

of s-PMMA a n d o n t h e

of s t e r e o c o m p l e x f o r m a t i o n

Contact carbazole and anthracene

s - a n d i-PMMA f a v o r t h e e n e r g y

transfer

l a b e l s a t t a c h e d to

a n d m a k e p o s s i b l e s t u d i e s of

s t e r e o c o m p l e x formation in dioxane by the f l u o r e s c e n c e t e c h n i q u e

6. C h r o m a t r o g r a p h i c m e t h o d s . a n a l y s i s of t h e p r o d u c t s c o u l d be s e p a r a t e d

( r e f . 57}.

By m e a n s of t h i n l a y e r c h r o m a t o g r a p h y

i n t o two c o m p o n e n t s :

a n d i-PMMA, r e s p e c t i v e l y

{ref. 49,59).

a m i x t u r e w i t h i / s = 1/1 p l u s s -

From this finding, the authors

c o n c l u s i o n s a b o u t t h e c o m p o s i t i o n of t h e p r i m a r y s t e r e o c o m p l e x .

measured

some

c o n c e r n i n g t h e s t e r e o c h e m i c a l c o m p o s i t i o n of t h e p r o d u c t s .

r e s u l t s of GPC c h r o m a t o g r a p h y

make

H o w e v e r , it

s h o u l d b e s t a t e d t h a t t h e 60 MHz 1H NMR s p e c t r a of t h e p r o d u c t s a t 30"C w e r e n o t well r e s o l v e d ( s e e r e f . 59}, t h u s i n t r o d u c i n g uncertainty

and

b y NMR m e t h o d s , t h e m i x t u r e s w i t h i / s = 1/2 o r 2 / 1

The

h a v e s h o w n t h a t t h e p a r t i c l e s of t h e PMMA

s t e r e o c o m p l e x i n DMF a s a w h o l e a r e c o n s i d e r a b l y l a r g e r t h a n t h e coils of i o r s-PMMA a l o n e ( r e f . 43}.

7. Mixing c a l o r i m e t r y .

Mixing c a l o r i m e t r y w a s a p p l i e d to

s t e r e o c o m p l e x s t u d i e s i n two p a p e r s

( r e f . 93,99).

PMMA

F r o m m e a s u r e m e n t s of t h e

95 h e a t o f mixing of s o l u t i o n s of i - a n d s-PMMA, Biro~ e t al. ( r e f . 93) h a v e d e t e r m i n e d t h e h e a t of s t e r e o c o m p l e x f o r m a t i o n , aHf, a n d h a v e a l s o s t u d i e d i t s d e p e n d e n c e on t h e r a t i o i / s , o n t h e s o l v e n t a n d on t h e s t e r e o r e g u l a r i t y of the s-component.

The l a r g e s t v a l u e s (aHf} w e r e f o u n d in DMF (conc. 1%},

w h e r e f o r i / s = 1/1.5 to 1/2 a n d s-PMMA of h i g h s t e r e o r e g u l a r i t y (S = 94%; H = 6%), aHf = -15 J / g .

Similar v a l u e s of AHf w e r e a l s o f o u n d in CC14 (ref. 99}.

8. Flow b i r e f r i n g e n c e . M e a s u r e m e n t s of flow b i r e f r i n g e n c e h a v e s h o w n t h a t t h e v a l u e s of s e g m e n t a l a n i s o t r o p y of t h e PMMA s t e r e o a o m p l e x in t o l u e n e a r e n e g a t i v e a n d of h i g h a b s o l u t e v a l u e , i n d i c a t i n g a c o n s i d e r a b l e d e g r e e of o r d e r i n g of t h e s e s y s t e m s (similar to t h a t , f o r example, in m a c r o m o l e c u l e s of t h e biological origin} ( r e f . 42,60).

The d e p e n d e n c e of t h e s e g m e n t a l

a n i s o t r o p y o n t h e r a t i o i / s i n d i c a t e d t h a t maximum o r d e r of s t e r e o c o m p l e x a g g r e g a t e s is a t t a i n e d a t t h e r a t i o i / s = 1/1.

The h e a v i e s t s t e r e o c o m p l e x

p a r t i c l e s f o r m e d at i / s = 1/2 a r e t h u s n o t n e c e s s a r i l y t h e b e s t o r d e r e d o n e s ( r e f . 60).

The a u t h o r s f u r t h e r

d e m o n s t r a t e t h e e f f e c t of t h e r m a l h i s t o r y o f

t h e s a m p l e s w h i c h c a n lead to f u r t h e r i n c r e a s e o f t h e o r d e r i n g in t h i s s y s t e m . N e g a t i v e v a l u e s of a n i s o t r o p y of h i g h a b s o l u t e v a l u e i n d i c a t i n g t h e p r e s e n c e of o r g a n i z e d s t r u c t u r e s

w e r e o b s e r v e d a l s o with t o l u e n e s o l u t i o n s of

i-PMMA (ref. 42,46,62} a n d w i t h PMMA of " s t e r e o b l o c k " s t r u c t u r e

(I = 46%; H =

28%; S = 33%); in t h e l a t t e r c a s e , t h e y a r e a s c r i b e d to i n t e r a c t i o n s of i - a n d s - s e q u e n c e s of t h e same molecule ( r e f . 62).

Negative and t e m p e r a t u r e

d e p e n d e n t v a l u e s of o p t i c a l a n i s o t r o p y w e r e a l s o o b s e r v e d w i t h n e t w o r k s of at-PMMA s w o l l e n in CC14. ( r e f . 63). 9. V i s c o m e t r y . As s e e n f r o m Table 1, v i s c o m e t r y is t h e most f r e q u e n t l y 1 5 1 5 u s e d m e t h o d in s t u d i e s of t h e s t e r e o c o m p l e x of PMMA. This c i r c u m s t a n c e ,

t o g e t h e r w i t h t h e c o m p l i c a t e d n a t u r e a n d c o m p l e x i t y of s t e r e o c o m p l e x a g g r e g a t e f o r m a t i o n , h a s led to a n u m b e r of e v i d e n t l y o r a p p a r e n t l y controversial findings.

S t e r e o c o m p l e x f o r m a t i o n is u s u a l l y a s s u m e d to b e

i n d i c a t e d b y t h e n o n a d d i t i v e d e p e n d e n c e of t h e r e d u c e d s p e c i f i c v i s c o s i t y ~ s p / C o n t h e r a t i o i / s in t h e m i x t u r e .

I n DMF (in w h i c h s t e r e o c o m p l e x

f o r m a t i o n h a s b e e n most o f t e n s t u d i e d } , t h i s d e p e n d e n c e e x h i b i t s a minimum a n d t h e c o r r e s p o n d i n g r a t i o i / s is a s s u m e d to c o r r e s p o n d to t h e s t o i c h i o m e t r y o f t h e s t e r e o c o m p l e x (ref. 34-37,43,68,76} (Fig. 3).

The time

d e p e n d e n c e o f ~sp/C in DMF e x h i b i t s a n i n i t i a l d e c r e a s e ( r e f . 44), w h e r e a s i t s temperature d e p e n d e n c e (ref. 40,64).

exhibits an increase in a certain temperature range

Also, in the d e p e n d e n c e of intrinsic viscosity [7] (although the

determination of this quantity is s o m e w h a t problematic - see further text) on the ratio i/s in DMF, a m i n i m u m w a s observed

(ref. 39,44). These results

indicate that in this m e d i u m the h y d r o d y n a m i c

volume of the stereocomplex

96

o

2

0

~

\----22222

I

0

I

I

I

0.2 0.4 0.{5Ys __0.8 1.0

F i g . 3. D e p e n d e n c e o f t h e r e d u c e d v i s c o s i t y , l s p / C v s . s - P M M A c o n t e n t Y s f o r m i x t u r e s o f i-PMMA (I : 94%; H = 3%) a n d s - P M M A (S : 80%; H : 7%} i n c h l o r o f o r m (x), b e n z e n e (o) a n d DMF (o) ( r e f . 35).

aggregates is smaller than would correspond to a mixture on non-interacting i- and s-PMMA molecules; i.e., compact particles are observed. A minimum in the dependence of reduced specific viscosity on the ratio i/s, besides in DMF, was also observed in acetonitrile, acetone, dimethylsufoxide (DMSO), methyl isobutyrate, tetrahydrofurane (THF), MMA, BAC and ethyl acetate (EtAc) (ref. 35,71). However, it has to be remembered that ,}sp/C also depends on further factors, especially on the time from the mixing of the solutions of i- and s-PMMA and on their concentration.

With increasing time and especially at

higher concentration (above 0.5%), the values of Wsp/C increase even in DMF, reaching finally higher than additive values (i.e., exhibiting a maximum in the dependence on the ratio i/s) (ref. 35,43,76). T h i s behavior is explained by a gradual formation of a three-dimensional network, with small regions of associated and

segments

concentration

playing may then

( r e f . 65,71) f o r m i x t u r e s Greater studies

a role of crosslink

of i- and

discrepancies

of stereocomplex

formation

In a number

dependence

o f ,~sp/C o n i / s i s c i t e d

weaker

of papers

of a three-dimensional

"tendency

contradiction

towards

of the result

Differences

in time

o f m i n i m a ( r e f . 35) o r m a x i m a

s-PMMA in acetone.

are found

or toluene.

formation

points.

explain the findings

in the results in nonpolar

obtained

aromatic

by viscometric

solvents

like benzene

(ref. 35,52,65,66,69), a maximum in the ( F i g . 3) a n d

network

formed

complex formation" documenting

this is connected

with the

as a consequence

of a

of these

the existence

solvents

( r e f . 35).

In

o f a m a x i m u m Wsp/C i n

97 t o l u e n e , b o t h f r o m m e a s u r e m e n t s of e q u i l i b r i u m v a l u e s ( a b o u t 1 m o n t h a f t e r m i x i n g of i - a n d s-PMMA s o l u t i o n s } ( r e f . 65,69} o r f r o m m e a s u r e m e n t s p e r f o r m e d 10 rain. a f t e r m i x i n g ( r e f . 35}, o t h e r p a p e r s i n d i c a t e t h a t i n t h i s solvent at concentrations

below 1%, t h e v a l u e s of Wsp/C i n d e p e n d e n c e

on

time, a f t e r s o m e i n i t i a l d e c r e a s e , a t t a i n e q u i l i b r i u m v a l u e s ( r e f . 67,74), sJLmilarly a s in DMF ( r e f . 44).

A s t e e p i n c r e a s e of Wsp/C w i t h t i m e i s h e r e

c i t e d o n l y f o r c o n c e n t r a t i o n s a b o v e 1%. observed

R e h a g e a n d W a g n e r ( r e f . 76) h a v e

a m i n i m u m e v e n i n t o l u e n e , if t h e m e a s u r e m e n t s w e r e m a d e

immediately a f t e r mixing of the solutions; a f t e r s e v e r a l h o u r s , t h e minimum p a s s e s o v e r into a maximum. indicate that the aggregates

T h e r e s u l t s of t h e l a t t e r p a p e r s

t h u s s e e m to

of t h e PMMA s t e r e o c o m l e x in DMF a n d in t o l u e n e

a r e of t h e s a m e t y p e . T h e v i s c o s i t i e s of m i x t u r e s o f s o l u t i o n s of i - a n d s-PMMA d e p e n d a l s o o n t h e m o l e c u l a r w e i g h t of t h e s t e r e o r e g u l a r their stereoregularity. the additive character

c o m p o n e n t s {ref. 37,65,71} a n d o n

Low s t e r e o r e g u l a r i t y of r e d u c e d

was probably the reason why

specific viscosity was observed

for

m~ixtures of i - a n d at-PMMA i n b e n z e n e o r i n t o l u e n e ( r e f . 70,71}. behavior indicating that interaction between highly stereoregular PMMA d o e s n o t t a k e p l a c e c a n be r e g a r d e d 3) ( r e f . 35,65 69}.

Additive f o r m s of

a s p r o v e d o n l y in c h l o r o f o r m (Fig.

L o h m e y e r e t al. ( r e f . 36} h a v e followed v i s c o m e t r i c a l l y t h e

i n t e r a c t i o n b e t w e e n i-PMMA a n d p a r t l y h y d r o l y z e d c o s y n d i o t a c t i c c o p o l y m e r MMA/MAA.

s-PMMA, w h i c h i s r e a l l y a

E v e n f o r r e l a t i v e l y h i g h d e g r e e s of

h y d r o l y s i s , w h e r e t h e m e a n l e n g t h o f MMA s e q u e n c e s i s r e l a t i v e l y s h o r t , in DMF a d e c r e a s e of v i s c o s i t y below t h e a d d i t i v e v a l u e w a s o b s e r v e d , characteristic

f o r t h e f o r m a t i o n o f t h e PMMA s t e r e o c o m p l e x .

which is

M e k e n i t s k a y a et

al. ( r e f . 74} s t a t e t h a t t h e r e s u l t s of v i s c o m e t r i c s t u d i e s c a n b e a f f e c t e d b y t h e c i r c u m s t a n c e t h a t two p r o c e s s e s

p r o c e e d in parallel:

1) f o r m a t i o n of s t

e r e o c o m p l e x p a r t i c l e s ; a n d 2) a g g r e g a t i o n o f t h e s e p a r t i c l e s . have observed

The authors

t h e a g g r e g a t i o n o f s t e r e o c o m p l e x p a r t i c l e s i n DMF, b u t n o t i n

toluene. I n a n u m b e r o f p a p e r s , t h e v a l u e s of i n t r i n s i c v i s c o s i t y w e r e o b t a i n e d b y e x t r a p o l a t i o n o f t h e v a l u e s of ~ s p / C to z e r o c o n c e n t r a t i o n a n d t h e i r d e p e n d e n c e o n t h e r a t i o i / s ( r e f . 39,44,70,71} o r o n t e m p e r a t u r e w a s followed.

( r e f . 42,71,74}

H o w e v e r , B e l n i k e v i t c h e t al. ( r e f . 44) call a t t e n t i o n to t h e

c i r c u m s t a n c e t h a t i n t r i n s i c v i s c o s i t i e s d e t e r m i n e d in t h i s w a y a r e n o t s u i t a b l e fox" c h a r a c t e r i z i n g aggregates.

unambiguously the hydrodynamic

b e h a v i o r of s t e r e o c o m p l e x

T h i s is b e c a u s e t h e t i m e d e p e n d e n c i e s of ~ s p / C e x h i b i t a

d i f f e r e n t c o u r s e f o r v a r i o u s c o n c e n t r a t i o n s , w h i c h is, i n t e r alla, m a n i f e s t e d a l s o so t h a t t h e v a l u e s of [~] d e t e r m i n e d b y d i l u t i o n of t h e b a s i c s o l u t i o n , w h i c h h a s b e e n s t a b i l i z e d f o r a c e r t a i n time, d e p e n d o n t h e c o n c e n t r a t i o n o f t h i s s o l u t i o n ( r e f . 40,44).

As s e e n f r o m Fig. 4, t h e v a l u e s of [W] i n

98

I

I

i

a 6o-

3o

I

I

}

b60

C

130

__

-

IOO

I

J

j

2

4

6

Cm × [0 3 (g cm-3)

F i g . 4. D e p e n d e n c e o f t h e i n t r i n s i c v i s c o s i t y o f m i x t u r e s o f s o l u t i o n s o f i-PMMA (I : 72%; H : 17%1 a n d s - P M M A (S : 91.5%; H = 7.5%) o n t h e t o t a l initial concentration c m a t m i x i n g i n DMF (a), d i o x a n e ( b ) , a n d c h l o r o b e n z e n e (c); . . . . . , a d d i t i v e v a l u e ( r e f . 44). dependence and

on the total concentration

below the additive

not mean that

aggregation

Viscometric results (ref. 42,46,47,76) and intrinsic

value.

viscosity

with measurement

does not take

also indicate

with increasing

was described

observed

at temperatures

and its measurements observed,

indicating

sufficiently indicating reduced

long time (several a slow generation

does

( r e f . 461 o f

i n DMF i s c i t e d .

an irreversible their

In agreement

decomposition

of a part

heating

a certain

above

(ref. 46,47).

60"C.

( F i g . 5). hours)

of large

behavior

have

After cooling of the solution

at 25"0, an increase association

specific viscosity

decrease

no anomalies in viscometric above

thus

o f i-PMMA i n s o l u t i o n

( r e f . 42) a n d

i n DMF o r BAC a f t e r

With s-PMMA in toluene,

lie b o t h a b o v e

value

place.

temperature

of light scattering,

critical temperature

with the additive

self-aggregation

both an increase

o f t h e i-PMMA a g g r e g a t e s

a t m i x i n g (c m) c a n t h e n

Agreement

of the values The values

increase

of ~sp/C with time is

~sp/C measured

with decreasing

formations

with time was observed

( r e f . 54).

been

f r o m 60"C

after

concentration,

A growth

also with solutions

of of

a

99

I

r

f

10

~8

2

~00

200

300 time,rain

Fig. 5. D e p e n d e n c e o f ~splc - [7] v s . time ([7] : 0.52, d e t e r m i n e d a t 60"C) f o r s a m p l e s-PMMA (S = 89.5%; H = 8.5%) in t o l u e n e a t 25"C: c : 4.47 (o); 2.79 ( , ) ; 2.03 (/'); 1.4 (-); 0.86 ($) gL -1 ( r e f . 54). s-PMMA in BAC.

An a n o m a l o u s c o n c e n t r a t i o n d e p e n d e n c e of Wsp/C a n d g r o w t h

o f v i s c o s i t y w i t h time, i n d i c a t i n g t h e f o r m a t i o n of a n e t w o r k s t r u c t u r e , was o b s e r v e d a l s o w i t h s-PMMA in t o l u e n e a n d o - x y l e n e ( r e f . 76).

Katime e t al.

( r e f . 80,81) h a v e d e t e c t e d a n o m a l i e s in t h e t e m p e r a t u r e d e p e n d e n c e o f [7] w i t h s-PMlVlA in d i f f e r e n t s o l v e n t s , w h i c h t h e y i n t e r p r e t b y a c o n f o r m a t i o n a l t r a n s i t i o n b u t a c o n n e c t i o n w i t h a s s o c i a t i o n is a d m i t t e d .

However, similarly

a s w i t h t h e s t e r e o c o m p l e x , a l s o in t h e s e p a p e r s t h e d e t e r m i n a t i o n of i n t r i n s i c v i s c o s i t y r a i s e s some d o u b t s (see r e f . 54). Contradictory data have been published concerning the aggregation b e h a v i o r of at-PMMA.

B o r c h a r d e t al. ( r e f . 52,66) h a v e o b s e r v e d a maximum

in t h e t e m p e r a t u r e d e p e n d e n c e of ~/sp/C, a s well a s a n a n o m a l o u s c o n c e n t r a t i o n d e p e n d e n c e w i t h s o l u t i o n s of at-PMMA in t o l u e n e ; t h i s t h e y e x p l a i n b y i n t r a m o l e c u l a r a s s o c i a t i o n of s h o r t i - a n d s - s e q u e n c e s i n t e r a c t i o n s of stereocomplex type).

(i.e.~ b y

C o n t r a r y to t h i s , t h e f i n d i n g t h a t a l s o

w i t h at-PMMA in t o l u e n e t h e v a l u e s of ~sp/C a r e t i m e - i n d e p e n d e n t a n d e x h i b i t the conventional linear concentration dependence argues against the existence of a g g r e g a t e s in t h e s e s y s t e m s ( r e f . 54,76).

In t h e s e cases, an important

f a c t o r p r o b a b l y is t h e m o l e c u l a r w e i g h t o f at-PMMA.

The r e l a t i v e l y h i g h

v a l u e s of t h e H u g g i n s c o n s t a n t (k H ~ 1) i n d i c a t e t h e e x i s t e n c e of some i n t e r m o l e c u l a r i n t e r a c t i o n s in s o l u t i o n s o f at-PMMA in a c e t o n i t r i l e , c h l o r o b u t a n e a n d p - x y l e n e ( r e f . 53,54,78,79).

100 B. M e t h o d s for studies of concentrated solutions, gels a n d of the solid state. i. Rheology. It follows already from the p a r a g r a p h concerning the viscometric behavior of dilute solutions that with increasing concentration and time, the interactions between s- a n d i - P M M A in D M F

lead to the

formation of a gel. Mixing of concentrated solutions of i- and s - P M M A several per cent) leads to almost instantaneous gel formation.

(conc.

F r o m the

macroscopic point of view, these gels exhibit a sharp melting point considerably d e p e n d e n t on the stereoregularity of s - P M M A

(ref. I).

Similarly,

a d e p e n d e n c e on the stereoregularity of i - P M M A could be expected but this has not been studied.

It w a s found that gel formation does not take place if

the molecular weight of i- or s - P M M A

decreases below a certain limit (N~ <

i000) (ref. 82,83). The d e p e n d e n c e of the gel melting temperature on the total concentration (ref. 1,85) and on solvent (ref. 67) w a s studied.

Gel

formation w a s observed also for mixtures of solutions of i- a n d a t - P M M A acetone (ref. 84). Methodically similar to the above-mentioned also are the studies of aggregation of a t - P M M A

in

investigations

in CCI 4 or in p-xylene from

m e a s u r e m e n t s of cloud-point curves (ref. 52). Viscometry w a s applied to studies of mixtures of concentrated solutions (conc. 2 - 10%) of i- a n d a t - P M M A

in benzene, D M F

a n d toluene (ref. 70,75).

In d e p e n d e n c e on the ratio i/at-PMMA, the viscosity exhibits an e x t r e m u m a n d approaches additive behavior with increasing temperature, with the nature of the solvent playing some role. F r o m the temperature d e p e n d e n c e of viscosity, 7, using the relation w - A exp[(AH ;~ - TaS~)/RT], the activation enthalpy AH ;~ a n d activation entropy aS ;~ of the viscous flow has been determined.

T h e relatively high values of these quantities found in D M F

(AH ;~

= 31 kcal/mol; AS~ = 70 cal/mol) indicate that the flow is accompanied b y decomposition of strong intermolecular b o n d s a n d b y a considerable disordering of supermolecular structures (ref. 75). T h e presence of rigid organized structures is indicated b y viscometry also in 10% solutions of i - P M M A alone in benzene (ref. 70). T h e viscoelastic behavior of gels of the P M M A

stereocomplex in o-xylene

(conc. 5-12%) w a s studied b y dynamicomechanical techniques (i.e., b y the m e a s u r e m e n t of the time d e p e n d e n c e s of the real a n d imaginary c o m p o n e n t s of t h e s h e a r m o d u l u s ( s t o r a g e m o d u l i G' a n d l o s s m o d u l i G") ( r e f . 88,89,91). A g r a d u a l l o w e r i n g of t h e t e m p e r a t u r e

to a v a l u e w h e r e g e l f o r m a t i o n t a k e s

p l a c e is m a n i f e s t e d b y a s t e e p i n c r e a s e of G' a n d G" ( t h e c h a n g e of G' in a narrow temperature

r a n g e a m o u n t s to 8 o r d e r s )

(Fig. 6).

Viscoelastic

m e a s u r e m e n t s i n d i c a t e t h e f o r m a t i o n of a n e t w o r k v e r y s i m i l a r to t h e g e l s of c h e m i c a l l y c r o s s l i n k e d p o l y m e r s a n d it i s a s s u m e d t h a t t h e c r o s s l i n k p o i n t s are represented

by v e r y small c r y s t a l l i n e r e g i o n s .

101 The t e m p e r a t u r e d e p e n d e n c e s of t h e l o s s t a n g e n t (tg6 = G"/G') of b l e n d s of i - a n d s-PMMA a n n e a l e d f o r 120 h r s at 140"C a r e a s y m m e t r i c a l a n d e x h i b i t

togS' tog

if,

G"534

0log ~.

0 -1

30

I

I

50

I

I

I

J

90 temperoture."C 70

Fig. 6. T e m p e r a t u r e d e p e n d e n c e of t h e s t o r a g e moduli G ' [ d y n cm -2] (o), of t h e l o s s moduli G" ( [ d y n cm -2] (o) a n d of t h e r a t i o G"/G' (Q) f o r m i x t u r e s o f c o n c e n t r a t e d s o l u t i o n s o f i-PMMA (I = 93%) a n d s-PMMA (S = 72%; H : 28%) in o - x y l e n e (mixing r a t i o r = 1.25) (ref. 88). a maximum s h i f t e d t o w a r d s h i g h e r t e m p e r a t u r e s a s c o m p a r e d to n o n a n n e a l e d samples; Feitsma etal.

( r e f . 90) c o n s i d e r t h i s a s i n d i c a t i o n of s t e r e o c o m p l e x

f o r m a t i o n in bulk.

2. D i e l e c t r i c m e a s u r e m e n t s a n d m e a s u r e m e n t s of t h e r m a l l y s t i m u l a t e d depolarization currents.

The monomer u n i t of PMMA h a s a p e r m a n e n t d i p o l e

moment ( p o l a r e s t e r g r o u p ) a n d t h e mean v a l u e of t h e d i p o l e moment of t h e whole m a c r o m o l e c u l e d e p e n d s on i t s c o n f i g u r a t i o n a n d c o n f o r m a t i o n ; in s t u d i e s of s o l u t i o n s o f s t e r e o r e g u l a r pMIV[A in t o l u e n e (conc. 1-5%), t h i s h a s made p o s s i b l e t h e a p p l i c a t i o n o f m e a s u r e m e n t s o f t h e t e m p e r a t u r e d e p e n d e n c e of b o t h c o m p o n e n t s (~',~") of t h e complex d i e l e c t r i c c o n s t a n t ( r e f . 52).

The

f o r m a t i o n a n d d e c o m p o s i t i o n o f t h e s t e r e o c o m p l e x in t h e t e m p e r a t u r e r a n g e 20 -

90"C is m a n i f e s t e d b y a c o n s i d e r a b l e time d e p e n d e n c e o f t h e m e a s u r e d

values and by t h e i r d e p e n d e n c e on the thermal h i s t o r y .

