Aldosugar dehydrogenases from Neurospora crassa Partial purification and characterization of D-arabinose: NAD dehydrogenase

Aldosugar dehydrogenases from Neurospora crassa Partial purification and characterization of D-arabinose: NAD dehydrogenase

Volum~ 30, number. I FEBS LETCI'ERS ALDOSUGAR DEHYDROGENASES Partia| purification :rod characterization February 1973 FROM NEUROSPORA CRASSA of D-...

214KB Sizes 2 Downloads 106 Views

Volum~ 30, number. I

FEBS LETCI'ERS

ALDOSUGAR DEHYDROGENASES Partia| purification :rod characterization

February 1973

FROM NEUROSPORA CRASSA of D-arabinose: NAD dehydrogenase

G. P I N C H E I R A , G. LEON and T. U R E T A * LJel~rramento de Bioqu(mica. Factdtad d,-" MIedic'zrta and Oetrartamento de Biolog~a, Faculrad dc Ciencias. Utffverzidad de Chile, Casilla 6671, Santiago-4, 6?tile

Received 4 December 1972

1. Introduction The py~,dine nucleotide-linked o x i d a t i o n o f free sugars t o th~tr c o r r e s p o n d i n g lactones has been described in several organisms [ 1 - 1 4 ] . T h e e n z y m e s acting o n free a l d o p e n t o s e s seem to catalyze the first reaction o f a p a t h w a y leading to intermediates o f the citrtc acid cycle [31 b u t the possibility o f their involvement in b i o s y n t h e t i c p a t h w a y s should n o t be lightly dismissed. Despite their general o c c u r r e n c e [t5] only the arabinose d e h y d r o g e n a s e s from P s e u d o monas [3, 5--7] and a related e n z y m e f r o m mammalian liver [! i - - 1 3 ] have been studied with some detail. We wish now t o r e p o r t the presence in N e u r o s p o r a crassa of several sugar dehyd~togenases, anti the partial purification and p r o p e r t i e s o f a D-arabin¢,se:NAD d e h y d r o ~nase.

2. Methods Wild t y p e strain 7 4 A o f N e ~ r o s p o r a crassa was grown in V o g d ' s m e d i u m [ ! 6 1 containing 2% su,~rose as carbon source. T h e flasks were shaken o n an Eberbach r o t a t o r y shaker at a b o u t 140 rpm at 2 i~°. Approx. 8 g ( w e t weight) o f myeelia were suspetFted in ice-chilled O 05 M Tris-HC! p H 7.2 b u f f e r and grinded in an ice chilled mortar. T h e suspension ~ a s centrifuged at 4 ° at 4 , 0 0 0 r p m for 2 0 rain in a Sorvall RC 2 centrifuge. T h e s u p e m a t a n t liquid was f u r t h e r correspbndenee to: Dr. Tito Ureta, Casilla 6671, Santiago.4, Chile.

*Addte~ al|

North-llollar~d P u b l i s h i ~ Company -- Amsterdam

centrifuged at 4 0 , 0 0 0 rpm during 60 rain in a Hitachi ultracentrifuge. T h e sediment was discarded. Dehydrogenase activity was assayed through the reduction o f NAD or NADP at 340 n m in the presence o f sugar. T h e reaction mixtures contained 10 mM KCI, ! 0 0 mM Tris HCI b u f i ~ r ( p H 7.5), 1.6 mM EDTA, O.5 mM NAD + or NADP ~, 100 mM ~ugar and e n z y m e in a final volume o f 0.5 rid. A similar system w i t h o u t sugar was used as a blank. A Gilfotd s p e c t r o p h o t o m e t e r t h e r m o s t a t t e d at 30 ° orovided with a recording a t t a c h m e n t ~,Jas used. One -auit o f activity is the a m o u n t o f e n z y m e ca*.a~yzing the r e d u c t i o n o f i /amole ot-NAD(P) + p~r rain ~t 30 °. Polyacrylamide gel electropht~resis was p e r f o r m e d at a b o u t 10 ° exactly as described b y Davis [17] at 4 mA per column. Histochemical localization o f e n z y m e activities were done b y stair:lug the gels per I0 mitt in the m e d i u m described above plus 0.04- ntg,/ml phenazhte methosulfate and 0.4 mg/ml nitroblue tetrazolium. Partial purification o f D-arabinose d e h y d r o g e n a s e was accomplished b y DEAE-cetlulose ( W h a t m a n DE-52) c h r o m a t o g r a p h y in a I X 16 cut gtass columiI. A linear gradient ( 2 4 0 ml) from 0 to 0.5 M KCi was applied to the c o l u m n and 2-ml fractions were collected in a Gilson microiYactionator. Protein was estimate d by measurit~g the absorbance o f the effluent at 280 rim.

3. Results Direct measurement o f dehydrogenase activity in high-speed supernatant liquids revealed ~outinely very 1! I

.Vol.mt~ .~.0~~mmb~ l'" • " .



-

...

.

_,

.-

,



.

~'. J

"

- :"

"' ~ "

~

~ ":" ,=

.

• ..

~

,

~

-

.-.

.-.

