240 REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 21b. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38.
A. Chretien, etc., Aluminium: Rapp. Congr. Intern., Paris, 1954, Vol. I, 103 C. Hardy, Met. Progr., 1941, 40, 70 P. T. Stroup, JIMMA 9, 130 A. I. Yukova, etc., MA 2, 1284 G.Doan,//M37,448 J. D. Grogan, CA 20, 3423 W.Kroll,//M36,432 T. A. Badaeva, etc., JIMMA 12,42 M. Tournaire, etc., JIMMA 27, 301 J. Czochralski, etc., JIMMA 4, 85, 494; 5, 838 W. Bungardt, JIMMA 8, 306 M. Paie, JIMMA 19, 625 Hansen, 1958 E. H. Wright, etc., Alcoa Res. Labs., Tech. Pap. 15, 1960 G. Beghi, etc., Met A 1, 121030 F. Schultz, etc., JIMMA 10, 361 A. Saulnier, JIMMA 21, 18 E. R. Petty, JIMMA 28, 779 O. Kubaschewski, etc., JIMMA 28,41 P. V. Geld, etc., JIMMA 29, 139 N. K. Street, etc., MA 1, 120001 R. Matera, etc., Met A 7, 620016 J. D. Edwards, etc., JIM 37,448 G. Bozza, etc., JIM 41,435 J. Meyer, etc., CA 24, 2095 F. Kutner, etc., Met A 4, 320197 L. Kubichek, JIMMA 27, 629 A. M. Korolkov, etc., JIMMA 28, 713 G. Falkenhagen, etc., Z. Metallkunde, 1952,43, 72 W. Fraenkel, JIM 53, 694 F. Monteriol, Métaux Corr., 1963, 38, 171, 223 J. M. Breckenridge, JIM 4, 303 B. F. Grashchenko, etc., JIMMA 3,439; 4, 545 M. V. Zakharov, etc., MA 1, 254 N. Dudzinski, JIMMA 20, 80 M. E. Straumanis, etc., JIMMA 17,439 O. P. Arora, etc., JIMMA 30, 465 F. Coen-Porisini, etc., Met A 2, 351203 T. A. El-Bassyouni, etc., Met A 6, 140216
Al-Cd Aluminum-Cadmium system Cadmium is a minor alloying element in some copper-bearing alloys, in which it enhances the response to ageing treatments (see 'Aluminum-Cadmium-Copper system'. Its use has been proposed as a lubricant in bearing alloys LU, and as a chip breaker in free-machining alloys [2, 3]. Aluminum and cadmium are only partly miscible. The monotectic point is at 7 - 7 . 5 % Cd, 922 °K [ 4 - 6 ] and from there the miscibility boundary rises steeply to reach approximately 15% Cd at the boiling point of cadmium (1 038 °K). The eutectic point, l i q . C d ^ A l + Cd is at approximately 99.9% Cd, 694 °K. The solid solubility is
241 approximately 0.4% Cd at 922 °K, 0.24% Cd at 850 °K and 0.05% Cd at 600°K [6-8]; and extrapolates to approximately 0.000 2% Cd at 450 °K [9] (Figure 2.13). For the thermodynamic properties see [10-13]. Quenching from the liquid (splat cooling) does not produce metastable phases or increase the solid solubility appreciably [14]. 5
°K Liq.ÂI 1000
At.%Cd 20
10 .155
°K
*1040
Liq.+AI
30
40
Liq.AI + Cd vapor
50
70
11400
J\
98.5s
Liq.AI + Liq.Cd
922 °K
F
Cd vapor
=rf
98.7%
1000
800| X
AI + Liq.Cd
AI
0.05' 600H^
Liq.Cd — f
99.9°
594 °K
-^ι 600
Al+Qd AI
20
40
60
80
Cd
Wt%Cd
Figure 2.13. Equilibrium diagram aluminum-cadmium The lattice parameter is reduced to a value of 4.049 4 x 10- 10 m at 0.25% Cd [8, 15] and an extrapolated value of 4.049 3 x 10- 10 m at the solubility limit of 0.4% Cd. The electric resistivity increases slightly [16-18], and is of the order of 2.75 x 10~ 8 ohm.m at 7% Cd [19]; the surface tension decreases [20, 20b]. The liquid Cd/solid AI interfacial energy ratio is 0.7 up to 98.7% Cd, where it drops below 0.5. The relationship between energies and cracking of welds has been investigated [21]. Grain refinement in solidification by cadmium additions is very limited [22]. Up to 10% Cd does not affect appreciably the mechanical properties in the annealed or cold worked state [23-25], but there is some increase in the heat treated state [19]. Corrosion resistance improves slightly in acids, but not in alkaline solutions [26]. The strength of composite materials made from aluminum and cadmium is the higher the thinner the layers [27]. In age hardening of aluminum-cadmium alloys, GP zones [28] and an intermediate lattice are formed [29]. The zones form on the (111) plane of the aluminum and the intermediate phase is hexagonal with orientation (OODCCKHDAI
The lattice parameters of the intermediate phase are a = 2.9x 10" 10 m, c = 5.3x 10" 10 m, as compared with « = 2.98 x 10" 10 m, c = 5-62 x 10" 10 m for pure cadmium.