Similar e f f e c t s

i n d i c a t i n g a s s o c i a t i o n h a v e b e e n d e t e c t e d a l s o w i t h s o l u t i o n s of at-PMMA. I n t h e a p p l i c a t i o n of t h e m e t h o d of t h e r m a l l y s t i m u l a t e d d e p o l a r i z a t i o n c u r r e n t s , p e a k s a r e d e t e c t e d c o n n e c t e d w i t h t h e d e p o l a r i z a t i o n of o r i e n t e d -CO0 d i p o l e s in c o n s e q u e n c e of t h e t h e r m a l motion.

Measurements performed

102 with solid films o b t a i n e d b y p r e c i p i t a t i o n f r o m a m i x t u r e of s o l u t i o n s of i a n d s-PMMA in a c e t o n e h a v e r e v e a l e d a p e a k at 105 - 130°C, a s s i g n e d b y t h e a u t h o r s to Tg in t h e s t e r e o c o m p l e x (ref. 86,87).

With films i s o l a t e d d i r e c t l y

from t h e m i x t u r e s of b o t h s o l u t i o n s a t t h e r a t i o i / s -- I / l , a n a d d i t i o n a l p e a k was d e t e c t e d w h i c h c o r r e s p o n d e d to Tg of f r e e i-PMMA, s u g g e s t i n g c o n c l u s i o n s a b o u t t h e s t o i c h i o m e t r y of t h e s t e r e o c o m p l e x .

Only a p a r t of t h e

s t e r e o c o m p l e x a g g r e g a t e s p r e c i p i t a t e s from a c e t o n e solution; t h e o t h e r p a r t of t h e a g g r e g a t e s r e m a i n s in s o l u t i o n a n d a p p e a r s a s " d i s s o l v e d " ( r e f . 87). 3. DSC. By m e a n s of DSC, t h e m e l t i n g e n d o t h e r m of t h e c r y s t a l l i n e p a r t of t h e s t e r e o c o m p l e x was d e t e c t e d in solid s a m p l e s a n d a t t e n t i o n h a s also b e e n p a i d to t h e m e a s u r e m e n t of t h e g l a s s t r a n s i t i o n t e m p e r a t u r e ( r e f . 35).

For

solid s t e r e o c o m p l e x s a m p l e s o b t a i n e d b y p r e c i p i t a t i o n from s o l u t i o n , t h e e x i s t e n c e of two m e l t i n g e n d o t h e r m s a t =185"C a n d 210°C was d e e t e c t e d ( r e f . 50).

With t h e s t e r e o c o m p l e x p r e p a r e d in b u l k ( a f t e r p r o l o n g e d a n n e a l i n g of

t h e m i x t u r e of i- a n d s-PMMA a t 140°C), o n e m e l t i n g e n d o t h e r m at ~190"C was o b s e r v e d (two e n d o t h e r m s w e r e o n l y o b s e r v e d a t lower c r y s t a l l i z a t i o n t e m p e r a t u r e ) ( r e f . 90).

The a r e a of t h i s e n d o t h e r m d e p e n d s on t e m p e r a t u r e

a n d time of a n n e a l i n g a n d o n t h e r a t i o ( i / s ) in t h e mixture; t h e m e l t i n g p o i n t t e m p e r a t u r e d o e s n o t d e p e n d on ( i / s ) .

The d o u b l e m e l t i n g e n d o t h e r m ,

o r i g i n a l l y a s s i g n e d to t h e c r y s t a l s of s-PMMA a n d to t h e s t e r e o c o m p l e x ( r e f . 50)~ p r o b a b l y c o r r e s p o n d s o n l y to t h e s t e r e o c o m p l e x i t s e l f , p o s s i b l y a s a c o n s e q u e n c e of p r i m a r y a n d s e c o n d a r y c r y s t a l l i z a t i o n ( r e f . 37).

Katime e t al.

( r e f . 51,96) a s s i g n t h e h i g h - t e m p e r a t u r e e n d o t h e r m to t h e s t e r e o c o m p l e x i t s e l f a n d t h e l o w - t e m p e r a t u r e e n d o t h e r m to a g g r e g a t e s stereocomplex.

( c l u s t e r s ) of t h e

B l e n d s of i - a n d at-PMMA p r e p a r e d f r o m a c e t o n e s o l u t i o n

e x h i b i t o n e b r o a d m e l t i n g e n d o t h e r m a r o u n d 150"C ( r e f . 98).

M e a s u r e m e n t s of

Tg i n d i c a t e t h a t b o t h i - p o l y ( e t h y l m e t h a c r y l a t e ) (PEMA) a n d s - p o l y ( i s o b u t y l m e t h a c r y l a t e ) (PiBMA) form c o m p a t i b l e m i x t u r e s in t h e solid s t a t e , p r o b a b l y a s a c o n s e q u e n c e of s t e r e o c o m p l e x f o r m a t i o n in b u l k , with a m e l t i n g e n d o t h e r m a t 153"C (ref. 94). The m e l t i n g e n d o t h e r m was also d e t e c t e d in g e l s f o r m e d b y mixing of c o n c e n t r a t e d s o l u t i o n s of i - a n d s-PMMA in o - x y l e n e (conc. 20% a n d h i g h e r ) (ref. 91,95,97).

It was f o u n d t h a t c r y s t a l l i z a t i o n a n d n u c l e a t i o n in g e l s of

s-PMMA a n d in t h e s t e r e o c o m p l e x is b y s e v e r a l o r d e r s more r a p i d t h a n in i-PMMA.

Consequently, s - P M M A

and the stereocomplex crystallize even

without annealing, which in this case only affects the size distribution of crystals.

T h e similarity in the crystallization behavior of s - P M M A

a n d of the

stereocomplex is considered to be based on the circumstance that in both cases the crystallization behavior is affected b y the short lengths of s-sequences

(ref. 95). T h e quantitative determinations of the heat of melting

103 in PMMA g e l s c a n be c o m p l i c a t e d b y t h e o v e r l a p p i n g v a p o r i z a t i o n of t h e s o l v e n t .

e f f e c t of t h e h e a t of

F r o m t h e m e a s u r e d v a l u e s of t h e h e a t of m e l t i n g

a n d t h e d e g r e e of c r y s t a l l i n i t y , t h e e n t h a l p y of PhIMA s t e r e o c o m p l e x f o r m a t i o n was determined

(AH = - 2 4 J / g )

( r e f . 97); t h i s v a l u e is i n g o o d a g r e e m e n t w i t h

t h e v a l u e s o b t a i n e d b y m i x i n g c a l o r i m e t r y in s t u d i e s of d i l u t e s o l u t i o n s (ref. 93,99). 4. X - r a y d i f f r a c t i o n . T h e f i r s t s t u d i e s of t h e PMMA s t e r e o c o m p l e x h a v e a l r e a d y s h o w n t h a t t h e g e l s f o r m e d b y m i x i n g of c o n c e n t r a t e d a n d s-PMMA in DMF e x h i b i t a c r y s t a l l i n e X - r a y p a t t e r n t h a t f o u n d f o r t h e s o c a l l e d s t e r e o b l o c k ( r e f . 1,83). pattern

s o l u t i o n s of i -

of t h e s a m e t y p e a s

T h e s a m e t y p e of X - r a y

w a s f o u n d a l s o f o r t h e s t e r e o c o m p l e x g e l s in b e n z e n e a n d f o r solid

s a m p l e s of t h e s t e r e o c o m p l e x ( a f t e r r e m o v a l of s o l v e n t ) i s o l a t e d f r o m a c e t o n e , a c e t o n i t r i l e , b e n z e n e a n d o - x y l e n e s o l u t i o n ( r e f . 59,69,95).

The same

d i f f r a c t o g r a m a s t h a t Of t h e s t e r e o c o m p l e x i s o l a t e d f r o m a c t o n e s o l u t i o n w a s a l s o f o u n d f o r t h e s t e r e o c o m p l e x in b u l k o b t a i n e d b y p r o l o n g e d a n n e a l i n g of t h e m i x t u r e of i - a n d s-PMMA ( w i t h o u t s o l v e n t ) a t 140"C ( r e f . 90).

The

v a l u e s of t h e c r y s t a l l i n i t y of t h e solid s t e r e o c o m p l e x i s o l a t e d f r o m DMF o r o - x y l e n e s o l u t i o n d e p e n d o n t h e m o d e of p r e p a r a t i o n 30%9 r e s p e c t i v e l y , a t m o s t ( r e f . 50,97).

a n d a m o u n t to 40 a n d

These results prove that the

f o r m a t i o n of t h e s t e r e o c o m p l e x i s a t l e a s t p a r t l y c o n n e c t e d w i t h t h e c r y s t a l l i z a t i o n of s e g m e n t s of PMMA c h a i n s . concentrated

s o l u t i o n s of i - a n d s-PMMA in DMF, o r i e n t e d f i b e r s of t h e

stereocomplex have also been prepared the X-ray fiber patterns = 2/1 to 1/2).

( r e f . 33,37,100).

of

L i q u o r i e t al. ( r e f . 33), o n t h e b a s i s of t h e f i b e r

h o w e v e r , some d o u b t s

model of t h e PMMA s t e r e o c o m p l e x ;

have arisen concerning

t h e o r i g i n of t h e r e f l e c t i o n s

to t h e s y d i o t a c t i c c o m p o n e n t ( r e f . 41).

stereocomplex was recently proposed energy

The appearance

d o e s n o t d e p e n d o n t h e r a t i o ( i / s ) (in t h e r a n g e i / s

diffractogram, have proposed a structural

assigned

F r o m t h e g e l s of m i x t u r e s of

A r e v i s e d model of t h e PMMA

based on X-ray diffraction and potential

c a l c u l a t i o n s ( r e f . 100).

Q u i t e r e c e n t l y , it h a s b e e n s h o w n b y X - r a y d i f f r a c t i o n t h a t s-PMMA i s p a r t l y c r y s t a l l i n e o n l y in t h o s e c a s e s w h e n it is i s o l a t e d f r o m a s o l u t i o n w h e r e it h a s b e e n p r e s e n t

in the a g g r e g a t e d

c r y s t a l l i n i t y of s-PMMA p r e p a r e d temperature

s t a t e ( r e f . 22,102).

The

b y e v a p o r a t i o n of s o l v e n t a t r o o m

f r o m o - d i c h l o r o b e n z e n e , t o l u e n e , BACj d i e t h y l k e t o n e o r o - x y l e n e

s o l u t i o n a m o u n t e d to 30-40%; t h e s i z e of t h e c r y s t a l l i t e s w a s 4.6 - 6.5 nm ( r e f . 22,38,95,97,102).

The preparation

of o r i e n t e d f i b e r s of c r y s t a l l i n e

s-PMMA b y a b s o r p t i o n of c h l o r o a c e t o n e o r d i e t h y l k e t o n e v a p o r s 24,100,101) h a s a l s o b e e n d e s c r i b e d .

Intermediate-angle

i n d i c a t e s t h e e x i s t e n c e of s p e c i f i c l o n g - r a n g e s-PMMA ( r e f . 23).

(ref.

X-ray scattering

i n t e r a c t i o n s in a s o l u t i o n of

104 5. E l e c t r o n m i c r o s c o p y . T h i s m e t h o d w a s a p p l i e d in a s t u d y of s-PMMA ( r e f . 22).

A p r i n c i p a l l y d i f f e r e n t m o r p h o l o g y of s-PMMA s a m p l e s i s o l a t e d f r o m

various solvents was observed

w h i c h d e p e n d o n t h e e x i s t e n c e or

n o n - e x i s t e n c e of s e i f - a g g r e g a t i o n e f f e c t of t e m p e r a t u r e

of s-PMMA i n t h e r e s p e c t i v e

solvent.

The

o n t h e s t a b i l i t y of t h e r e s p e c t i v e m o r p h o l o g y w a s

investigated.

C. M e t h o d s of m o l e c u l a r s p e c t r o s c o p y

(NMR s p e c t r o s c o p y , v i b r a t i o n a l

spectroscopy 1. N___MRS p e c t r o s c o p y . spectroscopy

The paragraph

c o n c e r n i n g t h e p o s s i b i l i t i e s of NMR

in s t u d i e s of a g g r e g a t i o n of s t e r e o r e g u l a r

somewhat more detailed t h a n the p r e c e d i n g

PMMA will be

paragraphs,

e x p l a n a t i o n s of t h e b a s i c p o s s i b i l i t i e s of t h i s m e t h o d .

especially in This is c a u s e d by the

c i r c u m s t a n c e t h a t t h i s m e t h o d c a n y i e l d a lot of i n f o r m a t i o n n o t o b t a i n a b l e o t h e r w i s e ; a t t h e s a m e time, t h e a p p l i c a t i o n of NMR s p e c t r s o c o p y

in t h i s f i e l d

is n o t v e r y w i d e s p r e a d to d a t e . T h e a s s o c i a t i o n of s t e r e o r e g u l a r

PMMA { i n c l u d i n g s t e r e o c o m p l e x f o r m a t i o n )

h a s b e e n s t u d i e d b y v a r i o u s t e c h n i q u e s of NMR s p e c t r o s c o p y .

In h i g h

r e s o l u t i o n 1H NMR s p e c t r a , PMMA s t e r e o c o m p l e x f o r m a t i o n i s m a n i f e s t e d b y t h e r e d u c t i o n of i n t e n s i t y of all p o l y m e r b a n d s s o m e c a s e s to a c o m p l e t e d i s a p p e a r a n c e Self-aggregation

( r e f . 65,69,103,104), l e a d i n g i n

of t h e s p e c t r u m

(Fig. 7).

of i - o r s-PMMA is m a n i f e s t e d in h i g h r e s o l u t i o n 1H NMR

s p e c t r a in a s i m i l a r w a y (ref. 2,3,54,109).

Similar b e h a v i o r h a s b e e n o b s e r v e d

a l s o w i t h a n u m b e r of o t h e r a s s o c i a t e d p o l y m e r s y s t e m s ; t h e s e f i n d i n g s a r e b r i e f l y s u m m a r i z e d in r e f . 117.

T h e r e d u c t i o n of i n t e n s i t i e s is e v i d e n t l y

c a u s e d b y a d e c r e a s e of p r o t o n m o b i l i t y i n a s s o c i a t e d s t r u c t u r e s v a l u e s t h a t t h e w i d t h of t h e c o r r e s p o n d i n g hundreds

NMR l i n e s i s of t h e o r d e r of

of Hz o r m o r e , so t h a t t h e s e p r o t o n s e s c a p e d e t e c t i o n in h i g h

r e s o l u t i o n NMR s p e c t r a .

The observed

h i g h r e s o l u t i o n NMR s p e c t r u m

e x a m p l e , Fig. 7b) i n t h e s e s y s t e m s c o r r e s p o n d s units.

to s u c h

(see, for

to n o n - a s s o c i a t e d m o n o m e r

T h e r e f o r e , f r o m t h e d y n a m i c p o i n t of v i e w , t h e NMR s p e c t r a of PMMA

solutions, where aggregation

t a k e s place, can in principle be a n a l y z e d as

two-component systems, with one component corresponding

to a s s o c i a t e d u n i t s

a n d t h e o t h e r to n o n - a s s o c i a t e d u n i t s (ref. 3,103,104). A g g r e g a t i o n c a n b e f o l l o w e d q u a n t i t a t i v e l y f r o m m e a s u r e m e n t s of t h e integrated

i n t e n s i t i e s of h i g h r e s o l u t i o n NMR b a n d s

2,3,38,47,54,102-104,108-110).

The integrated

(ref.

b a n d i n t e n s i t i e s I in s y s t e m s

w h e r e a s s o c i a t i o n o c c u r s a r e g i v e n b y t h e r e l a t i o n ( r e f . 3,118):

I -- K ' N n ( T ) ' ( I / T ) ' a l / 2

(1)

105

I I

6

7

8

9

IE in ppm

F i g . 7. H i g h r e s o l u t i o n 1H NMR s p e c t r a o f s a m p l e s o f PMMA i n C6D 6 a t i d e n t i c a l i n s t r u m e n t s e t t i n g s a n d 27°C" (a) s - P M N A - 1 (S = 8 8 . 5 ~ , H ; 9%}; (b) m i x t u r e i - P N M A (I = 97%, H = 3%) + S - P N M A - 2 (S = 69%, H = 27.5%) (1:2); (c) m i x t u r e i-PMMA + s - P M M A - 1 (1:2) ( r e f . 103). where

K is a constant,

non-associated the absolute without

temperature

association,

analogous

Nn(T) is the temperature-dependent

nuclei in the unit volume contributing

and a is the so called saturation

integrated

band

unit volume which contribute possible

intensities,

to Eq. 1, w i t h N n s u b s t i t u t e d

to d e t e r m i n e

is the number comparison

number

to t h e g i v e n

band.

By means

of associated

T is

In systems

by a relation

b y No, t h e t o t a l n u m b e r

to t h e g i v e n

the fraction

of associated

factor.

Io, a r e g i v e n

of band,

of nuclei in

o f E q . 1, it i s

nuclei, p = Na/N o (where

Na

n u c l e i i n u n i t v o l u m e , No = Na + Nn) b y d i r e c t

of integrated

intensities

at negligible

saturation

(a -~ 1) a n d

temperature,

instrument

settings)

of high

resolution

NMR s p e c t r a

under

identical

conditions

with and

without

association:

measured

{concentration,

p : 1 - I / I o.

(2)

As in aggregation intensities corresponds

can be revealed

decreases

the temperature

dependence

dependence

s - P M M A (of h i g h demonstrating temperature

without

with increasing structures

of the integrated of integrated

of the fraction

stereoregularity)

band

behavior,

the value,

p,

monomer units.

also from the temperature

the decomposition range

of associated

of associated

by an increase

PMMA, t h e i n t e g r a t e d

exhibit identical

While i n s y s t e m s

monotonously

Eq. 1, t h e d e c o m p o s i t i o n

temperature

groups

to t h e f r a c t i o n

intensities.

will b e s h o w n

of stereoregular

proton

directly

Association integrated intensity

studies

of various

dependence

association temperature,

according

with increasing intensity

intensity

and

I.

of

the integrated to

temperature

As an example,

the corresponding

p for a mixture of solutions

of i- and

i n D M F - d 7 i s s h o w n i n F i g . 8, (melting) of stereocomplex

50 - 120"C ( s e e r e f . 105).

aggregates

in the

106

i

50

8 O o

c r-

nt~

)

-60

I

40 30 20

201 Fig. 8. T e m p e r a t u r e IH NMR s p e c t r a (o) m i x t u r e s o f i-PMMA m i x i n g r a t i o r -- 1.2

I

I

50

100

\

-

- 150 t e m p e r e t u r e , "C

d e p e n d e n c e of the i n t e g r a t e d i n t e n s i t y in h i g h r e s o l u t i o n a n d f r a c t i o n of a g g r e g a t e d m o n o m e r u n i t s p (e) f o r (I = 91%; H -- 7%) a n d s-PMMA (S = 85%; H = 12%) w i t h i n DMF-d 7.

By m e a n s o f t h e v a l u e s of t h e a s s o c i a t e d

fraction

followed.

I n t h i s w a y , t h e e f f e c t of s o l v e n t , r a t i o ( i / s ) , s t e r e o r e g u l a r i t y ,

studied found

factors

from high

IH NbIR s p e c t r a ,

and thermal history

the effect of various

p determined

resolution

on association can be

o n t h e f o r m a t i o n o f PMMA s t e r e o c o m p l e x a g g r e g a t e s

and their thermal stability was characterized

( r e f . 103,104).

t h a t i n t h i s c a s e t h e v a l u e s of p a r e p r a c t i c a l l y

independent

molecular weight

(if t h i s is h i g h e r

relatively weakly dependent

than a certain

on concentration

time was

It was of

limit) ( r e f . 103) a n d

( r e f . 119). T h u s , i d e n t i c a l v a l u e s

of p w e r e f o u n d

f o r m i x t u r e s o f i - a n d s-PMMA i n C6D6, w i t h a

number-average

m o l e c u l a r w e i g h t o f s-PMMA e q u a l t o 44000 in o n e c a s e a n d

t o 2600 i n a n o t h e r

(stereoregularity

of b o t h s-PMMA s a m p l e s w a s i d e n t i c a l ) .

A weak effect of molecular weight was also p rove d self-aggregatior/.

While f o r a n o - d i c h l o r o b e n z e n e

65%; H = 31%; I = 4%) of ~ stereoregularity

i n t h e c a s e o f s-PMMA s o l u t i o n o f at-PMMA (S =

= 45,000, p = 0, f o r at-PMMA of t h e s a m e

b u t m o l e c u l a r w e i g h t of a b o u t o n e million, in t h e s a m e

s o l v e n t p : 9% ( r e f . l l 9 ) .

The effect of conce ntra tion

detail for mixtures of i- and

was studied

s-PMMA i n t o l u e n e - d 8 ( r e f . I 1 9 ) .

in g r e a t e r

Although the

v a l u e s o f p f o r c = 0.2% (p =76%) a r e l o w e r t h a n f o r c = 10% (p : 93%), it i s

107 e v i d e n t t h a t e v e n in f a i r l y d i l u t e s o l u t i o n s t h e i - a n d s - P M M A in m u t u a l i n t e r a c t i o n .

concentration and stereoregularity also characterized determined

on s e l f - a g g r e g a t i o n

( r e f . 2,3,38,47,54,102,109,110).

(ref. 38,54).

was

By m e a n s of NMR s p e c t r o s c o p y ,

the

f o r m a t i o n in t o l u e n e - d 8 a n d in BAC w a s a l s o

M e a s u r e m e n t s of the i n t e g r a t e d

r e s o l u t i o n 1H NMR s p e c t r a w e r e u s e d to c h a r a c t e r i z e the diner

of i - o r s-PMMA w a s

a n d t h e t h e r m a l s t a b i l i t y of t h e s e l f - a g g r e g a t e s

k i n e t i c s of s-NMMA s e l f - a g g r e g e studied

molecules are

By m e a s u r e m e n t o f t h e p - v a l u e s , t h e e f f e c t of s o l v e n t ,

model of PMMA, t h e d i m e t h y l e s t e r of

i n t e n s i t i e s of h i g h the interaction between

2,2,4,4-tetramethylglutaric

a c i d (DMTMGA) a n d i - o r s-PMMA (ref. 108). B e s i d e s t h e v a l u e s of p, b a s e d o n d i r e c t m e a s u r e m e n t of t h e s i g n a l of non-associated units, further d y n a m i c s of a g g r e g a t e d aggregated

information concerning the structure

and

s e g m e n t s c a n be o b t a i n e d b y t h e m e a s u r e m e n t of t h e

c o m p o n e n t b y b r o a d - l i n e NMR s p e c t r a , t h e m e a s u r e m e n t of

non-selective relaxation times with a pulse spectrometer and by the a p p l i c a t i o n of the t e c h n i q u e s of m e a s u r e m e n t of s o l i d - s t a t e h i g h r e s o l u t i o n spectra.

I n o u r s t u d i e s of t h e a s s o c i a t i o n of s t e r e o r e g u l a r

we h a v e u s e d two s u c h m e t h o d s ; i.e., 1H NMR s p e c t r a magic-angle spinning

(MAS) a n d 13C NMR s p e c t r a

p r o t o n d e c o u p l i n g (ref. 104,106,110).

m e a s u r e d with s t r o n g

W h e n t h e b r o a d e n i n g of b a n d s of n u c l e i

in a s s o c i a t e d s e g m e n t s is c a u s e d b y n e a r - s t a t i c the spinning frequency

PMMA i n s o l u t i o n ,

measured with

dipolar interactions and when

v r in 1H NMR s p e c t r a o r t h e i n t e n s i t y of t h e

d e c o u p l i n g field YH2/2~ i s s u f f i c i e n t l y h i g h { l a r g e r t h a n t h e w i d t h of t h e p r o t o n b a n d i n t h e c o n v e n t i o n a l l y m e a s u r e d s p e c t r u m ) , a p p l i c a t i o n of t h e s e t e c h n i q u e s c a n l e a d to t h e n a r r o w i n g of t h e b r o a d b a n d of t h e a s s o c i a t e d s e g m e n t s a n d to t h e a p p e a r a n c e

of a h i g h r e s o l u t i o n NMR s p e c t r u m .

Thus,

a l r e a d y t h e s i m p l e s t a t e m e n t a b o u t t h e e f f e c t i v e n e s s of t h e s e t e c h n i q u e s contributes

to t h e c h a r a c t e r i z a t i o n of n o t i o n a l h i n d r a n c e in t h e a s s o c i a t e d

s e g m e n t s { p r e s e n c e o r a b s e n c e of n e a r - s t a t i c In stereocomplex gels generated of h i g h s t e r e o r e g u l a r i t y

dipolar interactions).

b y m i x i n g o f s o l u t i o n s o f i - a n d s-PMMA

a n d i n s-PMMA s e l f - a g g r e g a t e s

in t o l u e n e - d s , the

b r o a d e n i n g of b a n d s of a s s o c i a t e d s e g m e n t s i s n o t c a u s e d b y n e a r - s t a t i c dipolar interactions~ but by the reduced

v e l o c i t y of t h e e f f e c t i v e l y i s o t r o p i c

m o t i o n of t h e m a i n c h a i n ( r e f . 106,110).

In this respect, these systems

q u a l i t a t i v e l y d i f f e r from the swollen gels of chemically c r o s s l i n k e d p o l y m e r s where large linewidths are connected with rapid internal motions restricted s p a c e ( r e f . 120); in c h e m i c a l l y c r o s s l i n k e d g e l s , t h e s p a t i a l r e s t r i c t i o n of m o t i o n of m o s t m o n o m e r u n i t s i s a c o n s e q u e n c e of t h e e x i s t e n c e of a r e l a t i v e l y s m a l l n u m b e r of s t a t i c e r o s s l i n k p o i n t s .