-

*

:-:;i

."~..'~

5

: .,-

-...

-.:



-

N A D

N A D

IMADP

-

:

'!

!

,:N A O

NA/DP'

~JADI ~

. .

-.. =' -

NAID-

-'I

NAOP

,

earth

onltm,

m..-After

electrophoa~'s~

the

tubes

w e f e

-.

-

.

weak reduction o f pyridin e nucleotides w i t h high blank values. Acrylamide gel 91ectrophorcsis however, revealed at least 6 distinct bands o f e n z y m e activity. (fig. 1). Bands 1 to 3 were Visible whe n the m e d i u m contained D-gi.ucose and NADP~=. The pair D-xylmie-- NADP + Was also active although at a much lower rate. B a n d 4 appeared w i t h glucose as h y d r .ogen dot3o r with either NAD* or NADP + as acceptor.:Band 5 w a s observed with th.e pair D - a r a b i n o s e - N A D p + o n l y when high a m o u n t s o f extract were electrophoresed. Band 6 was always present as a rapidly and. heavily .~ stained band when D.arabin0se ( o r L-fuc0se) and N A D + were present in the reaction mixture. ~ .Isolation and partial purification o f the e n z y m e corresponding to band 6 was accomplished b y DEAEcellulose column c h r o m a t o g r a p h y (fig. 2). A thin, : : syinmetricaJ peak eluted from the c o l u m n at about 0.13 M KCi. A t t e m p t s to com:entrate .the ¢.nzyme:

activityby ammonium su/fate,precipitation,or:fr_eezeT~. 112

. .



_

-

_..

-

~' ,'~F~.-i9,3

"" ~ _

. # .

,.,,,~

.

.~"

.

~

:

. . . .

;

-

Jr

~_...-~,~-7;=-

-*~-

_

-

~

"~

~.--..,-.. ~.

:-.

~,_

"

.~

.'

"

~ . ' ~ - "

, ~

.

.

~

"

'

.~

-

-

'

. a ~ _ . ~

It .Ct~L~I~

-

"

-

.

:

"

-'-'D~I~6~ .' ~ X ~ .... 2-L-'~Oxy~ • 2-Deoxy-13~lJlu~ose D-Fu-~e - L-RlumLno~ "L-Xytose 64'kospbz~luconate

-

0~ 0.02 O 0 0 0 0 0

Concentration of substrate~ 100 raM; NAD + oon~entraHon, 0_5 mM. • . I

-

immened for t 0 nan tn~'e assay medium mn~aina~ mixtmes' of sugars and pyfidlne nucleotldes as indicated, and then fixed in 7% acetic acid. ,

~ .

-...-.:.g~..

'

:.-'" "

v~_ ;. e o l ~ c r y h m ~ s a e]~'~,opho~,t, of a high ~ d supenuttant ikluid from Ar. Crax~ 100 ul of extract were

,

'.

4 la=

l

in

"

_ . : . -,-.

,..j..:....

.

~

..

dmxged

-;-._.~. ,

- ~. _~., .,~ ,=:~..~._.~., >~ ~., Table.l= '.~. ; ~ .-...- :.-- ~ " Su b / ~ . ~ ~ l y o f D : a / a b t a o ~ d ~ y d u ~ . m S s e f r o m

"~ " - ,

-."

,

~

"'

:

_

"

4

::'FE,B ~ . ' ~ ' ~ . - . ) ! ' ~ . - - • = ' - - - - : ' " > " : : - " ~ ; S ' : ' .

,.

"

"" o "



i

.

'

_

"__L_,

"

.

.

drying ~esulted in the almost c o m p l e t e i r e s . o f the activity. Thu.s, w i t h m t t further pudfi.~, tton the fractiom were U ~ d for e n z y m e characterization., .. Substrate spec~u:ity'studies are d~own m table ! using N A D ÷ as hydro~gen accept o r i n a s m u c ~ as NADI" was c o m p ~ t e l y i,aactive. D-Arablnose is b y far the best txtbst~te, a l t h o u g h L ~ f u c o ~ and D-n'bose w e r e also a t ~ c k e d b u t to a much. lesser>ex, teni.~ The.effect o f D-.arab inose c o n c e n t r a t i o n on the velocity o f NAD.+ reduction and viceversa i s shown in fig. 3. Classical M i c h a e l i s - M e n t e n kinetics were obtained. T h e calculated K m values were 6.7 X 10 -4 M for D-azabinose and 2.96 X 10 - 4 M for N A D +. We Imve n o t p e r f o r m e d detailed analysis o f the reaction products but since t h e a d d i t i o n ofhydroxYlamine to lfle reap tion. mixture at pH 6.5 resulted m hydroxamate p r o d u c t i o n w e . p r e ~ t m e that an arabonolactone h the immediate p r o d u c t o f the o x i d a t i o n reaction. % . .



4.

Discussion.i '..'

_':;

_:

,

- -

-

,

_

,

..-

,'.

~

,

'~.

-.

r'.

=.

:

_-"'-

'

" '

'i

."