REFERENCES 1. P.T.Holligan,G4 41,4748 2. H. Kastner, JIMMA 4, 138, 464
242 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 12b. 13. 14. 15. 16. 17. 18. 19. 20. 20b. 21. 22. 23. 24. 25. 26. 27. 28. 29.
A. Rühenbeck, JIMMA 20, 83 N. F. Bugden, JIM 37, 448 F. A. Cafasso, etc., / . Phys. Chem., 1962,66, 1028 M. E. Drits, etc., Russ. J. Inorg. Chem., 1963, 8, 864 L. E. Samuels, JIMMA 23, 879 R. Rolls, etc., MA 2, 161 H. K. Hardy, JIMMA 18, 163; 19, 637 F. E. Wittig, etc., JIMMA 32, 395 B. Predel, MA 2, 353 V. N. Darilin, etc., Met A 3, 150348 G. S. Makarov, Met A 4,440218 G. I. Batalin, etc., Met A 6, 151592 R. Ricci-Bitti, etc., Met A 3, 210117 A. T. Robinson, etc., JIMMA 19, 175, 825 W. Fraenkel, JIM 53, 694 K. R. Vassel, JIMMA 25, 897; 26, 514 F. Monteriol, Métaux Corr., 1963, 38,171, 223 M. Hansen, etc., JIM 50, 151; 51, 120 L. Kubichek, JIMMA 27, 629 G.Lang,MeM 6, 510399, 510615 J. H. Rogerson, etc., JIMMA 31, 783 S. Terai, JIMMA 30, 399, 877 H. Schirmeister, JIM 16, 239 M. V. Zakharov, etc., MA 1, 254 H.Borchers, etc., Met A 4,311233 M. Straumanis, etc., JIMMA 5, 155; 17,439 V. S. Kopan, etc., Met A 3, 311577 S. Ceresara, etc., Met A 2, 140236 J. M. Silcock, JIMMA 23, 111
Al-Ce Aluminum-Cerium system Neutralisation of iron and silicon [ 1 - 5 ] , increase of strength without loss of conductivity [ 5 - 8 ] , grain refinement [6, 9, 10] and improved machinability [6] have all been claimed for cerium additions to aluminum alloys. At the aluminum end there is a eutectic, A l - C e A l 4 , at approximately 12% Ce, 9 1 0 ° K [2, 3, 11]. For the structure and properties of unidirectionally solidified eutectic see [12, 12b]. The solid solubility is 0.05% Ce at eutectic temperature, 0.04% Ce at 900 °K and 0.01% Ce at 800 °K [13] (Figure 2.14). Quenching from the liquid at 1 0 5 - 1 0 6 o K / s e c rates produces a solid solution containing up to 9% Ce [14, 15]. For thermodynamic properties of the alloys see [15b, 15c]. The low-temperature form of CeAl 4 (56.5% Ce) was usually given as body centered tetragonal; space group Ijmmm; 10 atoms to the unit cell; parameters a = 4 . 3 6 - 4 . 3 8 x 10~ 10 m, c = 10.03-10.12 x 10~ 10 m [ 1 6 - 2 0 ] . It is also given as orthorhombic; space group Immm or Imma; 30 atoms to the unit cell; parameters a = 4.395 x 10~ 1 0 m, b = 13.025 x 10- 1 0 m, c = 10.092 x 10- 1 0 m, density 4 050kg/m 3 [21, 22]. According to [23], the proper formula for this structure is C e 3 A l n (58.6% Ce), with 28 atoms to the unit cell. It transforms at 1 300 °K to the high-temperature form of unknown structure, which forms at 1 500 °K by peritectic reaction from CeAl 2 . For magnetic properties of compounds see [24]; for resistivity under pressure of CeAl 3 see [24b]. Several other compounds are formed with higher cerium content; for their structure,