The observed

different

b e h a v i o r i n d i c a t e s t h a t i n t h e f o r m a t i o n o f t h e PMMA s t e r e o c o m p l e x a n d in self-aggregation

of s-PMMA a d i r e c t c o n t a c t of l o n g c h a i n s e g m e n t s t a k e s

in

108 place and

that

the number

considerable. the fraction fraction

NMR s p e c t r o s c o p y stereocomplex,

(i/s).

segments

with other

In connection

formation,

the relaxation

Overhauser

factors,

structure

o f PMMA ( r e f . 29).

relaxation

p on

and in

measured

by the

differences

alone; the same is true

were

shape

for

o f 13C T 1 with cross

( r e f . 107).

as compared

the general

measured

the effect of solvent

13C MAS NMR t e c h n i q u e

were observed

concerning

t i m e s T 1 o f 1H

The values

(CP) f o r t h e s o l i d PMMA s t e r e o c o m p l e x

no remarkable

p in

of the fraction

associated

s-PMMA with the aim of determining

times were

observations,

o f NMR s p e c t r o s c o p y

on the conformational

polarization

of the

o f IR a n d

methods.

with stereocomplex

of i- and

measure

of the fraction

dependence between

advantage

13C n u c l e i , a s w e l l a s t h e n u c l e a r

solutions

i n Eq. 2 a s

In the case of the

by further trends

the sharp

is a great

a realistic

VI-A).

of the temperature and

is

p defined

(see also comparison

is also supported

T h e a b i l i t y to d i f f e r e n t i a t e

non-associated comparison

represent

contact

in the following text, Part

this conclusion

monomer units

of the fraction

thus

in direct

on stereoregularity

the ratio

and

units

by the character

depedence

interacting

high values

of the less mobile units

of associated

especially

of mutually

The observed

In this case,

to i - a n d of the

s-PMMA

13C CP MAS NMR

spectra.

2. I n f r a r e d suitable

(IR) a n d

method

the given

Raman sDectroscopy.

for studies

case for the detection

consequence

of association.

aggregation

of stereoregular

in studies

of solid samples

has shown

that

stereocomplex intensity

assigned

the shape

Various

and

intensity

bands

The authors

the dynamics

methyl

of the ester

the intensities

of the doublet

conformational

structure

formation manifested

by an increase

tendency

remains

situation

is illustrated

preserved

vibrations

o f t h e PMMA

that

changes

and

they

resemble

in terms

attention

to t h e

that

the is

even

in the solid state

a t 860 cm - 1 a n d

(ref. 21,22,113).

the spectra

of

w a s p a i d to

sensitive

It was observed

of the band

(ref.

(~1450 cm - 1 )

from the shape

these

and

studied.

as well as of the s-PMMA aggregates,

of the intensity

in

of

solutions

were

860 c m - 1 w h i c h a r e

i n F i g . 9, w h i c h e x h i b i t s

s o l i d PMMA s t e r e o c o m p l e x

bands

Considerable

o f s - P M M A ( r e f . 21).

of the stereocomplex,

group

of at-PMMA but

interpret

a t 843 a n d

from these

o f IR s p e c t r a

of these

group.

in

structure

both in studies

considerably

i n CC14 s o l u t i o n s

s o l i d a t - P M M A ( r e f . 114).

is a

of polymers,

(ref. 21,22,102,111,114,116}

methyl

i n CC14 ( c o n c . 1%) d i f f e r

of these

used

isolated

ranges

to t h e e s t e r

spectroscopy

structure

of conformational

were

PMMA i n s o l u t i o n

of the structure

of bands

of changes

IR s p e c t r a

21,22,101,102,111-113,115,116}. Analysis

Vibrational

of the conformational

this

This

of s-PMMA in the

(A), o f s - P M M A i n N u j o l m u l l (B) a n d o f s - P M M A

109 films isolated or does

stereocomplex change

from media where

{D,E) t a k e

place.

formation

two different

for the conformational addition

to t h e a b o v e

manifested carbonyl

and

especially stretching

structure

by the appearance

22,102,111).

This ordering

polymerization measurements stability

is preserved

aggregation

takes

place

in aggregation-promoting of the temperature

solid s-PMMA was characterized conformational

structure

with a

Based on measurements r e f . 21,22) w e r e

of new bands

groups

in t h e r a n g e

of

(ref. from

(ref. 22,102,111) or prepared

and

( r e f . 21,22).

of s-PMMA in solution

( r e f . 115).

o f IR s p e c t r a , of the ordered

is

in

in the aggregates

in solid s-PMMA isolated

dependences

proposed

In

1727 c m - 1 ( w e a k )

solvents

o f t h e s o l i d PMMA s t e r e o c o m p l e x

both

of s-PMMA in solution

a t 1742 cm - 1 a n d of ester

that

in the stereocomplex.

self-aggregation

vibrations

d o e s n o t (C)

indicate

are connected

of s-chains.

of s-chains

changes,

of mutual ordering

where

shown

m o d e l s {cf. r e f . 113 a n d

structure

consequence

solutions

of the polymer

which are

s-PMMA self-aggregation

of the conformational

o f IR s p e c t r a ,

self-aggregation

The changes

by

From the thermal structures

The effect of solvent was also studied

in

on the

( r e f . 21,22,29).

E

o

.o

!

g00

850

cm-1 800

Fig. 9. Part of IR spectrum of B-PMMA (S : 89.5%; H : 8.5%) films. Spectrum of s-PMMA in film of PMMA stereocomplex (i.e., normalized difference of

spectra of stereocomplex and i-PMMA) (A) and of B - P M M A in Nujol mull (B); spectra of s - P M M A films prepared by evaporation of solvent from s - P M M A in acetonitrile (C), o-dichlorobenzene (D) and toluene (E) at 25"C. All spectra measured at 25"C (ref. 22).

110

T h e solid PMMA s t e r e o c o m p l e x w a s a l s o s t u d i e d b y R a m a n s p e c t r a 21).

(ref.

Also b y t h i s m e t h o d , it w a s f o u n d t h a t t h e i n t e n s i t i e s of t h e b a n d s of

t h e s t e r e o c o m p l e x a r e n o t a n a d d i t i v e s u m of t h e i n t e n s i t i e s of t h e i - a n d s-components.

Raman spectroscopy

has also contributed

t h e o r i g i n of t h e s p l i t t i n g of t h e c a r b o n y l s t r e t c h i n g d i p o l e c o u p l i n g of e s t e r g r o u p s ) i n o r d e r e d

V.

FORMATION

AND CHARACTER

d e p e n d s on a n u m b e r

vibration (transition

s e q u e n c e s of s-PMMA (ref. l l l ) .

OF AGGREGATES

T h e formation and character of P M M A

to t h e e x p l a n a t i o n of

OF PMMA

stereocomplex aggregates in solution

of factors; e.g.: I) on the ratio i/s in the mixture; 2)

on the degree of stereoregularity of the components; 3) on temperature; 4) on the time from the mixing of the components; 5) on thermal history; a n d 6) on solvent.

If w e exclude the ratio i/s in the mixture, then the same factors

also affect self-aggregation of s - P M M A .

In the following text, the effects of

each of these factors will be discussed separately.

However, it has to be

kept in mind that in reality all these factors act as a complex and it m a y cause some difficulties to separate their effects.

After the paragraph

devoted to the question of the stoichiometry of the stereocomplex, all three forms of aggregation of stereoregular P M M A self-aggregates of i- and s - P M M A )

(i.e., stereocomplex and

will be discussed in parallel in the

following p a r a g r a p h s in order to stress the similarities a n d also the differences existing between these three forms. A. Stoichiometry of P M M A A large n u m b e r

stereocomplex

of papers (often presenting very differing views) were

devoted to the problem of the stoichiometry of the stereocomplex. Chiang eL al. (ref. 40) (based on sedimentation measurements)

While

conclude that

no defined stoichiometry of the stereocomplex exists, other authors a s s u m e parallel existence of sterecomplexes of the composition i/s = 2/1, i/I a n d 1/2 (ref. 34,41), while the remaining papers advocate stereocomplex formation at a given ratio i/s. Most papers find the stoiehiometry i/s = 1/2 (ref. 33,35,37,39,48,56,65,86,87,92) but papers indicating the stoichiometry i/s = i/I also exist (ref. 49,50,59,60,66,70).

At the same time, the possibility of

stereocomplex formation in the ratio i/s = 1/2 is also not excluded, assuming its generation from the primary complex with i/s = I/I in the presence of free s - P M M A

in the system (ref. 49,50,59).

T h e values cited above of the

ratio i/s refer to the weight ratio of both c o m p o n e n t s and not to the ratio of chains (sequences) in mutual interaction.

Therefore, there is no reason w h y

the stoichiometric ratio should be given only b y whole n u m b e r s I/2.

T h e results of N M R

as I/I or

spectroscopy a n d mixing calorimetry indicate i/s =

1/1.5 (ref. 103) a n d intermediate between i/s = 1/1.5 to I/2 (ref. 93), respectively.

111 The contradictory results concerning the stoichiometry of the stereocomplex

can have a number

of reasons

and

some of these

we s h o u l d

l i k e to p o i n t o u t n o w : (i) I n o u r o p i n i o n , a n u m b e r imperfect

stereoregularity

is not specified stereocomplex interactions depends

evident quantity

quantities authors

where

turbidity,

molecular

( r e f . 66,93} t r y

weight)

attains

Similar difficulties

contains

short

may appear

sequences

radical

polymerized

s-triads.

the weight

However, even

PMMA.

stereoregularity

this procedure

on the example of conventional

triads

it c a n n o t

in stereospecific

(units

marked

be excluded

interaction

component

by an asterisk that

even

respectively).

to u s e s a m p l e s

of i- and

certainly

in only several

higher

papers

the weight

s-PMMA in stereocomplex 90%; h o w e v e r ,

associated sequences

f .J.

LDLDLDL IDDDDLDLDIDLDLD IDL - s-PMMA DDD DDD

IDDDD_ I_PMMA

studies

participate

( r e f . 103) t h a t

the

to i s o t a c t i c

fractions

these

this condition

(ref. 34,35,37,50,56,65,103).

.I. .l.

below).

in t h e s c h e m e ) .

indicate compared

T h e o n l y w a y to e x c l u d e

than

scheme

can directly

m a x i m u m to a h i g h e r

Xi a n d Ys a r e

If the

r a t i o , we e l i m i n a t e t h e

suggested

component

l e a d s to a s h i f t o f t h e a s s o c i a t i o n

s-components,

units

as

PMMA (S ~

are present.

in our

these

o f NMR s p e c t r o s c o p y

of syndiotactic

m i x i n g r a t i o r (r : Y s / X i , w h e r e

tacticity,

for the weight

(e.g., in the manner

At t h e s a m e t i m e , t h e r e s u l t s lower stereoregularity

sequences

by

is problematic

only short

is substituted

Some

ratio of both components

practically

s-triads

also in

in non-negligible

to e l i m i n a t e t h e e f f e c t o f i n s u f f i c i e n t

PMMA b y r e p l a c i n g

a minimum or

specifically

heterotactic

it is

ratio of i- and

60%; H -- 30%), w h e r e

However,

which

contain

can be demonstrated

ratio of i- and

text,

one, then

to t h e s t o i c h i o m e t r i c

as is the case in conventional

the ratio of i- and

minimum length

to t h e p r e d o m i n a t i n g

sequences.

the polymer

of the interacting

in further

of intermolecular

If one or both components

opposite

not correspond

in the associated cases

a certain

by

ratio of i- or s-PMMA in the mixture at which some

(e.g., viscosity, need

can be caused

which in some papers

A s will b e s h o w n

than

of solvent.

the weight

results

polymers

place in consequence

longer

of configuration

maximum value

those

takes

of sequences

that

s-units

a t all ( r e f . 33,39,40).

formation

on the type

sequences

of contradictory

of the interacting

value of of i- and

complications

of possibly has been

is

highest fulfilled

112 (ii) S o m e a u t h o r s where

assume

the measured

the stoichiometry

quantity

reaches

33,48).

Mixtures

studied

a t all ( r e f . 3 5 , 6 0 , 6 5 , 8 7 ) .

quantity

with values

in dependence

distinction

between

i/s = 1/2 even

in those

cases

a m a x i m u m a t t h e r a t i o r = 1.5 ( r e f .

of r between

r = 1 to 2 w e r e

The observed

extreme

o n Ys s o m e t i m e s i s n o t s h a r p

the stoichiometries

i/s

sometimes

not

of the measured enough

to permit

= 1.5 o r 1 / 2 { r e f .

33,35,39,50,56,70,92). (iii) T h e o b s e r v e d that

differences

in some methods

measured

quantity

participating

is not directly

in stereocomplex

r need

not signify

ratio.

In other

differing

values

observed

that

that

various

quantities

Actually,

Kusakov

anisotropy t o r = 1. to other

associated

(p) a n d

differentiation

and

the components. spectra

of mixtures values

shown

determination

by the measurement

of solutions

of highly

of the stereocomplex

of solutions

i n F i g . 10.

of i- and

A comparison

a t r = 2, t h e m i n i m u m

of the stoichiometry

of the

of the

in the mixture; and

of the extent

of the ratio of components

at somewhat

( r e f . 60) h a v e

1) d i f f e r e n t i a t i o n

fractions

in this

of the aggregates

s-PMMA in the non-associated

Therefore,

various

stoichiometry

thus

in studies

(l-p)

extremes

Mekenitskaya are formed

make possible:

at some value

is stoichiometric

maximum ordering

used

non-associated

of i- and

chemical shifts)

mixtures

methods

1H NMR s p e c t r a

etc., the

of units

observed

could exhibit and

aggregates

indicating

to t h e n u m b e r

stereocomplex

of r.

of segmental

light scattering,

An extreme

words,

corresponds Contrary

proportional

heaviest

by the circumstances

turbidimetry,

formation.

the associated

while the

stereocomplex,

can also be caused

like viscometry,

part

stereoregular

(by differing

of association

of high

resolution i- and

can be obtained

( r e f . 103).

of lines corresponding

L

L

I

I

6

'7

8

9

of each of 1H NMR

s-PMMA at

r, reliable information

s - P M M A i n C6D 6 a t v a r i o u s

2)

on the Spectra

of

values

of r are

to i- and

s-PMMA

J

10 -r in ppm

F i g . 10. H i g h r e s o l u t i o n 1H NMR s p e c t r a o f m i x t u r e s o f s o l u t i o n s o f i-PMMA (I = 97%, H = 3%) a n d S - P M M A (S = 88.5%, H = 9%) i n C6D 6 w i t h m i x i n g r a t i o r = l(a), r = 1.5(b), r = 2(c). T h e s p e c t r a w e r e m e a s u r e d a t 27"C a l o n g t i m e after the mixing of both components, with identical instrument setting (ref. 103).

113 indicates

that

corresponds high

for r = 1 the residual predominantly

resolution

spectrum ratio.

NMR s p e c t r u m

of the mixture

high

resolution

to n o n - a s s o c i a t e d

NMR s p e c t r u m

i-PMMA; a t r = 2, t h e r e s i d u a l

is predominantly

that

w i t h r = 1.5 c o r r e s p o n d s

of s-PMMA.

At t h e s a m e t i m e , t h e t o t a l v a l u e o f p i s h i g h e s t

a t r = 2, p = 85%; w h e r e a s

a t r = 1, p = 75%.

also for mixtures

s - P M M A i n CD3CN, w h e r e

of i- and

spectrum

f o r r = 1 (p : 85%) c o r r e s p o n d s

67%} a n d

r = 4 ( p : 48%) o n l y to s - P M M A .

1 a large

part

confirmed currents

o f i-PMMA e x i s t s

also by measurements

stereocomplex

high

resolution

indicates

that

are always i/s

part

in mixtures

of mixing where units

the measured

incorporated

composition methods,

lies between

The formation

individual

high

used

is i/s

to t h e n u m b e r

that

only a very

mainly by the distribution

of

the stereocomplex

in associated

of the degree

i- and

both

has s-sequences

extreme

of a~gregates

of stereoregularity

of the

For the s-component, ( r e f . 103).

o f i-PMMA (I = 97%, H : 3%, S = 0) o f components

i n T a b l e 2.

table, it is evident

increases

considerably

All t h e s y n d i o t a c t i c

of ieotactic

of the syndiotactic

of different

From this

monomer units

of s-PMMA.

small number

of

o f 1H NMR s p e c t r o s c o p y

with syndiotactic

of associated

values}.

of quantitative

of stereo-association.

mixtures

of

the

of various

by means of the interaction

by the application

stereoregularity

that

= 1/2.

to t h e i m p o r t a n c e

i n C6D 6 a r e g i v e n

segments

of the heats

only one type

i/s = 1/1.5 to 1/2 (including

of p for several

i n C6D 6 t h e c o n t e n t

contain

that

to s u m m a r i z e

in studies

stereoregularity

with increasing

proportional

By a combination

its stoichiometry

of the effect

stereoregularities that

= 1.5 to 1 / 2 .

points

was solved

The values

from measurements

is roughly

of the stereocomplex

components

this problem

p values,

r, the associated

of stereoregularity on the formation of a~re~ated sequences}

sequences

characterization

method,

with the ratio of units

in the interval

stereoregular

i/s

it is possible

B. E f f e c t o f d e g r e e (minimum length

very

and

stoichiometry,

somewhere

The composition

from the residual

with the ratio of monomer units

e t al. ( r e f . 37) c o n f i r m

exists

It seems that unique

of a primary

i n t h e c o m p l e x , B i r o ~ e t al. ( r e f . 93) c o n c l u d e

Vorenkamp

stereocomplex

(cf, r e f . 4 9 , 5 0 , 5 9 ) .

composition

with r =

depolarization

the existence

as determined

s-sequences

value

NMR

was recently

with the corresponding

of different

By a further

resolution

in mixtures

state

stimulated

against

= 1/1

together

of i- and

= 1 / 1 . 5 ( r e f . 103}.

The fact that

of the mixture,

NMR s p e c t r u m

composed

argues i/s

were observed

the high

to o n l y i-PMMA, f o r r = 2.5 (p =

of thermally

with a composition

of the non-associated

to t h e m i x i n g

a t r = 1.5 (p = 89%};

Similar results

in the non-associated

( r e f . 86,87}; t h i s c l e a r l y

T h e NMR

approximately

triads

sequence

and

polymers

they

lengths.

differ

It can be

114 TABLE 2 F r a c t i o n of a s s o c i a t e d m o n o m e r u n i t s p a n d m i n i m u m l e n g t h s - s e q u e n c e s f o r s o m e m i x t u r e s o f i - a n d s-PMMA in C6D 6

T y p e of s y n d i o t a c t i c

component a

Mixing r a t i o b

p

r = Ys/Xi

s-PMMA

- I

(I = 2.5%; H:9%; S : 88%.5%; :Is = 20°7)

s- PMMA

q of a s s o c i a t e d

(%)

q (in m o n o m e r u n i t s )

i

75

9

1,5

89

9

- II

2

55

8-9

2

35-40

10

.%0

io-ii

(I : 3.5%; H = 27.5%; S : 69%; :is = 6.0)

s-PMMA - I I I (I = 3.5%; H : 31.5%; S : 65%; :Is = 5.1)

1.5

aI,H,S - d e n o t e t h e f r a c t i o n of i s o t a c t i e , h e t e r o t a c t i c a n d s y n d i o t a c t i c r e s p e c t i v e l y ; Ts = {2S + H ) / H i s t h e m e a n s y n d i o t a c t i c l e n g t h .

triads,

b _ w i t h i-PMMA (I = 97%; H = 3%; S = 0).

assumed

that there

exists a certain

sequences

w h i c h is n e c e s s a r y

associated

segments

minimum length

of s t e r e o r e g u l a r

for stereocomplex formation and that the

are separated

by non-associated

sequences

of t h e

macromolecules. A syndiotactic sequence

sequence

isotactic step.

assuming first-order sequences

m w h i c h can follow a f t e r an i s o t a c t i c

(Bis(m)) or a f t e r a s y n d i o t a c t i c

the original syndiotactic

illustrated

of l e n g t h

step is repeated

Isotactic sequences

sequence

( B s s ( m ) ) is d e f i n e d

so that


are defined

similarly; the s y s t e m is

by the following example:

that the polymers can be described blarkov statistics, containing

m units

by Bernoulli statistics

or by

the w e i g h t f r a c t i o n ws(m) of s y n d i o t a c t i c is g i v e n b y t h e r e l a t i o n ( r e f . 103,121):

115

2 ws'm'~) = m P s - Pisl~ 1

m-I

" PsiPss

, m • 2

.

(3)

I n t h i s e q u a t i o n , P s i s t h e p r o b a b i l i t y of s y n d i o t a c t i c a d d i t i o n , P s s is t h e p r o b a b i l i t y o f s y n d i o t a c t i c p l a c e m e n t to a s y n d i o t a c t i c d i a d a n d t h e p r o b a b i l i t i e s Psi a n d Pis a r e d e f i n e d in a n a n a l o g o u s way.

The probabilities

obey the following relations:

A/2 Ps

= S + H/2;

Psi

= S + H/2

H/2

.

'

Pis

S

= I + H/2

;

T h e w e i g h t f r a c t i o n of all s y n d i o t a c t i c s e q u e n c e s

Pss

(4 )

- S + H/2

is g i v e n b y t h e

r e l a t i o n ( r e f . 103,121):

1 fs(1)

= Ps

' Pss

+Psi

(5)

" 1 - PisPsi

F r o m a c o m p a r i s o n of t h e f o u n d v a l u e s of p w i t h t h e d i s t r i b u t i o n o f s y n d i o t a c t i c s e q u e n c e l e n g t h s , ws(m) , t h e m i n i m u m l e n g t h q of a s s o c i a t e d s y n d i o t a c t i c s e q u e n c e s c a n b e c a l c u l a t e d b y m e a n s of t h e r e l a t i o n ( r e f . 103):

q-I J

(Ys~s)

P = fs(I)

- Z m=2

(6}

Ws(m )

w h e r e Y~ i s t h e f r a c t i o n o f s y n d i o t a c t i c u n i t s i n a s s o c i a t e d s e g m e n t s ( f o r t h e s t o i c h i o m e t r y i / s = 1/1.5, Y~ = 0.6; f o r t h e s t o i c h i o m e t r y i / s = 1/2, Y~ = 0.67}. Eq. 6 i s a p p l i c a b l e f o r Ys ~ Y~, while t h e v a l u e s o f (Y~/Ys)P f o r Y~ -- 0.6-0.67 do n o t d i f f e r a p p r e c i a b l y . The dependence

d of f s ( 1 ) - ~

ws(m} o n t h e s e q u e n c e l e n g t h d f o r s-PHMA

s t u d i e d b y u s is s h o w n i n Fig. 11.

T h e e x p e r i m e n t a l l y f o u n d v a l u e s (Yo'/Ys} p

are indicated by arrows and dashed horizontal lines; the corresponding intercepts

on t h e h o r i z o n t a l axis indicate the v a l u e ( q - l ) .

T h e v a l u e s of q o b t a i n e d b y m e a n s of Eq. 6 f o r t h e m i x t u r e s of i - a n d s-PMMA in C6D 6 a r e s h o w n i n T a b l e 2.

I n all c a s e s , t h e a g r e e m e n t is g o o d ,

i n d i c a t i n g t h a t i n b e n z e n e t h e m i n i m u m l e n g t h of s - s e q u e n c e s a s s o c i a t i o n , q = 8 to 10.

V a l u e s of q a r o u n d

o-dichlorobenzene and benzaldehyde.

necessary

for

10 u n i t s w e r e a l s o f o u n d f o r

F o r m i x t u r e s of i - a n d s - P P M A w i t h r =

2 i n CCI 4, CD3CN a n d i n DMF-d7, a s s o c i a t i o n o f p r a c t i c a l l y all m o n o m e r u n i t s (p ~ 95%) w a s o b s e r v e d

e v e n in t h o s e c a s e s w h e r e the s t e r e o r e g u l a r i t y

s - c o m p o n e n t w a s n o t v e r y h i g h ( s - P M M A - t y p e III i n T a b l e 2). that the minimum s-sequence

length necessary

of t h e

This indicates

for s t e r e o c o m p l e x formation in

116

I

l

l

l

|

l

l

l

l

l

1.0

0.8 %4,", t E "-~ 0.6

0.4

0.2,

I

I

I

4

I tl

tl

I

I

I

I

I

8 12 16 20 d (in monomer units)

d F i g . 11. D e p e n d e n c e o f t h e v a l u e f s ( 1 ) -m-~ w s ( m ) o n t h e s - s e q u e n c e length d f o r s - P M M A - 1 (S = 88.5%, H = 9%) (o); s - P M M A - 2 (S = 69%, H = 27.5%} (•); s - P M M A - 3 (S -- 66%, H = 31%) (o). T h e e x p e r i m e n t a l l y f o u n d v a l u e s (Y~/Ys)P f o r m i x t u r e s o f b e n z e n e s o l u t i o n s o f i-PMMA a n d s - P M M A a r e i n d i c a t e d b y a r r o w s a n d d a s h e d h o r i z o n t a l l i n e s (cf. Eq. 6) ( r e f . 103}. these

solvents

is of the order

q = 3; i n t o l u e n e ,

of q are valid at or below room temperature; temperatures

will b e d i s c u s s e d

The effect of the degree

determined

all t h e s e (proven

stereoregularity,

b y NMR s p e c t r a j

spectroscopy) s-sequences it j u s t i f i e s

the assumption

minimum length where

interaction

take part

prerequisite

i n T a b l e 3.