~.-

'"

"

Thts report adds several e n z y m e s to the grow~g, list o f dehydxogehases that c a t a l y z e oxidation-reduction reactions o.f f r e e . s u g a r . T h e e n z y m e s fr.qm N ~ are present in very small a m o u n t s . F o r instance, hex0.

--

.

..

.

FEBS. L w I ' r E I ~

Febxuary 1 9 7 3

o,5

0.4 i

r.

-

,

_

.

0.~

E_

O.2 -~'7

r'l

_

0.1

i

"o

m

40

,m

80

I.

o

0

120

Effluenl v ~ u m e . n d for D - ~ . _ i n o ~ . d e h y d r o g e n a s e activity (o----o--o1 and absorbauoe at 2 8 0 n m ( I. The arrow indicates the beginning o f the KC! gmdk'nt (-- - --). The heavy h o r i z o n t a l line u r d e r the peak o f e n z y m e acl/v/ty Indicates the fraczions pooled for s u b s e q u e n t studies.

• o.4

0,5



0.4

O.3

E :

.

"

"~

0.3 O.E

8

i

o

t

o

0.2

o.e I !

"

" ~ ' ' '

0

,

O.4

.

'

V ,

.

.

1.2

[orobinose], m M

.

m

2.0

0

.

O.I

'

.

t'--

.0.3

~ .

' RI-I .

0.~

[NAD],mM

-3.l ' ~ cIT©~ of sul~t~m and acceptoz o0n~n1~tior~ on the ~1o,.'Izyof r'~-~bino~ dc.~ydarogen,-~,e.A1 Effect of D..~rab£no~ .o6z~'~.txatlon at a fixe~L]e~0ei(0.5 raM) of H A D ÷. B) Effect oR H A D * oonoentxation at a fixed Icwl (I00 raM) of D-eurabinose.mn-

R~ ~

~

~pm~] •-

plot,. ii3

Volume 30. number 1

kinase and glucose 6-phosphate dehydrogenases are at least one thousand times more active than D-arabinose dehydrogenase. Thus, the pathways in which these delq, drogenases are involved must..bo,..of.nlinor~ ~'~an7...... :tit ative~poi~t~fi~ei~iio::iile Celli.ii!a:t::ieast£ / o m i ! ~ ::p6h~t~ o f:view 0~: energy pmdu¢tiQniHowe~t.:the:p~sSibiiity: of:their being:!inVolvedin bios~/nthetiepathwiiys llas :" n0tbeen':ruled :o~it:(see:fo~ iristanc~e::i]8]:): ( :.II: : our stt:dieSiwith D.arabinosedehydrogenasc from N. crassa reVeaL striking d i f f e r e n c e s w i t h o t h e r . D.arabinoseldehydr0genases sO far:: reported: For instance:, the enzyme:fromrs~aomo~ [6] .is able to utilize both NAD*.-and NADP+.; Ais0, the JVeurospora dehydrogenase .is different from the.pig enzyme whose preferred substrata is L-fucose [ 12]. Finally, it is also different from the D-arabinose dehydrogenase from rat liver which is active only with NADP + as hydrogen acceptor [ 1 I, 15]. Preliminary experiments on colonial mutants of 2"Vettrospora ha:,e shown interesting quantitativo differences in the amount of arabinose d e h y d r o g e n a ~ and will be soon reported.

Acknowledgements This work was supported by grants from the Comisi6n de Energi'a Nuclear, Comisi6n Investigaci6n Cientffica, Facultad de Medicina, y Comisi6n Central de lnvestigaci6n Cientt~ca, Universidad de Chile. We thank Miss Jasna Radojkovi~ and M,ss Maria Riqttelme I'or their help in the early phases of this study.

114

'

FEBS LETTERS

February 1973

References i

[1] D.C. Harrison, Biochem. J. 25 (1931) t0t6.

4493;

-

lTl A~L~CIine andA.S.L. Hu, J. BioL Chem. 240 (i965) 4498.- :

181 P. Cuatrecasas and $. Segal° J. BioI. Chem. 241 (1966) 5904. [91 9. Cuatrecasa,~ and S. Segal, J. Biol. Chem. 241 (1966) 59~o. [1ot E. Bcutlet and M. Morfison, J. Biol. Chem. 242 (1967)

5239, l t t l R,P :~detzgerand A.N. Wick, B|ochem. B|ophys, Res. Conlmun. 26 (1967"~ 742. lt2l l-I. Seha¢lttez, J, Sarney, E.J, MeGuirc and S, Roseman, J. ~'iol, Chem. 244 (1969) 478~.

l|31 F .W. Mobley, R.P. Metzger and A.N. Wick, Arch. lllo. v l ~ n l . Biophys. 139:(1970) 83. [141 "l. Urota and $. RadoJkovi~, FEllS Lettots 9 (1970~ 57, ltSl T. Ur©ta, J. Radojkcvid and M. Rlquclme. in preparation, 1.16l ll.J Vogel, lL~ierobial Genetics Bull. l 3 (1956) 42. [17 J B.]. Davis, Ann. N.Y. Acad. Sol. 121 (1964) 4 0 4 . l~81 R.I. Katzman, E, Lisowska and R.W. Jeanloz. Bioch,,m. J. 119 (1970) 17.