The finding

that

in aggregation.

that

s-PMbIA-3 does not take

the presence

of self-aggregation;

that only s-sequences

of s-sequences

fraction

of s-PMMA samples

osmometry~ light scattering

( r e f . 22~47,54,111) i n d i c a t e s is a necessary

of the associated

solutions

of conventional

viscometryj

was also

0.2 - 10% ( r e f . 110) a n d

for several

are summarized

media self-aggregation

values

at elevated

on association

The values

in the range

f r o m NMR m e a s u r e m e n t s

of various

the situation

of stereoregularity

of concentration

The quoted

in the following paragraph.

followed for s-PMMA self-aggregation. p, i n d e p e n d e n t

q ~ 4-5.

longer

Contrary

with practically

than

and

IR

of long also, in this case a certain

to the stereocomplex,

perfect

in place

stereoregular

117

TABLE 3 Quantitative

characterization

of ordered

Polymer

s-PMMA b y NMR a n d IR s p e c t r o s c o p y

F r a c t i o n of associated monomer units p f r o m NMR (%)

Solvent

Solution

F r a c t i o n of o r d e r e d s-PMMA f r o m IR a (%)

Solution

Solid State

s-PMMA-I

toluene

85

29

25

(S : 89.5%; H : 8.5%)

o-dichlorobenzene

73

27

29

butyl acetate

ca 90

b

24

s-PMMA-2

toluene

76

b

b

toluene c

0

0

0

(S = 85%; H = 12%) s-PMMA-3 (S = 66%; H = 31%)

adetermined from integrated intensities s t r e t c h i n g v i b r a t i o n s ; c f P a r t VI-A.

after

separation

of b a n d s

o f C=0

bnot measured Cno a s s o c i a t i o n w a s a l s o o b s e r v e d solutions

i-PMMA c h a i n s w a s c o n s i d e r e d , interactions structure

of s - sequences

in o-dichlorobe nz e ne

butyl acetate

i n t h e c a s e o f s-PMMA s e l f - a g g r e g a t i o n

must be considered.

is f o r m e d b y m u t u a l i n t e r a c t i o n

a r e of t h e minumum length

and

If we a s s u m e

of two s-sequences

mutual

that a stable ( b o t h of w h i c h

q or longer), then for the non-associated

f r a c t i o n , w e c a n w r i t e ( r e f . 111):*

1 - p - fi(1)

q-1 = 2 z ws(m ) m=2

Making u s e of the identity a shape

analogous

(7)

fi(1) + f s ( 1 ) = 1, Eq. 7 c a n b e t r a n s f o r m e d

into

to Eq. 6:

*All s - s e q u e n c e s c a n b e m e n t a l l y d i v i d e d i n t o t w o p a r t s ( m a r k e d a s w h i t e a n d black, respectively) with interaction always taking place between white and black sequences. Both parts have the same length distribution and the same m i n i m u m l e n g t h , q. T h e n i n c o n s e q u e n c e o f i m p e r f e c t s t e r e o r e g u l a r i t y , both c o m p o n e n t s p a r t i c i p a t e e q u a l l y in the n o n - a s s o c i a t e d f r a c t i o n of s - s e q u e n c e s , 1 - p - fi(1).

118

q-1 p = fs(1) - 2 ~ Ws(m). m=2

(8)

d For the studied polymers, the plots of fs(1) - 2mz=2 ws(m) against the length of s-sequences d are s h o w n in Fig. 12.

T h e experimentally determined values

of the associated fraction p are indicated b y arrows and horizontal dashed lines in these plots.

The corresponding intercepts on the horizontal axis

indicate the value (q -1), w h e r e q is the sequences

(cf. Eq. 8).

m i n i m u m length of associated

Fig. 12 exhibits good agreement, indicating that the

m i n i m u m length of aggregated s-sequences for s - P M M A

self-aggregation in

toluene (and similarly in o-dichlorobenzene a n d BAC) is equal to 9 m o n o m e r units (ref. 54,111).

.~ 1"0I N~ ,

0.8

0.6

0.40,2O15 20 d (in monomer units}

10

d

Fig. 12. D e p e n d e n c e of the value fs(1) - ~=_z2 ws(m) on the s-sequence length d for s - P M M A - I (S -- 89.5%; H = 8.5%) (o);-s-PMMA-2 (S -- 85%; H = 12%)) (e); s - P M M A - 3 (S = 66%; H -- 31%) (A). T h e experimentally found values of associated fraction p for toluene-d 8 solutions of s - P M M A are indicated b y arrows a n d dashed horizontal lines (ref. 111).

ll9 C o n t r a r y to t h e m e n t i o n e d s o l v e n t s , in CC14 (which is a v e r y p o o r s o l v e n t f o r PMMA), a p p r e c i a b l e s e l f - a g g r e g a t i o n t a k e s p l a c e e v e n w i t h s-PMI~IA of low stereoregularity

{s-PMMA-3), a s i n d i c a t e d b y t h e r e s u l t s of NFIR, o s m o m e t r y

and cloud-point curves

( r e f . 3,53,55).

C. T h e r m a l s t a b i l i t y a n d d e c o m p o s i t i o n of a ~ g r e ~ a t e s The d e c o m p o s i t i o n of s t e r e o c o m p l e x a g g r e g a t e s in a c e r t a i n t e m p e r a t u r e r a n g e ( t h e i r " m e l t i n g " ) h a s b e e n p r o v e d b y v a r i o u s m e t h o d s a n d d e s c r i b e d in a n u m b e r of p a p e r s (ref. 1,33,40,42,56,60,64-66,69,74,75,82,83,98,103-105).

In

t h e c i t e d p a p e r s , v a r i o u s t e m p e r a t u r e r a n g e s c o r r e s p o n d i n g to t h e " m e l t i n g " of s t e r e o c o m p l e x a g g r e g a t e s a r e q u o t e d , d u e to t h e c i r c u m s t a n c e t h a t t h e s t a b i l i t y of t h e s t e r e o c o m p l e x s t r o n g l y d e p e n d s on t h e s t e r e o r e g u l a r i t y of t h e i n t e r a c t i n g p o l y m e r s a n d also on s o l v e n t . A l r e a d y in t h e f i r s t p a p e r s on t h e s t e r e o c o m p l e x , it was o b s e r v e d t h a t t h e m e l t i n g p o i n t of t h e gel d e c r e a s e s w i t h t h e d e c r e a s i n g t a c t i c i t y of t h e s - c o m p o n e n t , s i m i l a r l y a s t h e t e m p e r a t u r e s of a g g r e g a t e d e c o m p o s i t i o n d e t e r m i n e d f r o m t u r b i d i m e t r i c m e a s u r e m e n t s ( r e f . 1,33,82,83).

The c h a r a c t e r

of t h e t h e r m a l s t a b i l i t y of s t e r e o c o m p l e x a g g r e g a t e s in d e p e n d e n c e on t h e s t e r e o r e g u l a r i t y of t h e s - c o m p o n e n t was s t u d i e d in g r e a t e r d e t a i l b y NMR s p e c t r o s c o p y ( r e f . 103).

The t e m p e r a t u r e d e p e n d e n c e of t h e a s s o c i a t e d

f r a c t i o n p f o r m i x t u r e s o f i - a n d s-PMMA in b e n z e n e , w i t h v a r i o u s s t e r e o r e g u l a r i t y of t h e s - c o m p o n e n t , is i l l u s t r a t e d in Fig. 13.

At a g i v e n

t e m p e r a t u r e , " m e l t i n g " p r o c e e d s v e r y q u i c k l y u p to a c e r t a i n v a l u e of p which does not f u r t h e r

c h a n g e w i t h time.

From Fig. 13, it c a n b e s e e n t h a t

f o r all s a m p l e s , m e l t i n g b e g i n s a t a p p r o x i m a t e l y t h e same t e m p e r a t u r e (['40"C).

F o r m i x t u r e s w i t h s-PMMA of h i g h e r s t e r e o r e g u l a r i t y , t h e " m e l t i n g "

r a n g e b r o a d e n s and complete dissociation takes place at h i g h e r temperatures.

At t h e same time, t h e s h a p e of t h e t e m p e r a t u r e d e p e n d e n c e

d o e s n o t d e p e n d o n t h e mixing ratio.

A c o m p a r i s o n of t h e t e m p e r a t u r e

d e p e n d e n c e s of p f r o m Fig. 13 w i t h t h e c o r r e s p o n d i n g d e p e n d e n c e s of t h e d q u a n t i t y fs(1) -mZ=2 Ws(m) o n s e q u e n c e l e n g t h d (Fig. I I ) r e v e a l s t h a t t h e y a r e v e r y similar. aggregates

This i n d i c a t e s t h a t t h e d e c o m p o s i t i o n of s t e r e o e o m p l e x

b y h e a t i n g c o r r e s p o n d s to t h e d i s t r i b u t i o n of s e q u e n c e l e n g t h s o f

t h e s - c o m p o n e n t ( t h e i - c o m p o n e n t is almost p e r f e c t ) , while t h e minimum s e q u e n c e l e n g t h n e c e s s a r y f o r a s s o c i a t i o n (q) e x h i b t s a n a l m o s t l i n e a r t e m p e r a t u r e d e p e n d e n c e in a c e r t a i n t e m p e r a t u r e r a n g e .

With some

a p p r o x i m a t i o n , it c a n t h e r e f o r e be s t a t e d t h a t a d e f i n e d " m e l t i n g " t e m p e r a t u r e c o r r e s p o n d s to a c e r t a i n l e n g t h of a s s o c i a t e d s e q u e n c e s .

With m i x t u r e s of i -

a n d s-PMMA in b e n z e n e , t h e l e n g t h e n i n g of t h e s - s e q u e n c e b y o n e monomer u n i t i n c r e a s e s t h e m e l t i n g t e m p e r a t u r e b y ~2"C.

An a p p r e c i a b l e d e v i a t i o n

from a l i n e a r t e m p e r a t u r e d e p e n d e n c e o f t h e minimum l e n g t h q c a n

120

8O

60

40-

20

0

I

I

I

30 F i g 13. T e m p e r a t u r e for various mixtures i-PMMA + s - P M M A - 1 (l:l); ~ , i-PMMA + s - P M M A - 3 (S -- 66%; be observed

I

I

I

70 90 ternperGture, "C

dependence of the fraction p of associated monomer units o f i-PMMA (I -- 97%; H -- 3%) a n d s - P M M A i n b e n z e n e ; o, (S = 88.5%; H = 9%) (1:2); (o), i-PMMA + s - P M M A - I s - P M M A - 2 (S = 69%; H = 27.4%) (1:2); a, i-PMMA + H = 31%) (1:1.5) ( r e f . 103).

at temperatures

decomposition dependence

l

50

(cf. F i g s . l l

of fs(1) - z

approaching and

the temperature

13); t h i s i s q u i t e

ws(m) on the length

of complete

understandable

d approaches

because

the

zero

asymptotically. The character

of the temperature

( r e f . 103) i s s i m i l a r to t h a t and

observed

s-PMMA, the temperature

the used

solvent.

of stereocomplex high upper

range

The upper aggregates

stereoregularity

For a given

of stereocomplex

generated

"melting"

by interaction

lies at temperaturaes

i-PMMA a n d

f r o m NMR s p e c t r a )

of p in other

in benzene.

limit of the temperature

limits of the temperature

stereoregular

dependences

range

around

of "melting"

range

solvents

are

given

of i-

depends

on

of decomposition

of i- and

s-PMMA of

1 2 0 - 1 3 0 " C ( F i g . 8). for mixtures

s-PMMA of lower stereoregularity

for various

solvents mixture

The

of highly

(as determined

in Table 4 in Part

V-E.

It

can be seen that stereocomplex aggregates are most stable in CC14 a n d in toluene; the high thermal stability of the stereocomplex in toluene w a s also revealed b y m e a s u r e m e n t s of gel melting points (ref. 67,74). The finding that associated segments containing long s-sequences "melt" at higher temperatures than segments formed b y short s-sequences and a certain similarity of the described association with crystallization imply that the binding Gibbs e n e r g y (per tool of m o n o m e r

units) will be higher for

121 TABLE 4 Values of the fraction sequences

of associated

units,

of the minimum length

q (both at 25°C) and of the temperature

of stereocomplex of solubility

aggregates

parameters

3%; S : 0} a n d

Tm in different

5; v a l u e s

of complete

solvents

of p for mixtures

of dipole moments p and o f i-PMMA (I : 97%; H =

s - P M M A (I : 3%; H : 31%; S : 66%), w e i g h t

( d a t a f r o m r e f . 103 a n d

Solvent

unpublished

p

ratio i/s

p

(cal cm-3) I/2

q

T m

(%)

('C)

CC14

0

8.6

95

3

95 a

acetonitrile

3.4

11.9

95

3

70

DMF

3.8

12.1

90

3

_b

toluene

0.37

8.9

80

4-5

85

o-dichlorobenzene

2.5

10.0

38

9-10

70

benzene

0

9.2

35-40

8-10

60

benzaldehyde

2.8

9.4

25

12-13

60

chloroform

1.05

9.3

0

-

-

aEstimated to 75"C

from the course

= 1/2

data).

6

(debye)

of associated decomposition

of the temperature

dependence

of p measured

up

bNot measured

associated

segments

stereoregularity predominate heats

formed

by long s-sequences

of the i-component

in s-PMMA of high

is assumed)

stereocomplex

formation

depends

for higher

( r e f . 103).

stereoregularity.

o f m i x i n g , B i r o ~ e t al. h a v e a c t u a l l y

strongly

(a p r a c t i c a l l y

Long sequences

From measurements

proved

i n DMF c o r r e s p o n d i n g

on the stereoregularity

perfect

( r e f . 93) t h a t

to t h e s t o i c h i o m e t r i c

of the s-component

of the

the heat of

and

ratio

(i/s)

is higher

stereoregularity.

The temperature

dependence

of the fraction

p of associated

units

characterizing the thermal stability of i- and s - P M M A self-aggregates in o-dichlorobenzene (ref. 2,3,102) is demonstrated in Fig. 14.

The dependences

of the fraction p in toluene had a perfectly similar character and their concentration independence in the range 0.2-10% was likewise observed (ref. 54,109,110). Fig. 14 demonstrates the completely different thermal stability of the i- and

s-PMMA self-aggregates.

self-aggregates very results

stable

and

While the fraction

at room temperature they

of osmometry,

decompose viscometry,

is very

completely

p of s-PMMA

high, these

aggregates

at 60"C, in agreement

light scattering

and

are not with the

IR s p e c t r o s c o p y

(ref.

122

80 d.

60 s-PMMA 40

-

20 i-PMMA i~,

0

50

I

100

I

\ \

150 200 temperQture,°C

Fig. 14. T e m p e r a t u r e d e p e n d e n c e of t h e f r a c t i o n of a s s o c i a t e d monomer u n i t s p f o r s o l u t i o n s of i-PMMA ( ) a n d s-PMMA ( - - - ) in o - d i c h l o r o b e n z e n e ( r e f . 3,102).

47,54,102).

The amount of i-PMMA s e l f - a g g r e g a t e s at room temperature is

relatively small, but these a g g r e g a t e s exhibit a high thermal stability; temperatures above 160°C, comparable with the melting temperature of solid i-PMMA, are n e c e s s a r y for their complete decomposition. While for solutions of i-PMMA in toluene-d8 only a small content of a g g r e g a t e s (p = 10%) was observed even at -60"C and this content did not change in the r a n g e -60 to 110"C (ref. 119), for solutions of i-PMMA in BAC a

s h a r p i n c r e a s e of t h e a g g r e g a t e d f r a c t i o n p t a k e s p l a c e a t t e m p e r a t u r e s below 0"C, w i t h m a c r o s c o p i c s e p a r a t i o n of most of i-PMMA f r o m t h e s o l u t i o n ( r e f . 47).

Also, most of t h e s-PMMA is a g g r e g a t e d

c a s e , h o w e v e r , a t t e m p e r a t u r e s below 60"C.

( s e p a r a t e d ) in BAC; in t h i s

It is i n t e r e s t i n g t h a t b o t h i - a n d

s-PMMA s e p a r a t e from BAC s o l u t i o n a t t e m p e r a t u r e s a b o v e t h e o t e m p e r a t u r e of at-PMMA (-20"C). A c o m p a r i s o n of F i g s . 8,13 a n d 14 i n d i c a t e s t h a t t h e t h e r m a l s t a b i l i t y of s t e r e o c o m p l e x a g g r e g a t e s f o r m e d b y i n t e r a c t i o n of i - a n d s-PMMA of h i g h s t e r e o r e g u l a r i t y is c o n s i d e r a b l y h i g h e r t h a n t h e t h e r m a l s t a b i l i t y of t h e s e l f - a g g r e g a t e s of h i g h l y s t e r e o r e g u l a r s-PMMA.

Together with the finding

t h a t b y c o o l i n g of a m i x t u r e of t o l u e n e s o l u t i o n s of i - a n d s-PMMA f r o m 130" to 25"C no s e l f - a g g r e g a t e s a r e f o r m e d , b u t t h e s t e r e o c o m p l e x is g e n e r a t e d , t h i s i n d i c a t e s t h a t t h e i n t e r a c t i o n s of t h e s t e r e o c o m p l e x t y p e a r e s t r o n g e r t h a n t h e i n t e r a c t i o n s l e a d i n g to s-PMMA s e l f - a g g r e g a t i o n ( r e f . 22).

123 D. K i n e t i c s of a g g r e g a t i o n a n d e f f e c t of t h e r m a l h i s t o r y The time c o u r s e of PMMA s t e r e o c o m p l e x f o r m a t i o n w a s followed b y v a r i o u s m e t h o d s b o t h f o r d i l u t e s o l u t i o n s a n d f o r g e l s of c o n c e n t r a t e d s o l u t i o n s . V i s c o m e t r i c m e a s u r e m e n t s h a v e s h o w n t h a t t h e c h a n g e s of v i s c o s i t y w i t h time (i.e., i t s d e c r e a s e o r g r o w t h , in d e p e n d e n c e on s o l v e n t - - s e e P a r t IV-A, V i s c o m e t r y ) is t h e s h a r p e r , t h e h i g h e r t h e c o n c e n t r a t i o n of t h e s o l u t i o n (ref. 44,67).

M e a s u r e m e n t s of l i g h t s c a t t e r i n g h a v e y i e l d e d t h e time d e p e n d e n c e s

of /~/wapp a n d of t h e g y r a t i o n r a d i u s Rg f o r s t e r e o c o m p l e x a g g r e g a t e s in DMF ( r e f . 43).

While Flwapp i n c r e a s e s s h a r p l y a l r e a d y d u r i n g t h e f i r s t m i n u t e s ,

Rg r e m a i n s c o n s t a n t f o r a r e l a t i v e l y l o n g time a n d i t s i n c r e a s e is o b s e r v e d o n l y a f t e r a v e r y l o n g time (~ d a y ) .

A similar c h a r a c t e r of t h e time

d e p e n d e n c e s of Mwp p a n d Rg was also o b s e r v e d b y B e l n i k e v i t c h e t al. ( r e f . 44), who h a v e a l s o o b s e r v e d t h a t t h e s t e r e o c o m p l e x is f o r m e d more q u i c k l y in DMF t h a n in d i o x a n e .

The o b s e r v a t i o n t h a t t h e size of t h e s t e r e o e o m p l e x

a g g r e g a t e s d o e s n o t c h a n g e f o r a r e l a t i v e l y l o n g time while t h e i r m a s s i n c r e a s e s i n d i c a t e s a g r o w t h of t h e d e n s i t y of a g g r e g a t e d monomer u n i t s (i.e., the aggregates

g r o w more c o m p a c t w i t h time).

The i n c r e a s e of Rg a f t e r a

l o n g time is e x p l a i n e d b y t h e p r o c e s s of s e c o n d a r y a g g r e g a t i o n of s t e r e o c o m p l e x p a r t i c l e s a n d f o r m a t i o n of l a r g e r s t r u c t u r e s .

Such a secondary

p r o c e s s is a l s o i n d i c a t e d b y t h e r e s u l t s of v i s c o m e t r i c a n d DSC m e a s u r e m e n t s ( r e f . 51,74,96). NMR m e a s u r e m e n t s h a v e s h o w n t h a t w i t h m i x t u r e s of i - a n d s-PMMA in CD3CN o r CC14 ( c o n c e n t r a t i o n 10%) a t room t e m p e r a t u r e t h e p r o c e s s of s t e r e o c o m p l e x f o r m a t i o n is so r a p i d t h a t it c a n n o t be followed b y t h i s technique.

I n b e n z e n e , o - d i c h l o r o b e n z e n e a n d b e n z a l d e h y d e , a s s o c i a t i o n is

r a p i d o n l y a t t h e b e g i n n i n g , w h e n a v e r y q u i c k e s t a b l i s h m e n t of a c e r t a i n v a l u e of t h e a g g r e g a t e d f r a c t i o n p is o b s e r v e d ; f u r t h e r a s s o c i a t i o n is a v e r y slow p r o c e s s a n d t h e e q u i l i b r i u m s t a t e is r e a c h e d a f t e r a v e r y l o n g time ( r e f . 103).

At t h e same time, t h e r e l a t i v e n u m b e r of u n i t s t a k i n g p a r t in t h i s slow

p r o c e s s i n c r e a s e s with the d e c r e a s i n g s t e r e o r e g u l a r i t y of the s - c o m p o n e n t . T h i s i n d i c a t e s v e r y r a p i d a s s o c i a t i o n o f l o n g s - s e q u e n c e s a n d slow a s s o c i a t i o n of s h o r t s - s e q u e n c e s c o n n e c t e d p r o b a b l y w i t h some r e a r r a n g e m e n t of t h e already generated structure.

P y r l i k a n d R e h a g e ( r e f . 88,91) h a v e m e a s u r e d

t h e time d e p e n d e n c e s of t h e c o m p o n e n t s o f t h e s h e a r m o d u l u s f o r s t e r e o c o m p l e x g e l s in o - x y l e n e .

T h e y o b s e r v e d t h a t t h e e q u i l i b r i u m v a l u e s of

G' i n c r e a s e w i t h d e c r e a s i n g t e m p e r a t u r e ; t h i s t h e y e x p l a i n b y p r o c e e d i n g c r y s t a l l i z a t i o n w i t h d e c r e a s i n g t e m p e r a t u r e a n d t h u s a g r o w i n g d e g r e e of crosslinking (the crystallites act as crosslink points).

The r e a s o n f o r

p r o c e e d i n g c r y s t a l l i z a t i o n a t d e c r e a s i n g t e m p e r a t u r e is s e e n in t h e t e m p e r a t u r e d e p e n d e n c e of t h e minimum l e n g t h of s t e r e o r e g u l a r s - s e q u e n c e s n e c s s a r y f o r c r y s t a l l i z a t i o n , in a g r e e m e n t w i t h t h e r e s u l t s o f NMR

124 spectroscopy

(see p r e c e d i n g

paragraph).

T h e k i n e t i c s of s e l f - a g g r e g a t i o n

of s-PMMA i n t o l u e n e a n d BAC w a s

followed b y a c o m b i n a t i o n of NMR s p e c t r o s c o p y , light scattering

and turbidimetry

r a t e of s-PMMA s e l f - a g g r e g a t i o n

IR s p e c t r o s c o p y ,

( r e f . 38,47,54,111).

viscometry,

It w a s p r o v e d t h a t t h e

increases with decreasing temperature

and

with increasing concentration, with the solvent playing an important part.

At

t h e s a m e time, v a r i o u s m e t h o d s e x h i b i t v a r i o u s s e n s i t i v i t y to d i f f e r e n t p h a s e s of t h e a g g r e g a t i o n t h e time d e p e n d e n c e

process.

T h e s i t u a t i o n is i l l u s t r a t e d in Fig. 15, e x h i b i t i n g

of t h e f r a c t i o n of a g g r e g a t e d

NMR s p e c t r a a n d t h e time d e p e n d e n c e i d e n t i c a l s a m p l e of s-PMMA s o l u t i o n i n

units p determined from

of t h e t u r b i d i t y BAC.

t h a t while the f r a c t i o n p i n c r e a s e s from t h e v e r y turbidity

b e g i n n i n g , a g r o w t h of

o n l y t a k e s p l a c e a t a time w h e n t h e f r a c t i o n p a l m o s t d o e s n o t

c h a n g e a n y more.

Similarly as with the stereocomplex a g g r e g a t e s ,

p r i m a r y a n d a s e c o n d a r y p r o c e s s c a n be a s s u m e d . process

~- m e a s u r e d w i t h a n

Fig. 15 c l e a r l y d e m o n s t r a t e s

also here a

During the primary

( b e s i d e s NMR s p e c t r o s c o p y , t h i s i s a l s o d e t e c t e d b y IR s p e c t r o s c o p y ) ,

"intramolecular" ordering s-sequences

t a k e s p l a c e i n c o n s e q u e n c e of i n t e r a c t i o n s of

(the term "intramolecular" here also includes, for example,

d o u b l e - c h a i n i n t e r a c t i o n s ) a n d c r y s t a l l i t e - l i k e domains are formed (the so c a l l e d " g l o b u l a t i o n " s t a g e a c c o r d i n g to r e f . 38). certain temperature decreasing

At t h e s a m e time, in a

r a n g e , t h e e q u i l i b r i u m v a l u e s of p i n c r e a s e w i t h

temperature

of a g g r e g a t i o n

(Fig. 10); s i m i l a r l y a s in t h e c a s e of

the stereoeomplex, t h i s can be explained b y the d e c r e a s i n g s-sequences

necessary

for the interaction energy

e n e r g y of m o l e c u l a r m o t i o n a t d e c r e a s i n g t e m p e r a t u r e . the "globules" further

aggregate

m i n i m u m l e n g t h of

to e x c e e d t h e t h e r m a l With p r o c e e d i n g time,

(secondary process) under

f o r m a t i o n of

l a r g e r p a r t i c l e s , c a u s i n g , f o r e x a m p l e , t h e s h a r p i n c r e a s e of t u r b i d i t y (flocculation stage).

I

I

50

100

--IT

p

/ "t, min

150

Fig. 15. Correlation of (I) p - t and (2) ~-t c u r v e s for s-PMMA (S = 91.5%; H "7.5%) in BAC (cone. 9x10-3g cm-3) at 48"C; p is the fraction of immobilized monomer u n i t s determined by NMR, ~- is the t u r b i d i t y and t is the aggregation time (rain); p an ~" are expressed in a r b i t r a r y u n i t s (ref. 38).

125 T h e circumstance that for the stereocomplex aggregates in some solvents a v e r y long time is needed for the attainment of the equilibrium state leads to a different course of various quantities during heating and cooling. hysteresis curves for the P M M A

Such

stereocomplex have been observed in

viscosity (ref. 64), dielectric (ref. 52), dynamicomechanical

(ref. 91} a n d N M R

spectroscopic mesurements; the latter have also s h o w n that the stereocomplex in a solution which has not reached the equilibrium state at repeated heating e x h i b i t s a d i f f e r e n t b e h a v i o r ( t h e r a n g e of " m e l t i n g " c o r r e s p o n d i n g segments with short s-sequences spectroscopy,

it w a s f u r t h e r

i s m i s s i n g } ( r e f . 103}.

to

By NMR

s h o w n t h a t t h e a t t a i n m e n t of e q u i l i b r i u m v a l u e s

of p w h i c h f o r m i x t u r e s of i - a n d s-PMMA in b e n z e n e t a k e s a v e r y l o n g time at room t e m p e r a t u r e if a g g r e g a t i o n

( w e e k s to m o n t h s } c a n b e r e c h e d a l m o s t i n s t a n t a n e o u s l y

takes place at -70"C or even lower temperatures.

This is

p r o b a b l y a c o n s e q u e n c e of t h e c i r c u m s t a n c e t h a t t h e r a t e of a g g r e g a t i o n increases with decreasing aggregation

temperature

s o t h a t a t low t e m p e r a t u r e s

is p r o b a b l y e v e n m o r e r a p i d t h a n t h e p r o c e s s of s o l v e n t

solidification.

T h e time e f f e c t a l s o h a s to b e c o n s i d e r e d i n c o m p a r i s o n s of

v a r i o u s s t u d i e s of s-PMMA s e l f - a g g r e g a t i o n

{ref. 38,47,54}.

H o w e v e r , b o t h w i t h t h e s t e r e o c o m p l e x a n d w i t h s-PMMA s e l f - a g g r e g a t e s , e f f e c t s of t h e r m a l h i s t o r y h a v e b e e n o b s e r v e d than the above described

which have a different origin

k i n e t i c s of a g g r e g a t i o n .

In d y n a m i c a l - m e c h a n i c a l

m e a s u r e m e n t s , P y r l i k e t al. ( r e f . 88,89) h a v e o b s e r v e d

t h a t if t h e m i x t u r e of

i - a n d s-PMMA i n o - x y l e n e w a s h e a t e d to 120"C (i.e., o n l y a b o u t 10"C a b o v e t h e m e l t i n g p o i n t of t h e gel}, t h e n a f t e r c o o l i n g to 80"C g e l f o r m a t i o n p r o c e e d s m u c h m o r e r a p i d l y t h a n a f t e r p r e v i o u s h e a t i n g to 145"C.

From

t u r b i d i m e t r i c m e a s u r e m e n t s , a s i m i l a r e f f e c t of t h e r m a l h i s t o r y w a s o b s e r v e d also for aggregation

in d i l u t e s o l u t i o n s of s-PMMA in BAC ( r e f . 38}.

In both

c a s e s , t h i s b e h a v i o r is e x p l a i n e d b y t h e e x i s t e n c e o f s t a b l e n u c l e i w h i c h a r e a b l e to s u r v i v e f o r s o m e time a t t e m p e r a t u r e s "melting".

even above the upper

limit of

N u c l e a t i o n m e c h a n i s m s a r e a l s o u s e d to e x p l a i n t h e o b s e r v a t i o n

that the mechanical properties temperatures

of s t e r e o c o m p l e x g e l s g e n e r a t e d

differ considerably at a given temperature

c o m p a r i s o n of the r e s u l t s o b t a i n e d by light s c a t t e r i n g o s m o m e t r y , v i s c o m e t r y a n d NMR s p e c t r o s c o p y

at various

( r e f . 88,89).

A

w i t h t h e r e s u l t s of

i n d i c a t e s t h a t the f r a c t i o n of

s u c h n u c l e i i n s o l u t i o n s of s-PMMA in BAC m u s t be v e r y small {ref. 38}. this system, another spectroscopy

distinct "hysteretie"

when aggregates

( p r e c i p i t a t e } f o r m e d a t 25"C w e r e h e a t e d .

16 s h o w s t h a t t h e g i v e n " e q u i l i b r i u m " v a l u e of p r e a c h e d d u r i n g at a higher temperature

In

e f f e c t w a s f o u n d b y NMR

than the aggregation

temperature

Fig.

h e a t i n g lies

needed for

r e a c h i n g t h e s a m e " e q u i l i b r i u m " v a l u e of p ( d u r i n g t h e a g g r e g a t i o n process}.

This i n d i c a t e s t h a t some s t r u c t u r a l

rearrangements

s e e m to o c c u r

126

100 --', 80

""

~,

60 40!

2bl I1Q

20

40 60 80 ternperat ure,'C

Fig. 16. D e p e n d e n c e of t h e " e q u i l i b r i u m " v a l u e s of f r a c t i o n p ( a g g r e g a t e d m o n o m e r u n i t s ) o n t e m p e r a t u r e of s-PMMA iS = 91.5%; H - 7.5%; c o n c . 9.0 x 1 0 - 3 g c m -3) i n BAC ( l a ) a n d t o l u e n e - d 8 (2a), c o m p a r e d w i t h t h e t e m p e r a t u r e d e p e n d e n c e of f r a c t i o n p d u r i n g t h e h e a t i n g of a g g r e g a t e s f o r m e d a t 25"C ( c u r v e s l b a n d 2b) ( r e f . 38).

a l s o in t h e p r e c i p i t a t e ; t h e s y s t e m t e n d s to h i g h e r s t a b i l i t y a l s o d u r i n g a g e i n g of t h e p r e c i p i t a t e .

E. E f f e c t of s o l v e n t o n t h e f o r m a t i o n of a g g r e g a t e s The original papers

d e s c r i b e s t e r e o c o m p l e x formation only in polar

s o l v e n t s like DMF o r a c e t o n i t r i l e ( r e f . 1,33} b u t Liu a n d Liu {ref. 65} w e r e t h e f i r s t to o b s e r v e benzene or toluene.

s t e r e o c o m p l e x f o r m a t i o n a l s o i n n o n p o l a r s o l v e n t s like Solid s t e r e o c o m p l e x s a m p l e s i s o l a t e d f r o m a c e t o n e ,

acetonitrile or benzene solution exhibit the same X-ray pattern

( r e f . 69).

T h e e f f e c t o f s o l v e n t o n s t e r e o c o m p l e x f o r m a t i o n c a n be c o m p a r e d q u a n t i t a t i v e l y f r o m t h e r e s u l t s of NMR s p e c t r o s c o p y characterizing i n T a b l e 4.

( r e f . 103).

Data

s t e r e o c o m p l e x f o r m a t i o n i n a s e r i e s of s o l v e n t s a r e s u m m a r i z e d

V a l u e s of p f o r m i x t u r e s w i t h t h e s - c o m p o n e n t of l o w e r

stereoregularity

are cited intentionally.

high stereoregularity,

t h e v a l u e s of p a r e m u c h l e s s s e n s i t i v e to t h e n a t u r e

of t h e s o l v e n t (p = 85 - 100%}. corresponding

F o r m i x t u r e s of i - w i t h s-PMMA of

T h e s a m e i s t r u e of t h e t e m p e r a t u r e

values

to c o m p l e t e d e c o m p o s i t i o n , Tin, w h i c h o f t e n lie a b o v e t h e

b o i l i n g p o i n t o f t h e s o l v e n t w i t h s - c o m p o n e n t s of v e r y h i g h s t e r e o r e g u l a r i t y . F r o m T a b l e 4, it i s e v i d e n t t h a t t h e e x t e n t of s t e r e o c o m p l e x f o r m a t i o n i s n o t d e t e r m i n e d b y t h e p o l a r i t y of t h e s o l v e n t .

P r a c t i c a l l y all m o n o m e r i c u n i t s

a r e a s s o c i a t e d b o t h i n t h e h i g h l y p o l a r a e e t o n i t r i l e o r DMF a n d in n o n p o l a r CCI4.

Lower p values are observed

benzaldehyde)

in b o t h polar ( o - d i c h l o r o b e n z e n e ,

and nonpolar (benzene} aromatic solvents.

Neither can the

medium e f f e c t s u p o n s t e r e o c o m p l e x formation be c o r r e l a t e d with the solubility parameter

~ ( s q u a r e r o o t of t h e c o h e s i o n e n e r g y

association has been observed

density} alone.

No

i n c h l o r o f o r m , e v e n f o r m i x t u r e of i-PMMA w i t h

127 s-PMMA of h i g h s t e r e o r e g u l a r i t y

a t low t e m p e r a t u r e

(-50"C).

S o l v e n t s in

w h i c h s t e r e c o m p l e x f o r m a t i o n t a k e s p l a c e c a n b e c l a s s i f i e d a c c o r d i n g to t h e m i n i m u m l e n g t h of a s s o c i a t e d s - s e q u e n c e s ,

q.

In agreement with the

t e r m i n o l o g y i n t r o d u c e d o r i g i n a l l y b y C h a l l a e t al. (ref. 35), t h e s o l v e n t s w i t h q ~ 3 m a y be r e g a r d e d

a s s t r o n g l y c o m p l e x i n g , t h e s o l v e n t s w i t h q ~ 10 a s

weakly complexing and chloroform as non-complexing.

T h i s c l a s s i f i c a t i o n is

a l s o in a g r e e m e n t w i t h t h e c l a s s i f i c a t i o n g i v e n in r e f . 37, a n d it is s u m m a r i z e d i n T a b l e 5~ w h e r e s o m e f u r t h e r

solvents are also included.

Some

d i s c r e p a n c i e s exist c o n c e r n i n g the clas s ificatio n of toluene; c o n s i d e r i n g the v a l u e s of t h e m i n i m u m l e n g t h q, t h i s s o l v e n t is c l a s s i f i e d a s s t r o n g l y c o m p l e x i n g a n d t h i s is s u p p o r t e d

b y t h e r e l a t i v e l y h i g h t h e r m a l s t a b i l i t y of

t h e s t e r e o c o m p l e x i n t h i s s o l v e n t {Table 4 a n d r e f . 67,74).

On t h e o t h e r

h a n d , t h e v i s c o m e t r i c b e h a v i o r (ref. 35) a n d e s p e c i a l l y t h e c a l o r i m e t r i c a l l y d e t e r m i n e d v a l u e s of t h e h e a t of f o r m a t i o n of t h e s t e r e o c o m p l e x ( r e f . 93) classify toluene as weakly complexing.

The tendency

to s t e r e o c o m p l e x

f o r m a t i o n is v e r y w e a k i n c h l o r o b e n z e n e (ref. 44,65,77).

T h e s t e r e o c o m p l e x is

a l s o f o r m e d in s o m e o t h e r s o l v e n t s like o - x y l e n e ( r e f . 67,88), t r i m e t h y l b e n z e n e ( r e f . 67), m e t h y l a c e t a t e r e f . 58), e t h y l a c e t a t e a n d BAC ( r e f . 45,71).

TABLE 5 C l a s s i f i c a t i o n of s o l v e n t s a c c o r d i n g to t h e i r t e n d e n c y to s t i m u l a t e PMMA s t e r e o c o m p l e x f o r m a t i o n ( r e f . 35,37,103) Strongly complexing

Weakly complexing Non-complexing

CC14

DMSO

benzene

chloroform

acetonitrile

methyl isobutyrate

o-dichlorobenzene

dichloromethane

DMF

THF

benzaldehyde

acetone

MMA

dioxane thiophene ? ~- t o l u e n e -~ ?

T h e v a l u e s of t h e a g g r e g a t e d

? ~- c h l o r o b e n z e n e -~ ?

f r a c t i o n p, c h a r a c t e r i z i n g

self-aggregation

i-PMMA a n d s-PMIVIA i n v a r i o u s s o l v e n t s , a r e s u m m a r i z e d in T a b l e 6.

of

From

t h i s t a b l e , it c a n be s e e n t h a t t h e v a l u e s of p f o r i-PMMA a r e n o t v e r y h i g h a n d t h a t t h e y show little d e p e n d e n c e on s o l v e n t ( p e r h a p s with t h e exception of chloroform).

S e l f - a g g r e g a t i o n o f s-PMMA w a s m o s t l y o b s e r v e d

p o l y m e r of h i g h s t e r e o r e g u l a r i t y .

only for the

An e x c e p t i o n i s CC14, w h e r e a g g r e g a t i o n

e v e n of c o n v e n t i o n a l PMMA i s a p p r e c i a b l e .

H o w e v e r , f r o m a c o m p a r i s o n of

T a b l e s 5 a n d 6, it c a n be s e e n t h a t t h e e f f e c t of s o l v e n t o n s t e r e o c o m p l e x

128 TABLE 6 V a l u e s of t h e f r a c t i o n of a s s o c i a t e d u n i t s p (at 25"C) f o r i-PMMA a n d s-PMMA of v a r i o u s s t e r e o r e g u l a r i t y

in v a r i o u s s o l v e n t s {data f r o m r e f .

2,3,38,47,54,102,109,110)

Solvent

i-PMMA

s-PMMA-1

s-PMMA-2

(I:97% H:3% S : 0 ) (I:2.5% H:9% S:88.5%) (I:3.5% H:31.5% S:65%)

CC14

20-24

-~100a

40-48

toluene

10

85

0

o-dichlorobenzene

15

70-85

0

butylacetate

_b

90

0

DMF

17

18

0

acetonitrile

18-23

0-5

_b

benzene

12-15

5

0-4

chloroform

0-12

0

0

as-PMMA-1 could not be dissolved in CCI4 bnot measured

formation and on self-aggregation of s-PMMA is not parallel and this is most evident for acetonitrile.

Using a terminology analogous to that used for the

stereocomplex, then CCI4, butyl acetate, toluene, o-dichlorobenzene can be classified as strongly promoting self-aggregation whereas in acetonitrile, benzene and chloroform self-aggregation of s-PMMA practically does not take place, which is in agreement with the results of IR spectroscopy, osmometry and viscometry (ref. 22,54,102).

IR spectroscopy and X-ray diffraction

indicate that ordering of s-PMMA also takes place in 1,2-dichloroethane (ref. 115) and in diethyl ketone and chloroacetone (ref. 22,100,101). Aggregation of conventional PMMAis cited in p-xylene and in butyl chloride (ref. 53,55). T h e f o r m a t i o n of t h e PMMA s t e r e o c o m p l e x w a s a l s o s t u d i e d i n m i x e d solvents.

Sedimentation measurements have shown that the stereocomplex

e x i s t s i n m i x t u r e s of D M F / b e n z e n e a n d t h a t t h e s t e r e o c o m p l e x f r a c t i o n i n c r e a s e s w i t h i n c r e a s i n g c o n t e n t of DMF ( r e f . 48), w h i c h i s i n a g r e e m e n t w i t h t h e r e s u l t s of NMR s p e c t r o s c o p y

(cf. T a b l e 4).

T h e k i n e t i c s of

stereoeomplex formation was studied by light scattering

i n a m i x t u r e of

DMF/CC14and it w a s f o u n d t h a t e v e r y time t h e s t e r e o c o m p l e x a g g r e g a t e s t h i s m i x t u r e a r e l i g h t e r a n d s m a l l e r t h a n i n DMF a l o n e ( r e f . 45).

in

The results

of t h e m e a s u r e m e n t of p o l a r i z e d l u m i n e s c e n c e h a v e s h o w n t h a t i n d i l u t e s o l u t i o n s i n a m i x t u r e of D M F / c h l o r o f o r m , s t e r e o c o m p l e x d e c o m p o s i t i o n t a k e s p l a c e i n a n a r r o w r a n g e of s o l v e n t c o m p o s i t i o n (35-50 v o l t of c h l o r o f o r m ) ,

129 confirming the cooperative character s t e r e o c o m p l e x ( r e f . 58}.

of t h e i n t e r m o l e c u l a r b o n d s in t h e

B a s e d o n v i s c o m e t r i c a n d NMR m e a s u r e m e n t s , Liu a n d

Liu {ref. 65) f o u n d t h a t t h e s t e r e o c o m p l e x is n o t f o r m e d in a c e r t a i n c o m p o s i t i o n r a n g e of a m i x t u r e of a c e t o n i t r i l e / b e n z e n e ,

in s p i t e of t h e f a c t

t h a t it is f o r m e d i n t h e s i n g l e c o m p o n e n t s of t h i s mixed s o l v e n t . behavior was observed

A similar

b y Katime e t al. ( r e f . 51) f o r t h e s t e r e o c o m l e x in a

m i x t u r e of a c e t o n i t r i l e / C C 1 4 a n d a c e t o n i t r i l e / b u t y l c h l o r i d e strongly complexing solvents} and for aggregates m i x t u r e of C C 1 4 / b u t y l c h l o r i d e {ref. 55}.

(i.e, f o r m i x t u r e s of

of c o n v e n t i o n a l PMMA in a

The authors

interpret

t h i s e f f e c t in

t e r m s of e x c e s s G i b b s e n e r g y , w h e r e i n c o m p a t i b i l i t y o f t h e c o m p o n e n t s o f t h e c o s o l v e n t m i x t u r e l e a d s to p r e f e r e n c e to " d i s s o l u t i o n " of PMMA a g g r e g a t e s

of t h e p o l y m e r - s o l v e n t i n t e r a c t i o n a n d (ref. 51,55,122).

H o w e v e r , it s h o u l d be

n o t e d t h a t o u r p r e l i m i n a r y r e s u l t s o b t a i n e d b y m e a n s of NMR a n d IR spectroscopy

do n o t i n d i c a t e d e c o m p o s i t i o n of t h e p r i m a r y o r d e r of t h e

s t e r e o c o m p l e x i n c o s o l v e n t m i x t u r e s ( r e f . 123}. only the secondary hindered

process

We h o l d a s m o r e p r o b a b l e t h a t

{i.e., a g g r e g a t i o n of s t e r e o c o m p l e x p a r t i c l e s } i s

in c o s o l v e n t m i x t u r e s a n d t h i s i s a l s o in a g r e e m e n t w i t h t h e r e s u l t s

of DSC a n a l y s i s {ref. 96}. The e x p l a n a t i o n of the m e c h a n i s m b y which v a r i o u s s o l v e n t s promote or h i n d e r e t e r e o a s s o c l a t i o n in n o t q u i t e c l e a r s o f a r . aggregation

Some a u t h o r s

explain

of PMMA b y t h e t e n d e n c y of s o m e p o l a r s o l v e n t s {e.g.,

a c e t o n i t r i l e ) to s e l f - a s s o c i a t e ( l i q u i d o r d e r ) , w h i c h h i n d e r s w i t h t h e p o l y m e r ( r e f . 51,55,122}.

their interaction

However, s u c h a " p a s s i v e " role of the

s o l v e n t d o e s n o t e x p l a i n t h e c o m p l e t e l y d i f f e r e n t e f f e c t o f a c e t o n i t r i l e in s t e r e o c o m p l e x f o r m a t i o n a n d in s e l f - a g g r e g a t i o n

of s-PMMA.

On t h e o t h e r

h a n d , t h e r e e x i s t s t u d i e s a s s u m i n g a n " a c t i v e " r o l e of t h e s o l v e n t e v e n f o r ordering

o f s-PMMA i n t h e s o l i d s t a t e ( r e f . 24,100,101}.

In our opinion, the solvent can affect aggregation

of PMMA b y two

m e c h a n i s m s (ref. 22): 1} c h a n g e s of t h e c o n f o r m a t i o n a l s t r u c t u r e stereoregular

sequences

(conformer energy

of

d i f f e r e n c e s t h e n also become

i m p o r t a n t } w i t h p r o m o t i o n o r h i n d r a n c e of s t e r i c a l l y c o m p l e m e n t a r y i n t e r a c t i o n s ; a n d 2) h i n d r a n c e

(or p r o m o t i o n } of s t e r e o a s s o c i a t i o n b y s p e c i f i c

interactions with certain functional groups.

Concerning the first mechanism,

the e f f e c t of s o l v e n t on the conformational s t r u c t u r e has actually been observed

( e s p e c i a l l y o f s-PMMA}

f r o m 13C a n d 1H NMR r e l a x a t i o n m e a s u r e m e n t s a n d

b y m e a n s o f NMR s h i f t r e a g e n t s

( r e f . 29,124).

The e f f e c t of s o l v e n t on t h e

c o n f o r m a t i o n a l e q u i l i b r i u m o f s-PMMA i n s o l u t i o n i s i n d i c a t e d b y t h e r e s u l t s of IR s p e c t r o s c o p y

( r e f . 21,22,29}.

i n t e r a c t i o n s o f PMMA e s t e r g r o u p s

For the second mechanism, specific (these groups

are i m p o r t a n t in

s t e r e o a s e o c i a t i o n o f PMMA; s e e l a t e r o n i n t h e f o l l o w i n g p a r t } w i t h b e n z e n e molecules have been described

in t h e l i t e r a t u r e

( r e f . 125,126}.

The

130 experimental formed,

finding

that

in benzene

while the stereocomplex

interactions

of stereocomplex

unfavorable

effect of solvent,

self-aggregates

(cf. P a r t

circumstance

that

formation

takes

hydrogen

bonds

proved

Rehage

are

sufficient

while the weaker

neither

self-aggregation

place in chloroform between

between

chloroform

at-PMMA.

of stereoregular

LOCAL

STRUCTURE

A. C h a r a c t e r

to c o m p e n s a t e

for the

of s-PMMA

for this end.

Similarly, the

with the existence

carbonyls

which

have

of been

I n t h e s a m e w a y {i.e., b y c o m p l e x PMMA e s t e r

clarification

OF AGGREGATED

groups},

on association

Kock and of cross-linked

of the effect of solvent

PMMA d e s e r v e s

of the interactions

the stronger

of s-PMMA nor stereoeomplex

molecules and

However, a complete

so that

interactions

molecules and

( r e f . 127}.

solvent

of s-PMMA are not

could be connected

( r e f . 63) e x p l a i n t h e e f f e c t o f s o l v e n t

aggregation

VI.

type

V-C) a r e i n s u f f i c i e n t

in small molecules

formation

self-aggregates

is, could be explained

further

SEQUENCES

of functional

on the

study.

OF PMMA

groups

responsible

for

a~re~ation Concerning their

mutual

the

question

interaction

a s to w h i c h f u n c t i o n a l

f o r PMMA s t e r e o c o m p l e x

can be found

in the literature.

stereocomplex

is formed

groups

o f i-PMMA a n d

stereocomplex also formed

Liquori etal.

in consequence s-PMMA, thus

in polar solvents. in nonpolar

the basic role of ester self-aggregation Conclusive

results

( r e f . 104,106}.

groups,

it w a s f o u n d resolution bands pulse

and

of another

one of about

have

measured

of the polymer

and

in

o f i-PMMA a n d is essential;

From conventional

have

and

increases,

spinning spinning

whereas

protons shown

speeds speed,

the intensity

speed

(3"2:3).

that

of about

yield a high

{Fig. 17).

~-CH 3

The results

the spectrum

of this

and system

F r o m F i g . 17, i t

the intensity

o f t h e CH 2

o f t h e OCH 3 b a n d

does

m : ICH2+~-CH3/IOCH 3

t o 2.8 a t ~r = 5 kHz, w h e r e a s

of

of the

300 Hz w i d t h

1H MAS NMR s p e c t r a

At t h e s a m e t i m e , t h e r a t i o o f t h e i n t e n s i t i e s spinning

see Part

1H NMR s p e c t r a

o f t h e OCH3, CH 2 a n d

of a band

15-20 kHz width.

at various

with increasing

is

indicating

b y NMR s p e c t r o s c o p y

with a mixture

of respective

consists

with increasing

increases

formation

presented

in which the intensities

can be seen that

not.

the of ~-CH 3

of the

accumulated

(lower stereoregularity

NMR m e a s u r e m e n t s

part

a-CH 3 bands

were

was performed

to t h e n u m b e r

broad=line

that

the stereocomplex

a t 2 5 " C p = 40% (i.e., 60% o f m o n o m e r u n i t s

associated

been

gradually

r a t i o r = ( Y s / X i ) = 2.

NMR s p e c t r u m

correspond

that

by

opinions

interactions

the formation

both in stereocomplex

in this respect

The analysis

that

responsible

various

s-PMMA.

s-PMMA of lower stereoregularity VII-A) at the weight

explaining

evidence

are

( r e f . 33) a s s u m e d

of hydrophobie

After the finding

solvents,

of i- and

groups

formation,

the

131

-..--I C H 2 - - C - - L

(A)

...

(c)

Jn

(c)

(a)

/~

i

6

7

8

9

1'0

~in ppm

10

t i n ppm

(c)

(B) (a)

A 6

L 7

i 8

9

(c)

7

8

10

g

in ppm

Fig. 17. 1H MAS NMR s p e c t r a of t h e m i x t u r e i-PMMA (I : 97%; H : 3%) + s-PMNA (S = 65%; H = 31.5%) (1:2) in C6D 6 m e a s u r e d a t 60 MHz, 25"0, a n d d i f f e r e n t s p i n n i n g f r e q u e n c i e s Vr; (A): (u r ~ 1.5 kHz; (B): v r ~ 3.5 kHz; (C): v r ~ 5 kHz ( r e f . 104). value corresponding

to t h e n u m b e r of p r o t o n s i s 5 / 3 = 1.67.

As in t h e 1H

MAS NMR e x p e r i m e n t , we s e e o n l y t h e s p e c t r u m o f t h e u n a s s o c i a t e d p a r t of t h e p o l y m e r p l u s t h o s e l i n e s of t h e a s s o c i a t e d p a r t w h i c h h a v e b e e n n a r r o w e d b y t h e s p i n n i n g ; t h e a b o v e r e s u l t c a n be e x p l a i n e d s o t h a t o n l y t h e l i n e s of CH2 a n d ~-CH 3 g r o u p s of t h e a s s o c i a t e d p o l y m e r u n d e r g o

narrowing

by magic angle spinning.

By a s i m p l e c a l c u l a t i o n , it c a n b e s h o w n t h a t t h e

v a l u e m = 2.8 c o r r e s p o n d s

to t h e s i t u a t i o n w h e r e t h e 1H MAS NMR s p e c t r u m

r e v e a l s all t h e p r o t o n s o f t h e CH2 a n d =-CH 3 g r o u p s non-associated)

w h e r e a s t h e OCH 3 b a n d c o r r e s p o n d s

unassociated segments.

(both associated and o n l y to p r o t o n s of t h e

132 A s i m i l a r s i t u a t i o n w a s o b s e r v e d a l s o i n 13C NMR s p e c t r a m e a s u r e d w i t h t h e d e c o u p l i n g i n t e n s i t y ~H2/2~, ~ 5 kHz, w h e r e t h e i n t e g r a t e d t h e OCH 3 b a n d a m o u n t s to o n l y 79% of t h e q u a t e r n a r y a-CH 3 a n d CH2 c a r b o n s

i n t e n s i t y of

c a r b o n a n d of t h e

(a s a m p l e w i t h p -- 30% w a s s t u d i e d ) .

These results

i n d i c a t e t h a t t h e b a n d of 15-20 kHz w i d t h w h i c h c a n n o t b e n a r r o w e d b y m a g i c a n g l e r o t a t i o n a t v r ~ 5 kHz o r b y d i p o l a r d e c o u p l i n g a t 7H2/2~ = 5 kHz c o r r e s p o n d s corresponds

to OCH 3 g r o u p s , w h e r e a s t h e b a n d of 300 Hz w i d t h

to CH2 a n d ~-CH 3 p r o t o n s .

As t h e m o b i l i t y of t h e OCH 3 m e t h y l

g r o u p s i s r e l a t i v e l y h i g h e v e n in solid PMMA, it m u s t b e c o n c l u d e d t h a t in t h e s t e r e o c o m p l e x , t h e m o b i l i t y of t h e w h o l e e s t e r g r o u p i s g r e a t l y indicating that association takes place primarily through

reduced,

i n t e r a c t i o n of e s t e r

groups. C o n s i d e r a b l e h i n d r a n c e of e s t e r g r o u p m o t i o n i n t h e s t e r e o c o m p l e x is a l s o confirmed by the observed

n e g a t i v e v a l u e s of o p t i c a l a n i s o t r o p y

(ref. 42).

N e g a t i v e v a l u e s of o p t i c a l a n i s o t r o p y w e r e a l s o d e t e r m i n e d i n s e l f - a g g r e g a t e s of i-PMMA; a l s o , i n t h i s c a s e , t h e o b s e r v a t i o n w a s i n t e r p r e t e d ordering

of e s t e r g r o u p s a n d t h e i r c o o p e r a t i v e i n t e r a c t i o n s

by specific

( r e f . 42,46,62).

H i n d r a n c e of e s t e r g r o u p m o b i l i t y b y s t e r e o a s s o c i a t i o n i s a l s o i n d i c a t e d b y t h e r e s u l t s of d y n a m i c a l - m e c h a n i c a l m e a s u r e m e n t s , s h o w i n g t h a t i n s a m p l e s prepared

b y r a d i c a l p o l y m e r i z a t i o n of MMA p r o c e e d i n g in t h e PMMA

s t e r e o c o m p l e x g e l (or in i-PMMA " s o l u t i o n " ; in b o t h c a s e s , MMA s i m u l t a n e o u s l y s e r v e d a s " s o l v e n t " ) , t h e E - p r o c e s s i s d i s p l a c e d to h i g h e r t e m p e r a t u r e s 30-40"C) ( r e f . 85). the ordered

(by

T h e i m p o r t a n t r o l e of e s t e r g r o u p s i n t h e f o r m a t i o n of

stereocomplex structure

is also indicated by the viscometric

r e s u l t s of S h a c h o v s k a y a e t al. ( r e f . 72), i n d i c a t i n g t h a t in m i x t u r e s of i-PMMA w i t h MMA/MAA c o p o l y m e r s , t h e r e p l a c e m e n t of t h e e s t e r g r o u p s of t h e s-component by carboxyl groups

perturbs

t h e s t e r i c c o m p l e m e n t a r i t y of t h e

macromolecules. In the a bove cited p a p e r s ,

stereocomplex formation is supposed

to t a k e

p l a c e i n c o n s e q u e n c e of m u t u a l i n t e r a c t i o n s of t h e e s t e r g r o u p d i p o l e s of i a n d s-PMMA.

A somewhat d i f f e r e n t view c o n c e r n i n g the c h a r a c t e r

of

f u n c t i o n a l g r o u p i n t e r a c t i o n s l e a d i n g to s t e r e o c o m p l e x f o r m a t i o n w a s p u b l i s h e d b y C h a l l a e t al. ( r e f . 36,94,100).

Based on the finding that the

s t e r e o c o m p l e x i s f o r m e d b e t w e e n t h e i - c o m p o n e n t of PMMA a n d t h e s - c o m p o n e n t of e i t h e r PMMA, PiBMA o r PMAA a n d t h a t all t h e s e stereocomplexes exhibit the same X-ray pattern,

these authors

assume that

s t e r e o a s s o c i a t i o n t a k e s p l a c e i n c o n s e q u e n c e of i n t e r a c t i o n s of i-PMMA e s t e r g r o u p s w i t h t h e =-CH 3 g r o u p s of t h e s y n d i o t a c t i c c o m p o n e n t . T h e i m p o r t a n c e of e s t e r g r o u p d i p o l e i n t e r a c t i o n s i n s-PMMA self-aggregation

i s i n d i c a t e d b y t h e s p l i t t i n g of t h e C=0 s t r e t c h i n g

into three components with wavenumbers

vibration

e q u a l i n t h e solid s t a t e a n d i n

133 solutions

and

F i g . 18 a r e {a) a n d

of different

shown

120 rain (b) a f t e r

w h i c h all a g g r e g a t e s spectrum fraction

higher

self-aggregation

wavenumber

22,102,111,115).

indicating

( r e f . 111).

The absolute

determined

after

units

conclusion

that

(about

-

I

s-PMMA

in aggregated

of ordered

vibration

s-PMMA

s-PMMA in solution

i n IR s p e c t r a

are

of associated

monomer

( s e e T a b l e 3); t h i s l e a d s

one half) of the ester

I

at a

a t 1727 c m - 1 ( r e f .

in ordered

groups

It can

by a new band

bands

monomer units

I

(b) a f t e r

of the fraction

f r o m NMR s p e c t r a

I

groups

of ester

of the carbonyl

only a part

band

at as the

i n F i g . 18c.

o f t h e C--0 s t r e t c h i n g

of the fraction

the values

(immobilized)

c a .D

of ester

from spectrum

is shown

by a weak

In

of the aggregated

in this range

for the splitting

values

separation

p determined

aggregated

is exhibited

close contact

lower than

111).

a t 2 5 " C , 2 rain

(a) m a y b e r e g a r d e d

obtained

component)

dipole coupling

sequences,

(ref.

measured

T h e IR s p e c t r u m

spectrum

(1742 c m - 1 ) a n d

The reason

is the transition

spectrum

s-PMMA.

of the non-aggregated

that

IR s p e c t r a

c o o l i n g f r o m 100"C {i.e., f r o m a t e m p e r a t u r e

of s-PMMA (difference

considerably

in Raman and

of s-PMMA in toluene

are decomposed);

of non-aggregated

subtraction be seen

activity

IR s p e c t r a

to t h e

groups

in

are in close contact.

I

J

I

I

i

b

tO

..Q <[

,.

I

1790

I

I

1750

l

I

1710

I

I

,

-I 1670

cm Fig. 18. R a n g e of C:0 stretching vibrations in IR spectra of s - P M M A (S : 89.5%; H : 8.6~) in toluene m e a s u r e d at 25°C a n d 2 rain (a) or 120 rain {b) after cooling from 100°C. S p e c t r u m (c) s h o w s the range of C:0 stretching vibrations in IR spectrum of the aggregated fraction of s - P M M A (ref. 111).

134 Negative

values

mobility of ester The finding ordered ester

of optical anisotropy

groups that

interactions

structures

( r e f . 128).

the frequency

differences

coupling molecular

order

ester

Av b e t w e e n

and

of methyl

acetate

of the aggregates

structure

of i- and

diffraction

Liquori

and

of stereoregular

to these

structure

does

situated

above

mentioned,

and

diffractogram,

From energy

Boscher

assumes

form a double

is surrounded i/s

results

s-PMMA. original

structure

with a change

indicates

conformation

differs

(ref. 10-12).

of a slightly

found

theoretically somewhat

that

distorted

that

from Based i-PMMA 8/I

the i- and

radius

of ref. i00)

assume

the

a 60/4 helix. yield

of s-PMMA in the

the formation

Analysis

conformational that

structure

in stereocomplex

by Grigoreva

from the conformation

of the

of the stereocomplex

of s-PMMA is changed

proposed

(they

the lowest conformation

for s-PMMA forming

structure

of the backbone

chain conformation

with a glide plane,

only slightly

in

o f i-PMMA i n t h e s t e r e o c o m p l e x ,

that

M i h a i l o v e t al. ( r e f . 113) a s s u m e extended

deviating

b y m e a n s o f IR s p e c t r o s c o p y .

860 c m - I

chains

approximation)

(especially

on the conformational

a t 843 a n d

is connected

have

diffraction

more direct

doublet

the

with both

e t al. ( r e f . 100) c o n c l u d e d

authors

on the conformational

were obtained

to t h e c h a i n a x i s , below this plane.

and with the assumption

information

stereocomplex

to c o r r e s p o n d

propose

helical structure,

a 30/4 helix and

of X-ray

the

much from the

h e l i x i n w h i c h a n i-PMMA c h a i n o f s m a l l e r

these

f o r i-PMMA f o r m i n g

While the results

groups

studies

by an s-PMMA chain of larger

= I/2),

that

not differ

all e s t e r

the conformation

calculations

by

s-PMMA in the stereocomplex

the more recent

c h a i n f o r m (in t h e s t a g g e r e d

PMMA

was studied

with the glide plane parallel

o f i-PMMA i n t h e d o u b l e

in the stereocomplex

energy

that

Based on a fiber

time was assumed

authors,

t h e f o r m o f a 1 0 / 1 h e l i x ; i.e., i n a c o n f o r m a t i o n

stoichiometry

shown

in the

o f IR s p e c t r o s c o p y .

i-PMMA w h i c h a t t h a t

w i t h all ~ - C H 3 g r o u p s As we have already

radius

of

short-range

e t al. ( r e f . 33) c a m e t o t h e c o n c l u s i o n

According

has a conformational

s-PMMA chains

have

generates

s-PMMA chains

of pure

to t h e 5 / 1 h e l i x .

helix.

of model

isotropic

in the self-aggregates

conformation

also on a fiber

and

of

dependences

in simple esters

o f i-PMMA i n t h e s t e r e o c o m p l e x

the extended

of Raman spectra

the anisotropic

conformation

crystallization

l e a d to t h e f o r m a t i o n

of the concentration

vibration

of s-PMMA chains

of X-ray

diffractogram,

groups

structure

The conformational

the methods

groups

hindered

a t - P M M A ( r e f . 63).

in the liquid state,

B. C o n f o r m a t i o n a l

stereocomplex

considerably

also by studies

Measurements

o f t h e C=0 s t r e t c h i n g

of methyl

indicate

of crosslinked

of ester

was verified

systems

components

in associates

of

formation,

the

to a c o n f o r m a t i o n

e t al. ( r e f . 15); t h i s

proposed

i n r e f . 33.

135 H o w e v e r , r e c e n t d e t a i l e d a n a l y s i s h a s s h o w n t h a t t h e b a n d a t 860 cm -1, t h e i n t e n s i t y of w h i c h s t r o n g l y i n c r e a s e s in s t e r e o c o m p l e x f o r m a t i o n ( b o t h in s o l u t i o n a n d in t h e solid s t a t e ) , c o r r e s p o n d s to l o n g s - s e q u e n c e s in t h e e x t e n d e d c h a i n c o n f o r m a t i o n of t h e b a c k b o n e (in t h e s t a g g e r e d a p p r o x i m a t i o n ) ( r e f . 21,22; s e e Fig. 19a).

S e l f - a g g r e g a t i o n of s-PMMA in s o l u t i o n also l e a d s

to a n i n c r e a s e in t h e f r a c t i o n of long s - s e q u e n c e s in t h e e x t e n d e d c h a i n c o n f o r m a t i o n a n d t h i s t r e n d is m a i n t a i n e d also in solid s-PMMA i s o l a t e d from t h e s e s o l u t i o n s u n d e r c o n d i t i o n s w h e r e d e c o m p o s i t i o n of t h e a g g r e g a t e s d o e s n o t t a k e p l a c e ( r e f . 22).

In comparison with n o n - a g g r e g a t e d amorphous

s-PMMA w h e r e t t c o n f o r m a t i o n a l f o r m s also d o m i n a t e ( a c c o r d i n g to t h e o r e t i c a l c a l c u l a t i o n s a n d X - r a y d i f f r a c t i o n ; r e f . 9,17,18) in t h e s t e r e o c o m p l e x a n d in s e l f - a g g r e g a t e s , t h e e x t e n d e d c h a i n c o n f o r m a t i o n of s-PMMA p e r s i t s o v e r much l o n g e r d i s t a n c e s .

CH

c

o CH3

(o}s-PMMA

lb) OMTMGA

Fig. 19. E x t e n d e d c h a i n c o n f o r m a t i o n a l s t r u c t u r e of s-PMMA (a) a n d t h e e n e r g e t i c a l l y m o s t f a v o r e d c o n f o r m e r of DMTMGA (b) ( r e f . 108). T h e results of X-ray diffraction indicate that the conformational structure of s - P M M A

prepared b y solvent-induced crystallization (in vapors of

aggregation-promoting of s - P M M A

solvents) does not differ m u c h from the conformation

in the stereocomplex; K u s u y a m a

74/4 helix of large diameter.

et al. (ref. 24) propose for it a

At the same time, however, the fiber period 73.6

/~ of the 60/4 helix of s - P M M A

in the stereocomplex is roughly twice as long

as the fiber period (35.4 ~) a s s u m e d for the 74/4 helix in the ordered s-PMMA PMMA

alone (ref. 24,100).

It is clear that the conformational structures of

segments in helices with a large n u m b e r

of m o n o m e r

units per turn

(e.g., 60/4 or 74/4) can be generated from forms not differing m u c h staggered tt form.

from the

It m a y therefore be stated that the results of

conformational analysis obtained from IR spectra are in agreement with such helical b a c k b o n e structure.

In this sense, it is then possible to describe the

136 IR b a n d band

of long s-sequences

corresponding

I n t h e IR s p e c t r a for studies

found.

This is evidently bands

chain conformation

a conformationally

of the conformational due

structure

that

deuterated

o f PMMA ( r e f . 129) w a s a c o n f o r m a t i o n a l l y

analogs

crystalline

stereocomplex

X-ray

and

i-PMMA a n d

which is not present

in solutions

analysis

in the spectra

stating

o f i-PMMA. that

similar conformational

structure

of long sequences

not detected

in solutions

In addition the ester

groups

that

that

the mutual

energetically

in interaction

s-sequences be assumed

of

t h e i-PMMA c h a i n s

have

i-PMMA.

to

Contrary

a

structure

structure,

was

the orientation

cis orientation

o f C--0 a n d

( r e f . 130; s e e F i g . 1 9 b ) .

VIII-A), cis orientation

o f s - P M M A ( s e e F i g . 19a). by the results

of

C-CH 3 b o n d s

Based on the

w i t h i - o r s - P M M A , DMTMGA b e h a v e s

( r e f . 108; s e e P a r t

is supported

solid

the results

I n DMTMGA ( t h e d i m e r m o d e l o f

to exist also in s-PMMA chains

self-aggregates

band

of

of amorphous

confirms

with tt conformational

conformational

h a s to b e c o n s i d e r e d .

PMMA), it w a s f o u n d

of

o f i-PMMA.

to t h e b a c k b o n e

is the most favored finding

as in crystalline

sensitive

i n IR s p e c t r a

i n IR s p e c t r a

s-PMMA, the presence

of s-PMMA.

of the corresponding

This finding

in the stereocomplex,

band was not

of the stereocomplex

o f 800 c m - I , w h i c h i s p r e s e n t

deuterated

i-PMMA a n d

o f t h e IR s p e c t r a

bands

completed

in the range

sensitive

the conformationally

by stronger

Only in a recently

detected

( r e f . 22).

o f i-PMMA c h a i n s

to t h e c i r c u m s t a n c e

o f i-PMMA a r e o v e r l a p p e d study

a t 860 c m - 1 a s a

of the s-PMMA backbone

of the stereocomplex,

suitable

sensitive

in extended

to a helical structure

of ester

groups

in the stereocomplex In the latter

of the studies

s i m i l a r l y to

case,

of deuterated

may

and in

this assumption

s-PMMA analogs

( r e f . 116). As mentioned self-aggregates, appearance interesting one band

in the previous

paragraph,

mutual ordering

of ester

of a new carbonyl that

t h e IR s p e c t r u m

in the range

of s-PMMA in solutions

22).

This indicates

that

VII.

AND MOBILITY

Measurements s-PMMA

wavenumber.

vibrations,

aggregation

the mutual arrangement

is different

of s-PMMA

is manifested

by the

However, it is

of s-PMMA in the stereocomplex

where

self-aggregates

A. Effect of aggregation

at higher

o f C=0 s t r e t c h i n g

band

ORDERING

band

i n IR s p e c t r a groups

from that

exhibits

corresponding

does not take o f C=0 b o n d s

only

to t h e

place

(ref.

in s-PMMA

in the stereocomplex.

OF CHAINS

IN A G G R E G A T E S

OF PMMA

on segmental mobility of the chains

of 1H N M R

relaxation times T 2 in gels of mixtures of i- a n d

in C 6 D 6 (conc. 10%) have s h o w n

that in these systems,

present with the relaxation times T 2 : 36 ms, 0.9 m s a n d T h e first of these corresponds

protons are

15 /Js (ref. 104).

to relaxation times of pure i - P M M A

or s - P M M A

137

in C6D 6 s o l u t i o n a n d a g r e e s w i t h t h e l i n e w i d t h s in h i g h r e s o l u t i o n NMR s p e c t r a ; it i s a s s i g n e d shorter

to p r o t o n s in n o n - a s s o c i a t e d

u n i t s of PMMA.

relaxation times {indicating severely hindered

T h e two

mobility} a r e a s s i g n e d

to p r o t o n s of a s s o c i a t e d s e g m e n t s a n d t h e y a g r e e w i t h t h e s h a p e of t h e b r o a d - l i n e NhIR s p e c t r u m w h i c h c o n s i s t s of b a n d s of 300-400 Hz a n d of 15-20 kHz w i d t h .

As a l r e a d y m e n t i o n e d in P a r t VI-A, t h e b a n d of 15-20 kHz w i d t h

is a s s i g n e d

to e s t e r m e t h y l g r o u p s ~ w h e r e a s t h e b a n d of 300-400 Hz w i d t h is

assigned

to CH2 a n d ~-CH 3 p r o t o n s .

Also, w i t h t h e s e l f - a g g r e g a t e s

of

s-PMMA in t o l u e n e - d 8, s i m i l a r l i n e - w i d t h v a l u e s (A~ = 500 Hz} w e r e f o u n d f o r the backbone proton groups

( r e f . 110).

M e a s u r e m e n t s of 1H MAS N/*IR s p e c t r a a t v a r i a b l e t e m p e r a t u r e s NMR s p e c t r a

with strong

a n d of 13C

p r o t o n d e c o u p l i n g h a v e s h o w n t h a t with r e s p e c t

to

t h e b r o a d e n i n g o f t h e b a n d s of CH2 a n d ~-CH 3 p r o t o n s ~ t h e s y s t e m s s t u d i e d c a n be d i v i d e d i n t o two g r o u p s .

T h e f i r s t g r o u p is f o r m e d b y t h e m i x t u r e s

o f t h e s o l u t i o n s of i - a n d at-PMMA in C6D6~ w h e r e t h e v a l u e s of t h e a s s o c i a t e d f r a c t i o n a r e r e l a t i v e l y low (p = 30-40%} a n d w h e r e t h e m e n t i o n e d m e t h o d s l e a d to t h e n a r r o w i n g of b a n d s of 300-400 Hz w i d t h ( r e f . 104,106}. I n 1H MAS NMR s p e c t r a of t h e s e s y s t e m s , t h e b a n d s of p r o t o n s of a-CH 3 a n d CH2 g r o u p s

in a s s o c i a t e d s e g m e n t s h a v e the same width a s the c o n v e n t i o n a l l y

m e a s u r e d b a n d s of t h e p r o t o n s in n o n - a s s o c i a t e d

s e g m e n t s o r in s o l u t i o n s

w h e r e t h e a s s o c i a t i o n of PMMA d o e s n o t t a k e p l a c e . ~-CH 3 a n d frequency

CH2 g r o u p s

undergo

(in all t h e s e c a s e s } m o t i o n s a t a s i m i l a r

a n d t h a t t h e a s s o c i a t e d s e g m e n t s t h e r e f o r e c a n n o t be r e g a r d e d

static systems.

as

T h e w i d t h of 300-400 Hz e x h i b i t e d b y t h e b a n d s of a-CH 3 a n d

CH2 p r o t o n s i n c o n v e n t i o n a l l y m e a s u r e d s p e c t r a near-static

This indicates that the

is in t h i s c a s e limited b y

d i p o l a r i n t e r a c t i o n s w h i c h a r e a c o n s e q u e n c e o f t h e r e s t r i c t i o n of

t h e m o t i o n of t h e s e g r o u p s

in space~ i n c o n n e c t i o n w i t h t h e m u c h m o r e

s e v e r e r e s t r i c t i o n of t h e m o t i o n of t h e OCH3 g r o u p s .

All t h e s e d a t a f r o m t h e

m e a s u r e m e n t s o f l i t NMR s p e c t r a ~ t o g e t h e r w i t h t h e e v i d e n c e a b o u t t h e e x i s t e n c e of a s s o c i a t e d a n d n o n - a s s o c i a t e d

segments and the similarity with

t h e NMR b e h a v i o r of s w o l l e n g e l s of c h e m i c a l l y c r o s s l i n k e d p o l y m e r s , a r e c o m p a t i b l e w i t h t h e i d e a t h a t t h e s t e r e o c o m p l e x e s w i t h p = 30-40% h a v e t h e structure

of a n e t w o r k with the a s s o c i a t e d s e g m e n t s f o r m i n g the c r o s s l i n k

p o i n t s (Fig. 20a) {ref. 104,106,120}. The network structure

of t h e s t e r e o c o m p l e x o f PMMA w a s a l s o p r o p o s e d

by

R e h a g e e t al. ( r e f . 52,66p88~89~91) o n t h e b a s i s of v i s c o m e t r i c a n d dynamico-mechanical measurements.

It s h o u l d be mentioned t h a t also in t h e s e

s t u d i e s ~ g e l s of m i x t u r e s of i - a n d at-PMMA i n o - x y l e n e a n d i n t o l u e n e w e r e

investigated.

138

Fig. 20. S c h e m a t i c r e p r e s e n t a t i o n of t h e s t r u c t u r e s of PMMA s t e r e o c o m p l e x e s in s o l u t i o n s : (a) s t e r e o c o m p l e x w i t h p = 30-40% ( n e t w o r k model}; (b) s t e r e o c o m p l e x w i t h p ~ 95% ( d o u b l e h e l i c a l model} ( r e f . 106}. M i x t u r e s of s o l u t i o n s of i - a n d s-PMMA i n C6D 6 o r i n CD3CN w h e r e t h e v a l u e of t h e a s s o c i a t e d f r a c t i o n p is h i g h (more t h a n 80%) ( s i m i l a r l y a s t h e self-aggregates

o f s-PMMA i n t o l u e n e - d 8 ; p = 85%) e x h i b i t e d c o m p l e t e l y

d i f f e r e n t b e h a v i o r in NMR e x p e r i m e n t s ( r e f . 106,110).

C o n t r a r y to t h e

s t e r e o c o m p l e x w i t h p = 30-40%, s p i n n i n g a t t h e m a g i c a n g l e h e r e d o e s n o t a f f e c t t h e s h a p e of t h e IH NMR s p e c t r a ; a l s o , t h e p r o t o n d e c o u p l i n g w i t h 7H2/2w I 5 kHz d o e s n o t a f f e c t t h e s h a p e of t h e 13C NMR s p e c t r a of t h e s e systems.

T h i s i n d i c a t e s t h a t f o r t h e c o m p l e x e s w i t h p a b o v e 80% a n d a s well

as for the self-aggregates

of s-PMMA, t h e l i n e w i d t h ~ 400 Hz in 1H NMR

s p e c t r a is not limited by r e s i d u a l n e a r - s t a t i c s h a p e of t h i s b a n d s h o u l d r a t h e r

be d e s c r i b e d

with an effective correlation frequency a b o u t two o r d e r s

dipolar interactions but that the by motion isotropic in sp a c e

of 106-107 Hz; t h i s v a l u e is l o w e r b y

of m a g n i t u d e t h a n t h e c o r r e l a t i o n f r e q u e n c y

s-PMMA ( r e f . 106,110).

The retardation

of u n a s s o c i a t e d

of t h e m a i n c h a i n s e g m e n t a l m o t i o n is

e v i d e n t l y c a u s e d b y t h e h i g h d e n s i t y of c o n t a c t s (Fig. 20b). Also, t h e r e s u l t s o b t a i n e d b y t h e m e t h o d of p o l a r i z e d l u m i n e s c e n c e characterizing

the c h a i n mobility in s t e r e o c o m p l e x a g g r e g a t e s

DMF s o l u t i o n s ( r e f . 58) a r e i n v e r y

in v e r y d i l u t e

g o o d a g r e e m e n t w i t h t h e NMR r e s u l t s .

By

t h i s m e t h o d , it w a s f o u n d t h a t t h e m o b i l i t y of PMMA c h a i n s in t h e s t e r e o c o m p l e x is l o w e r b y a b o u t two o r d e r s n o n - a s s o c i a t e d PMMA.

of m a g n i t u d e t h a n f o r

E v e n t h e a b s o l u t e v a l u e s of t h e r e l a x a t i o n time Vw

d e t e r m i n e d f o r t h e s t e r e o c o m p l e x b y t h e m e t h o d of p o l a r i z e d l u m i n e s c e n c e a r e e q u a l to t h e v a l u e s of t h e c o r r e l a t i o n time Tc d e t e r m i n e d f o r t h e a s s o c i a t e d s e g m e n t s f r o m NMR s p e c t r a retardation

(v w a n d Tc a r e a b o u t 100 n s ) .

The pronounced

of t h e s e g m e n t a l m o b i l i t y of c h a i n s i n t h e s t e r e o c o m p l e x of PMMA

a n d i n s-PMMA s e l f - a g g r e g a t e s

w i t h a h i g h d e n s i t y of i n t e r a c t i o n s

indicates a completely different structure

(p £ 80%)

of t h e s e s y s t e m s f r o m t h a t of t h e

s w o l l e n g e l s of c h e m i c a l l y c r o s s l i n k e d p o l y m e r s (c.f. P a r t IV-C).

B. Chain ordering Studies of the stereocomplex of P M M A

and of s - P M M A self-aggregates b y

means of X-ray diffraction and vibrational spectroscopy have indicated that the conformationai s t r u c t u r e and ordering of chains of aggregates in solution

139 is t h e s a m e a s in solid s a m p l e s i s o l a t e d f r o m t h e s e s o l u t i o n s u n d e r preventing

d e c o m p o s i t i o n of t h e a g g r e g a t e s .

X-ray pattern

was observed

conditions

An i d e n t i c a l t y p e of c r y s t a l l i n e

f o r t h e s t e r e o c o m p l e x g e l s in b e n z e n e a n d f o r

solid s t e r e o c o m p l e x s a m p l e s ( r e f . 69).

A l t h o u g h c r y s t a l l i n i t y c o u l d n o t be

d e t e c t e d b y X - r a y d i f f r a c t i o n in c o n c e n t r a t e d

suspensions

of s-PMMA in BAC

( r e f . 38), a c l e a r c o n n e c t i o n b e t w e e n a g g r e g a t i o n of s-PMMA in s o l u t i o n a n d d e v e l o p m e n t of c r y s t a l l i n e s t r u c t u r e ( r e f . 22,38,102).

in solid s-PMMA c o u l d be d e m o n s t r a t e d

S i m i l a r l y , t h e r e s u l t s of IR s p e c t r o s c o p y

(in s e l f - a g g r e g a t e s

of s-PMMA, e s p e c i a l l y t h e e q u a l s p l i t t i n g of t h e c a r b o n y l v i b r a t i o n ) h a v e s h o w n t h a t b o t h i n t h e s t e r e o c o m p l e x a n d in t h e s e l f - a g g r e g a t e s the conformational structure the corresponding proved

of s - P H H A ,

of t h e s - c h a i n s is t h e s a m e in s o l u t i o n s a n d in

solid s a m p l e s (ref. 21,22,102,111).

by electron microscopy, self-aggregation

a f f e c t s t h e m o r p h o l o g y of solid s-PMHA ( r e f . 22). f r o m a c e t o n i t r i l e s o l u t i o n is s t r u c t u r e l e s s

At t h e s a m e time, a s

of s-PMMA in s o l u t i o n a l s o While solid s-PMMA i s o l a t e d

{Fig. 21b), solid s-PMHA i s o l a t e d

from toluene solution exhibits clearly fibrillar character

~a}

{Fig. 21a).

(b)

Fig. 21. Electron micrographs of s - P M M A (S -- 89.5%; H -- 8.5%) films prepared by evaporation of so]vent at room temperature from to]uene (a) and acetonitrile (b) solution (ref. 22). I n o n e of t h e o l d e s t p a p e r s c o n c e r n i n g t h e s t e r e o c o m p l e x of P M M A , e t al. (ref. 33) h a v e p r o p o s e d f o r t h i s s y s t e m a s t r u c t u r a l

Liquori

model w h e r e t h e

s-PMMA c h a i n s in a c o n f o r m a t i o n w i t h a g l i d e p l a n e lie i n " g r o o v e s " f o r m e d b y t h e 5/1 h e l i c e s of i-PMMA c h a i n e s (Fig. 22a).

H o w e v e r , in t h e c o u r s e of

time, e v i d e n c e is a c c u m u l a t i n g w h i c h i n d i c a t e s t h a t t h e f o r m a t i o n o f t h e s t e r e o c o m p l e x i s c o n n e c t e d w i t h t h e i n t e r a c t i o n of i - a n d s - s e q u e n c e s

which

a r e p a r e l l e l o v e r l o n g d i s t a n c e s , w i t h a b a c k b o n e c o n f o r m a t i o n n e a r to "all trans"

( s e e P a r t s V-B, V-C, VI-B, VII-A a n d VIII-B).

observation

Based on the

t h a t i n t h e s t e r e o c o m p l e x w i t h h i g h v a l u e s of t h e a s s o c i a t e d

f r a c t i o n p t h e s e g m e n t a l m o t i o n of t h e c h a i n s i s i s o t r o p i c a n d r e t a r d e d P a r t VII-A), t h e s t r u c t u r e

w a s p r o p o s e d f o r t h e f i r s t time ( r e f . 106; cf. Fig. 20b). diffraction and energy

(cf.

of t h e d o u b l e h e l i x o f t h e s t e r e o c o m p l e x of PMMA Based on X - r a y

c a l c u l a t i o n s , B o s s c h e r e t al. ( r e f . 100) a r r i v e d

at the

140

:C~c~ic l-Helix)

~Isotqctic

IC

le} F i g . 22. S c h e m a t i c r e p r e s e n t a t i o n of the chain ordering in the crystalline s t e r e o c o m p l e x o f PMMA: (a} m o d e l p r o p o s e d b y L i q u o r i e t al. ( r e f . 33}; (b} d o u b l e h e l i c a l m o d e l p r o p o s e d b y B o s s c h e r e t al. ( r e f . 100). T h e f i g u r e i s t a k e n f r o m r e f . 63.

conclusion

that

the stereocomplex

which an i-chain

consists

s-chain

with a 60/4 helical conformation

parallel

straight

agreement

chains

of i- and

with the structure

The self-aggregates with the stereocomplex Also, here

near

assumed forming

that

I01), based

has been

obtained

(together pairs

studies

12}; 2) t h e d e c r e a s e

the reaction

aggregation

s-sequences

than

of double

occurs

Quite recently,

of the aggregated

some minimum length

by interaction

with near-to-extended

further

mutual (cf. P a r t

V-B and

and

is the presence

of Pig.

with

the order

( r e f . 129} f a v o r s

chain conformation

interaction

formation

giving

of two chains;

fraction

stereoregularity

of s-PMMA self-aggregate

of s-PMMA self-aggregates

are paired,

e t al. ( r e f .

helices in s-PMMA aggregates

for s-PMMA of various

formation

it m a y b e

by Kusuyama

s-PMMA.

with a

segmental

of s-PMMA the chains

is admitted

of s-PMMA in the solution

of s-PMMA aggregate

for the generation

a long distance,

p = 0 f o r at-PMMA} i n d i c a t e

in the rate

concentration

in the solid state.

Based on this analogy,

( r e f . 111): 1) t h e v a l u e s

longer

of similar features

and

are parallel over

of crystalline

b y NMR s p e c t r o s c o p y

of s-sequences

The model assuming

chain form and with a retarded

structures

the existence

with the fact that

decreasing

where

sequences

(ref. 22,54,110).

on X-ray

supporting

by an

helix.

in solution

helix; this possibility

evidence

determined

of the double

also in the ordered

a double

(Fig. 22b).

of s-PMMA exhibit a number

to the extended

mobility in solution

helix in

is surrounded

s - P M M A ( r e f . 21} i s l i k e w i s e i n p r i n c i p l e

o f PMMA, b o t h

the interacting

conformation

of a double-stranded

with a 30/4 helical conformation

n = 2 of

a double

helix

3) a p r e r e q u i s i t e of long

in solutions.

Such

141 sequences

already

indicate

that

solutions

represent

the content

opinions

on the existence

( r e f . 24,101) s u p p o s e the existence solvent

sequences

solvent

studies

have

shown

that

condition

According

to t h e l a t t e r

for the formation conformational interaction

of the crystalline

structure

presence

structure

of s-PMMA chains

of long s-sequences

and

practically

thus

for the

structure On the

no residual

of solvent

of the crystalline

the solvent

e t al.

that

complexes with s-PMMA.

the simultaneous

references,

assume

of the crystalline

thin films containing

for the existence

Kusuyama

molecules is essential

of s-PMMA; they

inclusion

the effect of

in s-PMMA.

in the stabilization

crystalline

in ( r e f . 22).

in acetonitrile.

concerning

of solvent

structure

different

o-dichlorobenzene

not formed

structure

of very

necessary

are

of crystalline

directly

isomorphous

hand,

and

published

the presence

h e l i x ; IR r e s u l t s

is not very

toluene

been

that

have

of the crystalline

participates

forming

(nuclei) of a single

s-PMMA self-aggregates

Quite different

other

of these

of s-PMMA in acetonitrile,

In spite of that,

solvent

sections

is not a

form (ref. 22,38,102).

is a necessary

condition

o f s - P M M A ; it a f f e c t s

and

promotes

the stable

makes

possible

subsequent

only

the mutual

crystallization. This analysis

indicates

that

while s-PMMA and

one hand

and

i-PMMA o n t h e o t h e r

behavior

( r e f . 95,97), t h e s t r u c t u r e

i-PMMA, s - P M M A a n d it i s p r o b a b l y units

per

hand

by double

the stereocomplex very

of the crystalline

stereocomplex

formed

exhibit

PMMA (cf. P a r t

different phase

PMMA

is very

similar in

I I I - B ) ; i n all t h r e e

helices with a large

number

cases,

of monomer

turn.

VIII. OTHER AGGREGATES OF PMMA A. I n t e r a c t i o n s

of stereoregular

PMMA w i t h MMA m o n o m e r o r w i t h d i m e r

m o d e l o f PMMA Interactions

in the ternary

systems

PMMA-d8)/solvent

( r e f . 105) a n d

PMMA-d8)/eolvent

(ref.

MMA/(i- or s- or stereocomplex

DMTMGA/(i- or s- or stereocomplex

108) w e r e

studied

b y 1H NMR s p e c t r o s c o p y .

M/~

DMTMGA

HA ~.

/ CH3 C

/ HB

=

C

~H 3 CH 3

\

-

C

i H3 -

i COOCH 3

COOCH 3

CH 2

-

on

crystallization

- CH 3

I COOCH 3

142 The temperature NMR s p e c t r a

dependence

of solutions

interaction

of t h e c h e m i c a l s h i f t o f HA p r o t o n s

o f MMA i n v a r i o u s

o f MMA m o l e c u l e s w i t h DMF.

PMMA a c t s a s a f u r t h e r

component

solvents

revealed

In the system

interacting

Studies

of integrated

cases

a part

P M M A - d 8.

band

intensities

containing

This interaction

{10-15%} o f t h e DMTMGA m o l e c u l e s

In this interaction,

DMTMGA b e h a v e s

s-PMMA in interactions stereocomplex

{ r e f . 108).

arrangement

DMTMGA a n d aggregates These

in s-sequences

results

even

very

s-configuration contact

chain about

o f PMMA s t e r e o c o m p l e x

are in direct

relation

in the presence

short

oligomers

may be capable

chain

stable

The fact

( d i m e r s , t r i m e r s ~ etc.} i n

{on t h e NMR t i m e s c a l e }

with a certain

{ r e f . 105) f a v o r s

arrangement

the growth

o f MMA

of the nascent

tendency

o f MMA o f i-PMMA a n d

is active

the basis

of the so called replica

o f MMA p e r f o r m e d

also in the course

effect

studied

and in anionic

is identical

in the stereocomplex helix model.

of papers,

of stereoregular the structure

of i- and

supports

the double

o f i-PMMA p r o c e e d s

obtained

with an s-PMMA matrix are less unequivocal.

o f MMA i n t o l u e n e

systems;

the

PMMA h a s a l s o b e e n by

of the stereocomplex

While polymerization

the s-PMMA matrix on the stereoregularity

of

o f PMMA f o r m e d

are parallel over

definitely

is

both in radical

s-PMMA proves

presence

polymerization

and

polymerization

b y O r l o v a e t al. { r e f . 64),

with the structure

by the mixing of solutions s-chains

study

(ref. 49,62,113,138-140)

The observation'that

polymerization

process

o f MMA, w h e r e

in a number

o f MMA i n s o l i d m a t r i c e s

{ r e f . 141).

to s t e r e o c o m p l e x

o f i-PMMA l e a d s t o t h e f o r m a t i o n

Since the original

has been

(ref. 34,35,64,67,131-137} polymerization

s-PMMA chains

of the polymerization

polymerization

in the presence

s-PMMA and vice versa. the replica

polymerication

t h e i-PMMA m a t r i x .

The strong

i- and

of

or s-PMMA self-

o f i-PMMA ( s e e n e x t s e c t i o n ) .

of close and

formation

prepared

conformer

to t h e s o c a l l e d r e p l i c a

of the growing

t h e PMMA c h a i n s

B. R e p l i c a p o l y m e r i z a t i o n

replica

by the similarity of the

in the most favored

w i t h i-PMMA ( r e f . 108}, t o g e t h e r

molecules about

studied

can also replace

a n a n a l o g o f t h e PMMA

is explained

groups

in some

with

( s e e F i g . 19).

o f MMA p e r f o r m e d that

The behavior of ester

that

interact

s i m i l a r to s - P M M A {i.e.,

of s-PMMA and

w i t h i-PMMA, f o r m i n g

1H NMR s p e c t r a

shown

strongly

is

o f PMMA.

resolution

i- or s-PMMA-d 8 have

DMTMGA c a n l i n k u p i n s e l f - a g g r e g a t e s

geometrical

in high

1H

MMA/PMMA-d8/DMF,

w i t h MMA.

the same with i-PMMA-d8, s-PMMA-d 8 or the stereocomplex

o f DMTMGA i n s o l u t i o n s

in t h e

specific

by the replica

that

the

and

o f MMA i n t h e mechanism,

data

The negative

of the polymer

( r e f . 34,35,49,113,140}

again

long distances

generated

was explained

effect of by by

143 s e l f - a g g r e g a t i o n of s-PMMA; p r o b a b l y t h e g r o w t h of t h e p o l y m e r c h a i n c a n n o t p r o c e e d via r e p l i c a p o l y m e r i z a t i o n if a l m o s t all t h e s-PMMA matrix is p r e s e n t in t h e a g g r e g a t e d form in t h e p o l y m e r i z a t i o n s y s t e m (ref. 109).

C o n t r a r y to

t h e s t u d i e s b y Challa e t al. ( r e f . 34,35,132,133), in a r e c e n t p a p e r M a t s u z a k i e t al. ( r e f . 142) did n o t d e t e c t a n y e f f e c t of t h e s-PMMA matrix on t h e s t e r e o r e g u l a r i t y of t h e f o r m e d p o l y m e r d u r i n g p o l y m e r i z a t i o n in DMF a n d a c e t o n i t r i l e (i.e., in media w h e r e p r o n o u n c e d s e l f - a g g r e g a t i o n of s-PMMA d o e s n o t t a k e place).

F u r t h e r i n f o r m a t i o n on t h e r e p l i c a p o l y m e r i z a t i o n of MMA

c a n be o b t a i n e d from two r e v i e w a r t i c l e s ( r e f . 143,144}.

C. O t h e r s y s t e m s In t h i s s e c t i o n , we s h o u l d like to b r i e f l y m e n t i o n p a p e r s d e s c r i b i n g s t e r e o s p e c i f i c i n t e r a c t i o n s o f similar t y p e a s t h o s e of s t e r e o r e g u l a r PMMA, o b s e r v e d with o t h e r p o l y m e r s .

Challa e t al. ( r e f . 36,94,100,145,146) h a v e

s t u d i e d in d e t a i l i n t e r a c t i o n s in m i x t u r e s of s t e r e o r e g u l a r PMMA with s t e r e o r e g u l a r f o r m s of PMAA, b o t h in s o l u t i o n a n d in t h e solid s t a t e .

Of t h e

f o u r p o s s i b l e c o m b i n a t i o n s of s t e r e o r e g u l a r PMMA a n d PMAA, s t a b l e s t e r e o a s s o c i a t i o n t a k e s p l a c e o n l y in o n e c a s e (i.e.., b e t w e e n i-PMMA a n d s-PMAA).

The complex i-PMMA/s-PMAA, a l t h o u g h it is w e a k e r , r e s e m b l e s t h e

s t e r e o c o m p l e x of PMMA a n d a c c o r d i n g to X - r a y d i f f r a c t i o n , it h a s a p r a c t i c a l l y identical structure

( r e f . 94,100).

A n o t h e r a n a l o g of t h e s t e r e o c o m p l e x of PMMA h a s b e e n o b s e r v e d in m i x t u r e s of o p t i c a l l y a c t i v e e n a n t i o m e r s ; namely, i s o t a c t i c p o l y ( m e t h y l b e n z y l m e t h a c r y l a t e ) ( r e f . 147) a n d i s o t a c t i c p l y ( ~ - m e t h y l - ~ - e t h y l - ~ - p r o p i o l a c t o n e ) (ref. 148}.

The m e l t i n g p o i n t s o f t h e s e s t e r e o c o m p l e x e s in t h e solid s t a t e a r e

230"C a n d 202"C, r e s p e c t i v e l y ; in t h e s e c o n d c a s e , t h e m e l t i n g p o i n t o f t h e complex is h i g h e r b y a b o u t 40"C t h a n t h e m e l t i n g p o i n t s of t h e c o m p o n e n t s . Some e v i d e n c e also e x i s t s f o r t h e p r e s e n c e of a s t e r e o c o m p l e x c o m p o s e d of a c o m b i n a t i o n of i s o t a c t i e a n d s y n d i o t a c t i c p o l y ( m e t h y l ~ - c h l o r o - a c r y l a t e ) (ref. 149).

V i s c o e l a s t i c b e h a v i o r i n d i c a t e s t h e p r e s e n c e of s t r o n g i n t e r m o l e c u l a r

i n t e r a c t i o n s in t h e i - p o l y ( e t h y l m e t h a c r y l a t e ) w h i c h may be d u e to i - s e q u e n c e s ( r e f . 150).

I n t e r a c t i o n s of t a c t i c s e q u e n c e s a r e a l s o s u p p o s e d to

e x p l a i n t h e a g g r e g a t i o n b e h a v i o r o b s e r v e d w i t h s o l u t i o n s of p o l y m e t h a c r y l a t e s with m e s o g e n i c s i d e g r o u p s of t h e b e n z o i c acid p h e n y l e s t e r t y p e (ref. 151,152,153). IX.

CONCLUSIONS Long stereoregular sequences of PMMA have a strong tendency to mutual

interactions. B o t h the sequences of equal stereoregularity (i-i or e-s) and

s e q u e n c e s of d i f f e r i n g s t e r e o r e g u l a r i t y interaction.

(i-s) are capable of mutual

C o n s e q u e n t l y , t h e a g g r e g a t e s of s t e r e o r e g u l a r PMMA c a n be

144 d i v i d e d i n t o t h r e e t y p e s : 1) s e l f - a g g r e g a t e s

of i-PMMA; 2) s e l f - a g g r e g a t e s

of

s-PMMA; a n d 3) t h e s o c a l l e d s t e r e o c o m p l e x of PMMA f o r m e d b y t h e m i x i n g of s o l u t i o n s of i - a n d s-PMMA.

T h e s e t h r e e t y p e s of a g g r e g a t e s

t h e r m a l s t a b i l i t y a n d b y t h e e x t e n t of a g g r e g a t i o n self-aggregates

The

of i-PMMA e x h i b i t t h e h i g h e s t t h e r m a l s t a b i l i t y a n d t h e

self-aggregatres aggregates

differ by their

in t h e g i v e n s o l v e n t .

of s-PMMA e x h i b i t t h e l o w e s t t h e r m a l s t a b l i t y , w i t h t h e

of t h e s t e r e o c o m p l e x s o m e w h e r e i n b e t w e e n .

a t t e n t i o n h a s b e e n p a i d to t h e a g g r e g a t e s a l s o to t h e s e l f - a g g r e g a t e s

of s-PMMA.

The greatest

of t h e s t e r e o c o m p l e x a n d r e c e n t l y

Information about the self-aggregates

of i-PMMA i s s c a r c e d u e to t h e f a c t t h a t t h e c o n t e n t of t h e s e a g g r e g a t e s a l w a y s r e l a t i v e l y low, i r r e s p e c t i v e that the self-aggregates

close

of c r y s t a l l i n e i-PMMA m i g h t i n d i c a t e t h a t t h e

of i - P M M A i n s o l u t i o n a r e s m a l l c r y s t a l l i t e s .

The self-aggregates

of s-PMMA a n d t h e s t e r e o c o m p l e x of PMMA e x h i b i t a

n u m b e r of c o m m o n f e a t u r e s .

I n b o t h c a s e s , a g g r e g a t i o n is a v e r y c o m p l e x

p r o c e s s d e p e n d i n g on m a n y f a c t o r s . e f f e c t of time.

The observation

of i-PMMA a r e d e c o m p o s e d o n l y a t t e m p e r a t u r e s

to t h e m e l t i n g t e m p e r a t u r e self-aggregates

of t h e t y p e of s o l v e n t .

is

Of g r e a t i m p o r t a n c e i s , f o r e x a m p l e , t h e

T h e f o r m a t i o n of t h e " p r i m a r y " a g g r e g a t e s ,

r a p i d and which is p r o b a b l y p r e c e d e d conformational structure

w h i c h is r e l a t i v e l y

b y a n e v e n m o r e r a p i d c h a n g e of

of t h e s t e r e o r e g u l a r

s e q u e n c e s , i s followed b y t h e

v e r y slow p r o c e s s of t h e s o c a l l e d s e c o n d a r y a g g r e g a t i o n , w i t h s t e a d i l y i n c r e a s i n g particle size.

This p r o c e s s is d e t e c t e d with d i f f e r e n t s e n s i t i v i t y

by various physical methods. One of t h e d e c i s i v e f a c t o r s i n t h e s e l f - a g g r e g a t i o n s t e r e o c o m p l e x formation is the s t e r e o r e g u l a r i t y ordered

structure

interacting

of s-PMMA a n d i n

of p o l y m e r c h a i n s .

A stable

i s f o r m e d o n l y in t h o s e c a s e s w h e r e t h e l e n g t h of t h e

s e q u e n c e s is l o n g e r t h a n some minimum l e n g t h .

The actual values

o f t h i s m i n i m u m l e n g t h d e p e n d o n t h e s o l v e n t ; i n t h e c a s e of t h e s t e r e o c o m p l e x of PMMA, it w a s p o s s i b l e to c l a s s i f y t h e s o l v e n t s a s s t r o n g l y c o m p l e x i n g ( m i n i m u m l e n g t h of a s s o c i a t e d s - s e q u e n c e s a n d w e a k l y c o m p l e x i n g (q = 10 m o n o m e r u n i t s } . seif-aggregates

q : 3-4 m o n o m e r u n i t s }

I n t h e c a s e of

of s-PMMA, t h e e x p e r i m e n t a l l y f o u n d m i n i m u m l e n g t h q i s

e q u a l to 9 m o n o m e r u n i t s .

Also, t h e t h e r m a l s t a b i l i t y of t h e a g g r e g a t e s

determined by stereoregularity; formed by long stereoregular by short sequences.

the temperature

is

of " m e l t i n g " of a g g r e g a t e s

sequences is higher than for aggregates

The solvent has a less pronounced

formed

effect on the

t h e r m a l s t a b i l i t y of t h e a g g r e g a t e s . I n b o t h c a s e s ( s t e r e o c o m p l e x a n d s-PMMA s e l f - a g g r e g a t e s ) ,

t h e r a t e of

a g g r e g a t i o n i n c r e a s e s w i t h t h e i n c r e a s i n g c o n c e n t r a t i o n of t h e s o l u t i o n a n d it increases very rapidly with the decreasing temperature r o l e of s o l v e n t i n t h e a g g r e g a t i o n

of a g g r e g a t i o n .

p r o c e s s i s n o t q u i t e c l e a r so f a r .

The

145 Aggregation non-polar

of stereoregular solvents

the complexing such

PMMA t a k e s

even

which can strongly It is interesting

self-aggregation

For stereoregular

interact

basis

related

conformation

sequences turn. than

very

studies

near

sequences

of the i-chain,

stereocomplex

leading

i/s = I/1.5

to I / 2 .

The formation

by the much lower segmental in solution

the stereoregularity represent systems chains

of the components

where

the degree

participate

After removal of the solvent self-aggregates generated

aggregation

the morphological

turn;

crystalline

the chains

even

is very

the

in the solid state.

crystalline.

Thus,

Solid

the structure

of stereoregular

PMMA

As also for crystalline helix with a large

it may be stated

forms of stereoregular

In

o f PMMA e x i s t , t h e s t r u c t u r e

form a double

therefore,

helices can

formed.

or gels where

process.

that

the double

on

(p ~ 85%), a l m o s t a l l PMMA

properties

per

structure)

to

helices.

and

i-PMMA, it w a s f o u n d

Structures

is preserved

of the

helices is also

motion in the

network

by means of the aggregation

of monomer units

stereocomplex)

is large

from solutions

in this way is partially

can be affected

all three

on solvent,

of double

per

o f PMMA, i n d e p e n d e n c e

of s-PMMA or the stereocomplex

during

PMMA p r e p a r e d (including

and

of

helix is larger

stoichiometry

as compared

of the physical

of aggregation

in the formation

of the s-chain

2 orders

a

stereoregular

of the double

In the stereocomplex

points

The results

mobility; segmental

is slower by about

only the crosslink

o f PMMA a s s u m e

of monomer units

with the found

aggregates

segments.

structure.

o f PMMA, t h e r a d i u s

in agreement

The mobility

Both in the

the chains

number

of

role in the

to a g g r e g a t i o n .

the interacting

helix, with a large

manifested

non-associated

that

with some other

hindered.

chain

in both cases

In the stereocomplex

is so strong even

o f MMA.

with the stereocomplex

in the stereocomplex,

that

is not parallel.

the polymerization

play an important

is strongly

to the extended

indicate

form a double

that

groups

in the aggregates

of s-PMMA and

(e.g.,

on the

polymerization

to interaction

of s-PMMA and

the ester

of stereoregular

groups

aggregates

recent

that

formation

are formed

group

of solvent

in

polymers.

Both with the self-aggregates

interactions

the effect

of the so called replica

stereoregular

with

has not been observed

o f PMMA d u r i n g

PMMA, t h e t e n d e n c y

in

has no connection

with the carbonyl

to note that

s i m i l a r to t h e s t e r e o c o m p l e x

PMMA, it w a s f o u n d

of ester

Aggregation

of the stereocomplex

is the physical

chemically

parameter

of s-PMMA and on stereocomplex

The formation

aggregates

place both in polar and

the solubility

ability of the solvent.

solvents

chloroform).

process

and

that

number

the structure

of

PMMA (i-PMMA, s - P M M A ,

similar.

of the double

biological macromolecules.

helix type Stereoregular

so far

have

only been

PMMA's a r e t h e f i r s t

considered synthetic

with

146 polymers where double helices generated by physical interactions have been observed.

So f a r , t h i s s t r u c t u r a l a n a l o g y h a s n o t b e e n e x p l o i t e d in t h e

a p p l i c a t i o n s of s t e r e o r e g u l a r PMMA.

X.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

REFERENCES

W . H . Watanabe, C.F. Ryan, P.C. F l e i s c h e r a n d B. S. G a r r e t t , J. P h y s . Chem., 65(1961)896. J. Sp~v&6ek a n d B. S c h n e i d e r , J. Polym. Sci., Polym. Lett. Ed., 12 (1974)349. J. S p ~ v a 6 e k a n d B. S c h n e i d e r , Makromol. Chem., 176(1975)3409. Y. Sakai a n d H. Tanzawa, J. Appl. Polym. Sci., 22(1978)1805. F.A. Bovey, High R e s o l u t i o n NMR of M a c r o m o l e c u l e s , Academic P r e s s , New York, 1972, Chap. III. S. Dirlikov, J. S t o k r a n d B. S c h n e i d e r , Coll. Czech. Chem. Commun., 36(1971)3028. J.D. S t r o u p e a n d R.E. H u g h e s , J. Am. Chem. Soc., 80(1958)2341. V.M. Coiro, P. De S a n t i s , A.M. L i q u o r i a n d L. Mazzarella, J. Polym. Sci., C16(1969)4591. P.R. S u n d a r a r a j a n a n d P.J. F l o r y , J. Am. Chem. Soc., 96(1974)5025. P.R. S u n d a r a r a j a n , J. Polym. Sci., Polym. Lett. Ed., 15{1977)699. H.Kusanagi, H. T a d o k o r o a n d Y. C h a t a n i , M a c r o m o l e c u l e s , 9(1976)531. F. B o s s c h e r , G. t e n B r i n k e , A. E s h u i s a n d G. Challa, M a c r o m o l e c u l e s , 15(1982)1364. M. Vacatello a n d P.J. F l o r y , P o l y m e r Commun., 25(1984}258. G.R. Mitchell a n d A.H. Windle, Colloid a n d Polym. Sci., 260(1982)754. F.P. G r i g o r e v a , T.M. B i r s h t e i n a n d Yu. Yu. Gotlib, Vysokomol. Soed., A9(1967)580. I.A. Katime, A. Roig, L.M. Leon a n d S. M o n t e r o , Eur. Polym. J., 13{1977) 59. D.Y. Yoon a n d P.J. F l o r y , P o l y m e r , 16(1975)645. R.A. Lovell a n d A.H. Windle, P o l y m e r , 22(1981}175. T.M. B i r s h t e i n , A.A. M e r k u r y e v a a n d A.N. G o r y u n o v , Vysokomol. Soed., A 25(1983)124. T.M. B i r s h t e i n , A.A. M e r k u r y e v a a n d A.N. G o r y u n o v , Vysokomol. Soed., A 22{1980)802. J. Dybal, J. S t o k r a n d B. S c h n e i d e r , P o l y m e r , 24(1983)971. J. Sp~vA6ek, B. S c h n e i d e r , J. Dybal, J. S t o k r , J. B a l d r i a n a n d Z. P e l z b a u e r , J. Polym. Sci., Polym. P h y s . Ed., 22(1984}617. S. Yamaguchi, H. Hayashi, F. Hamada a n d A. Nakajima, M a c r o m o l e c u l e s , 17(1984)2131. H. K u s u y a m a , N. Miyamoto, Y. C h a t a n i a n d H. T a d o k o r o , P o l y m e r Commun., 24(1983)119. D. Dosko6ilov~, B. S c h n e i d e r , J. S t o k r , S. Sev~]k, M. P ~ d n : ~ a n d L. L o c h m a n n , Makromol. Chem., 186(1985)1905. W.P. S l i c h t e r , in "NMR-Basic P r i n c i p l e s a n d P r o g r e s s " , Eds. P. Diehl, E. F l u c k a n d R. Kosfeld, Vol. 4, S p r i n g e r - V e r l a g , Berlin, 1971, p. 219. J.F. J o h n s o n a n d R.S. P o r t e r , in "The S t e r e o c h e m i s t r y of M a c r o m o l e c u l e s " , Ed. A.D. Ketley, Yol. 3, Marcel D e k k e r , New York, 1968, Chap. 5. J. Zaj~Sek, B. S c h n e i d e r a n d H. Pivcov/~, Makromol. Chem., 182(1981)3169. J. Sp~v&6ek a n d B. S c h n e i d e r , P o l y m e r , 19(1978)63. F. Heatley, P r o g r . NMR S p e e t r . , 13(1979)47. J. Za~6ek, H. P i v c o v ~ a n d B. S c h n e i d e r , Makromol. Chem., 182(1981)3177. J.F. Rabek, E x p e r i m e n t a l M e t h o d s in P o l y m e r C h e m i s t r y , J o h n Wiley & S o n s , C h i c h e s t e r , 1980. A.M. L i q u o r i , G. A n z u i n o , V.M. Coiro, M. D'Alagni, P. De S a n t i s a n d M. S a v i n o , N a t u r e , 206(1965)358. R. B u t e r , Y.Y. Tan a n d G. Challa, J. Polym. Sci., Polym. Chem. Ed., 11 (1973)2975.

147 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

G. Challa, A. d e Boer a n d Y.Y. Tan, I n t . J. Polym. Mater., 4{1976}239. J.H.G.M. L o h m e y e r , Y.Y. Tan, P. Lako a n d G. Challa, P o l y m e r , 19{1978} 1171. E.J. V o r e n k a m p , F. B o s s c h e r a n d G. Challa, P o l y m e r , 20{1979}59. B. S e d l ~ e k , J. S p ~ v ~ e k , L. Mrkvi~kov~, J. S t e j s k a l , J. Horsk~, J. B a l d r i a n a n d O. Q u a d r a t , M a c r o m o l e c u l e s , 17{1984}825. A.M. L i q u o r i , M. De S a n t i s S a v i n o a n d M.D'Alagni, J. Polym. Sci., B4 (1966}943. R. C h i a n g , J.J. B u r k e , J.O. T h r e l k e l d a n d T.A. Orofino, J. P h y s . Chem., 70(1966)3591. W.B. v a n d e n B e r g , B. Hijmans, P. Piet a n d D. H e i k e n s , N a t u r e , 217{1968} 949. A.Yu. K o s h e v n i k , M.M. K u s a k o v , N.M. L u b m a n , L.I. M e k e n i t s k a y a , O.V. Orlova, A.A. P a s y n s k a y a , E.A. R a z u m o v s k a y a a n d L.M. S h u l p i n a , Vysokomol. Soed., A 12{1970}2103. E.J. V o r e n k a m p a n d G. Challa, P o l y m e r , 22(1981}1705. N.G. B e l n i k e v i t c h , L. M r k v i ~ k o v ~ a n d O. Q u a d r a t , P o l y m e r , 24{1983}713. I, Katime, J.R. Q u i n t a n a , J. Veguillas a n d C. S t r a z i e l l e , IUPAC Macro 83, B u c h a r e s t , 1983, A b s t r a c t s S e c t i o n IV, p. 553. M.M. K u s a k o v , A.Yu. K o s h e v n i k , L.I. M e k e n i t s k a y a , L.M. S h u l p i n a , Yu. B. Amerik a n d L.K. Golova, Yysokomol. S o e d , B 15{1973}150. L. Mrkvi~kov~, J. S t e j s k a l , J. S p ~ v ~ e k , J. Horsk~ a n d O. Q u a d r a t , P o l y m e r , 24{ 1983}700. J. D a y a n t i s , C. R e i s s a n d H. Benoit, Makromol. Chem., 120{1968}113. T. Miyamoto a n d H. I n a g a k i , Polym. J., 1(1970)46. A. d e Boer a n d G. Challa, P o l y m e r , 17{1976}633. I. Katime, J.R. Q u i n t a n a a n d J. Veguillas, P o l y m e r , 24(1983)903. W. B o r c h a r d , G. K a l a w r y t i n o s , B. M o h a d j e r , M. P y r l i k a n d G. R e h a g e , A n g e w . Makromol. Chem., 29/30{1973}471. H. S u z u k i , T. Hiyoshi a n d H. I n a g a k i , J. Polym. Sci., Polym. Syrup., 61(1977)291. J. S p ~ v ~ e k , B. S c h n e i d e r , M. Bohdeneck:~ a n d A. S i k o r a , J. Polym. Sci., Polym. P h y s . Ed., 20{1982}1623. I. Katime a n d J.R. Ochoa, Makromol. Chem., Rapid Commun., 3(1982}783. T. Ito a n d S h u n - i c h i O h n i s h i , Rep. P r o g . Polym. P h y s . J a p a n , 15(1972)477. H. Morawetz, I. F e r n a n d e z - P i e r o l a , J. J a c h o w i c z a n d H.L. C h e n , Polym. P r e p r . , 23{1982}12. T.N. N e k r a s o v a , E.V. A n u f r i e v a , M.G. K r a k o v y a k , V.B. L u s h c h i k a n d A.M. K o r s h u n , Yysokomol. Soed, A 25 (1983}133. T. Miyamoto a n d H. I n a g a k i , M a c r o m o l e c u l e s , 2(1969)554. M.M. K u s a k o v a n d L.I. M e k e n i t s k a y a , Vysokomol. Soed, B 15{1973}213. G.A. A n d r e e v a , A.V. M e r k u r e v a a n d L.A. F e d o r o v a , Vysokomol. Soed., A 18 (1976)702. L.I. M e k e n i t s k a y a , L.K. Golova a n d Yu.B. Amerik, Vysokomol. Soed., A 18 {1976}1799. H.J. Kock a n d G. R e h a g e , Colloid Polym. Sci., 262(1984)182. O.V. Orlova, Yu.B. Amerik, B.A. K r e n t z e l a n d V.A. K a r g i n , Doklady AN SSSR, 178(1968)889. H.Z. Liu a n d K a n g - J e n Liu, M a c r o m o l e c u l e s , 1(1968)157. W. B o r e h a r d , M. P y r l i k a n d G. R e h a g e , Makromol. Chem., 145{1971}169. B.A. K r e n t z e l a n d Yu.B. Amerik, Vysokomol. S o e d , A 13{1971}1358. R. B u t e r , Y.Y. Tan a n d G. Challa, J. Polym. Sci., Polym. Chem. Ed., 11{1973}989. K a n g - J e n Liu, P u r e Appl. Chem., 38(1974)65. L.I. S h a c h o v s k a y a a n d L.V. K r a e v a , Vysokomol. Soed, B 18{1976}840. A.K. A z h e r m a c h e v , L. V. K r a e v a a n d L.I. S h a c h o v s k a y a , Vysokomol. S o e d , B 20(1978)403. L.I. S h a c h o v s k a y a , G.I. Zonova a n d N.I. Gaj, Vysokomol. Soed, B 20(1978) 413. L.I. S h a c h o v s k a y a , G.I. Zonova, T.V. M e d v e d e v a , G.V. N e s y n , O.V. K u z n e c o v a a n d N.I. Yoronin, Vysokomol. Soed, B 20(1978)743.

148 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

L.I. M e k e n i t s k a y a , Yu. B. Amerik a n d L.K. Golova, Vysokomol. Soed, A 21 (1979)1334. L.V. K r a e v a , L.I. S h a c h o v s k a y a , A.K. A z h e r m a c h e v , N.I. Gaj, A.I. Zonova a n d G.V. N e s y n , Vysokomol. Soed, B 21{1979)43. G. R e h a g e a n d D. Wagner, Polym. P r e p r . , 23(No. 1)(1982)29. O. Q u a d r a t a n d N.G. B e l n i k e v i t c h , P o l y m e r , 24(1983)719. M.G. P r o l o n g o , R.M. M a s e g o s a , I. H e r n { ~ n d e z - F u e n t e s a n d A. Horta, M a c r o m o l e c u l e s , 14(1981}1526. A. Horta, M.G. P r o l o n g o , R.M. M a s e g o s a a n d I. H e r n ~ n d e z - F u e n t e s , P o l y m e r , 22(1981}1147. I.A. Katime, P . G u t i e r r e z C a b a n a s , J.R. Ochoa, M. G a r a y a n d C. Ramiro Vera, P o l y m e r , 24(1983}1015. I.A. Katime, P . G u t i e r r e z C a b a h a s a n d C.R. Vera, Polym. Bull., 5(1981)25. D.L. G l u s k e r , R.A. Gallucio a n d R.A. E v a n s , J. Am. Chem. Soc., 86{1964} 187. C.F. R y a n a n d P.C. F l e i s c h e r , J. P h y s . Chem., 69(1965}3384. S. F u j i s h i g e , P. Goeldi a n d H.-G. Elias, J. Macromol. S c i . - C h e m . , A5 (1971)1011. Y. Mori a n d H. Tanzawa, J. Appl. Polym. Sci., 20(1976)1775. K. O h a r a a n d G. R e h a g e , Colloid Polym. Sci., 259(1981)318. K. Ohara, Colloid Polym. Sci., 259(1981)981. M. P y r l i k , W. B o r c h a r d , G. R e h a g e a n d E.P. U e r p m a n n , Angew. Makromol. Chem., 36(1974}133. M. P y r l i k a n d G. R e h a g e , Rheol. Acta, 14{1975}303. E.L. F e i t s m a , A. de Boer a n d G. Challa, P o l y m e r , 16(1975)515. M. P y r l i k a n d G. R e h a g e , Colloid Polym. Sci., 254(1976}329. A. T a k a h a s h i , S. Ohwaki a n d I. Kagawa, Bull. Chem. Soc. J a p a n , 43(1970) 1262. J. Biro~, Z. M ~ a a n d J. Pouchl:~, Eur. Polym. J., 10(1974}629. F. B o s s c h e r , D. K e e k s t r a a n d G. Challa, P o l y m e r , 22(1981}124. K. K S n n e e k e a n d G. R e h a g e , Colloid Polym. Sci., 259(1981}1062. I. Katime, J.R. Q u i n t a n a a n d J. Veguillas, T h e r m o c h i m i c a Acta, 67(1983) 81. K. K S n n e c k e a n d G. R e h a g e , Makromol. Chem., 184{1983)2679. A.J. White a n d F.E. Filisko, J. Appl. P h y s . , 53(1982}6563. E. Killmann a n d K. G r a u n , Makromol. Chem., 185(1984}1199. F. B o s s c h e r , G.T. B r i n k e a n d G. Challa, M a c r o m o l e c u l e s , 15(1982)1442. H. K u s u y a m a , M. T a k a s e , Y. H i g a s h i h a t a , H.T. T s e n g , Y. C h a t a n i a n d H. T a d o k o r o , P o l y m e r , 23(1982)1256. J. Sp~v~6ek, B. S c h n e i d e r , J. B a l d r i a n , J. Dybal a n d J. S t o k r , Polym. Bull., 9(1983}495. J. Sp~v~6ek a n d B. S c h n e i d e r , Makromol. Chem., 175(1974)2939. J. S p ~ v ~ e k a n d B. S c h n e i d e r , MakromoL Chem., 176(1975)729. J. S p ~ v ~ e k , B. S c h n e i d e r , M. Mihailov a n d S. Dirlikov, E u r . Polym. J., 13{1977}625. J. Sp~v~6ek a n d B. S c h n e i d e r , Colloid Polym. Sci., 258(1980)621. H.T. E d z e s a n d W.S. Veeman, Polym. Bull., 5(1981)255. J. S p ~ v ~ e k , B. S c h n e i d e r a n d M. Mihailov, Polym. Bull., 8(1982)171. J. Sp~v~Sek, J. Polym. Sci., Polym. P h y s . Ed., 16(1978}523. J. S p ~ v ~ e k a n d B. S c h n e i d e r , Polym. Bull., 2(1980)227. J. Dybal, J. S p ~ v ~ e k a n d B. S c h n e i d e r , J. Polym. Sci., Polym. P h y s . Ed., 24(1986)657. B. S c h n e i d e r , J. S t o k r , S. Dirlikov a n d M. Mihailov, M a c r o m o l e c u l e s , 4(1971)715. M. Mihailov, S. Dirlikov, N. P e e v a a n d Z. G e o r g i e v a , M a c r o m o l e c u l e s , 6{1973}511.

149

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

P. S c h m i d t , B. S c h n e i d e r , S. Dirlikov a n d M. hlihailov, Eur. Polym. J., 11(1975}229. Z.A. K a r a p e t y a n , Ye.G. A t o v m y a n , V.P. R o s h c h u p k i n a n d B.R. S m i r n o v , Vysokomol. S o e d , A 25(1983)303. J. Dybal, B. S c h n e i d e r a n d FI. rdihailov, Coll. Czech. Chem. Commun., 49(1984)2259. J. S p ~ v a ~ e k a n d B. S c h n e i d e r , S c h u l t a g u n g " H F - S p e k t r o s k o p i e a n P o l y m e r e n " , R e i n h a r d s b r u n n , 1983, P r o c e e d i n g s , p. 78. J. S p ~ v ~ e k a n d B. S c h n e i d e r , Czech. J. P h y s . , B 24(1974)593. J. S p ~ v ~ e k , u n p u b l i s h e d . D. Dosko~ilov~ a n d B. S c h n e i d e r , P u r e Appl. Chem., 54(1982)575. U. J o h n s e n , Kolloid Z. P o l y m e r e , 178(1961)161. I. F e r n ~ d e z d e Pi~rota a n d A. Horta, Makromol. Chem., 182(1981)1705. J. S p ~ v ~ e k , I. F e r n a n d e z de Pi6rola a n d J. Dybal, u n p u b l i s h e d . Y. I n o u e a n d T. Konno, Makromol. Chem., 179(1978)1311. K.J. Liu, J. Polym. Sci., A-2,5(1967}1199. FI. Nagai a n d A. Nishioka, J. Polym. Sci., A-1,6(1968)1655. G.C. P i m e n t e l a n d A.L. McClellan, The H y d r o g e n Bond, F r e e m a n a n d Co., San F r a n c i s c o , 1960. J. Dybal, J. S t o k r a n d B. S c h n e i d e r , Coll. Czech. Chem. Commun., 47(1982) 2027. J. S p ~ v ~ e k , J. Dybal a n d B. S c h n e i d e r , E u r o p h y s . Conf. A b s t r . 9E(1985} P69. J. Dybal, J. S t o k r a n d B. S c h n e i d e r , Coll. Czech. Chem. Commun., 48(1983) 2072. R. B u t e r , Y.Y. Tan a n d G. Challa, J. Polym. Sci., P a r t A - l , 10(1972}1031. R. B u t e r , Y.Y. Tan a n d G. Challa, J. Polym. Sci., Polym. Chem. Ed., 11(1973)1003 R. B u r e t , Y.Y. Tan a n d G. Challa, J. Polym. Sci., Polym. Chem. Ed., 11{1973}1013. J. Cons, E.J. V o r e n k a m p a n d G. Challa, J. Polym. Sci., Polym. Chem. Ed., 13{1975}1699. J. Gons, W.O. S l a g t e r a n d G. Challa, J. Polym. Sci., Polym. Chem. Ed., 15{1977}771. J. Gons, E.J. V o r e n k a m p a n d G. Challa, J. Polym. Sci., Polym. Chem. Ed., 15(1977}3031. J. Cons, L.J.P S t r a a t m a n a n d G. Challa, J. Polym. Sci., Polym. Chem. Ed., 16(1978}427. L.K. Golova, Yu.B. Amerik a n d B.A. K r e n t z e l , Vysokomol. Soed, B 12(1970) 565. T. Fliyamoto, T. T o m o s h i g e a n d H. I n a g a k i , Plakromol. Chem., 176(1975)3035. M.H. Mihailov, S.K. Dirlikov, B. S c h n e i d e r , D. Dosko~ilov~, N. P e e v a a n d Z. G e o r g i e v a , Doklady Bolg. Akad. Nauk, 27(1974)1223. I-I. Yau a n d S.I. S t u p p , J. Polym. Sci., Polym. Chem. Ed., 23(1985)813. K. M a t s u z a k i , T. Kanai, C. I c h i j o a n d hi. Yuzawa, hiakromol. Chem., 185 (1984)2291. C.H. B a m f o r d , in " D e v e l o p m e n t s in P o l y m e r i z a t i o n - 2", Ed. R.N. Haward, A p p l i e d S c i e n c e P u b l i s h e r s , L t d . , L o n d o n , 1979, Chap. 5. G. Challa a n d Y.Y. Tan, P u r e Appl. Chem. 53(1981)627. J.H.G.M. L o h m e y e r , G. K r a n s e n , Y.Y. Tan a n d G. Challa, J. Polym. Sci., Polym. L e t t . Ed., 13(1975}725. J.H.G.hi. L o h m e y e r , Y.Y. Tan a n d G. Challa, J. hiacromol. Sci. - Chem. A, A14(1980)945. K. Hatada, S. Shimizu, Y. T e r a w a k i , K. Ohta a n d H. Yuki, Polym. J., 13 (1981)811. D. G r e n i e r a n d R.E. P r u d h o m m e , J. Polym. Sci., Polym. P h y s . Ed., 22(1984)577. G.R. D e v e r , F.E. K a r a s z , W.J. PlacKnight a n d R.W. L e n z , h i a c r o m o l e c u l e s , 8( 1975}439. J. t l r o u z , M. I l a v s k ~ , J. S p ~ v ~ e k a n d J. T r e k o v a l , Flakromol. Chem., 181(1980)277.

150 151 152 153 154. 155, 156' 157, 158,

J. S p r i n g e r a n d F.W. Weigelt, Makromol. Chem., 184(1983)1489. J. S p r i n g e r a n d F.W. Weigelt, Makromol. Chem., 184(1983}2635. H. Cackovie, J. S p r i n g e r a n d F.W. Weigelt, P r o g . Colloid Polym. Sei., 69(1984)134. P.E.M. Allen, D.M. Host, Van Tan T r u o n g a n d D.R.G. Williams, E u r . Polym. J., 21{1985)603. G. t e n B r i n k e , E. S c h o m a k e r a n d G. Challa, M a c r o m o l e c u l e s , 18(1985)1925. E. S c h o m a k e r , G. t e n B r i n k e a n d G. Challa, M a c r o m o l e c u l e s , 18(1985)1930. I. Katime, J.R. Q u i n t a n a a n d J. Veguillas, Eur. Polym. J, 21(1985)1075. E. S c h r 6 d e r , P l a s t e u n d K a u t s c h u k , 32{1985)321.

*References marked with an asterisk appeared very recently when the text was a l r e a d y c o m p l e t e ; t h e y a r e c i t e d in Table 1 only. ACKNOWLEDGEMENT The

authors

reproduce

acknowledge

the figures

the

p e r m i s s i o n of t h e

from t h e f o r m e r p a p e r s :

following p u b l i s h e r s

1) B u t t e r w o r t h

to

& Co., L t d . ,

G u i l d f o r d (Figs. 2,4); 2} Hitthig & Wepf V e r l a g , Basel (Figs. 6,7,10,11,13,14); 3} S p r i n g e r (Figs. 20,22).

V e r l a g , H e i d e l b e r g (Fig. 19); a n d 4} S t e i n k o p f f V e r l a g , D a r m s t a d t