Al–H Aluminum–Hydrogen system

Al–H Aluminum–Hydrogen system

295 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 50b. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. G. I. Batalin, etc., Met A 3, 331060 A. Fontaine, et...

529KB Sizes 1 Downloads 92 Views

295 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 50b. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61.

G. I. Batalin, etc., Met A 3, 331060 A. Fontaine, etc., Met A 5,331793 H. Auer,//MM4 2,51 H. J. Blythe, etc., MA 1, 561 H. Borchers, etc., Met A 3, 330740 J. P. G. Shepherd, etc., Met A 1, 150992 H. Borchers, etc., Met A 4, 311233 J. W. Riches, etc., JIMMA 19, 765, 825 O. D. Sherby, etc., JIMMA 19, 356, 825 A. T. Robinson, etc., JIMMA 19, 764, 825 T. Endo, etc., Met A 2, 311427; 3, 310375 E. A. Starke, Jr., etc., Met A 6, 140489 J. H. Wernick, JIMMA 24, 956 B. Y. Pines, etc., Met A 1, 130659 J. C. Blade, JIMMA 25, 513; 26, 921; 27, 559; 28, 499 M. Bélier, etc., Met A 4, 140182; 6, 121012; 7, 120154, 120341, 140065 S. Ceresara, etc., Met A 5, 120761 G. W. Lorimer, Met A 4, 120998 M. I. Zakharova, etc., JIMMA 32,612;ΜΛ 1, \619\MetA i, 140055 L. M. Sorokin, etc., MA 2, 1725; Met A 1, 130279 U. Köster, Met A 3, 120686; 4, 110499 R. I. Kuznetsova, etc., Met ^4 6, 110974 S. Ceresara, etc., Met A 4,140085

Al-H Aluminum—Hydrogen system Hydrogen is present in all aluminum alloys, constituting from 70 to 90% of the total gas content [1-8]. The main source of hydrogen in aluminum is water vapor that reacts with the metal to form oxide and liberate nascent hydrogen [9-14]. Less important sources are hydrocarbons in poorly combusted fuels or in lubricants and any other organic material that might enter the charge to be melted [7]. A hydroxide film on the metal has also been mentioned [15]. Complete removal of hydrogen is commercially impossible 16, 16, 171, but its reduction to tolerable limits can be achieved in a variety of ways, among which the most common are vacuum treatment [11, 18-221 and bubbling of a hydrogen-free gas through the melt [12, 14, 23-26]. Ultrasonic vibration was investigated by |26bl. Usually filtration and other oxide removal treatments are associated with degassing, resulting in a combined removal of the dissolved hydrogen and of the hydrogen entrapped in the oxide [24, 27-30]. According to [30b]. hydrogen facilitates retention of suspended oxide. Hydrogen dissolves interstitially in aluminum [31-341. The solubility has been repeatedly investigated [17, 35-50], and the solubilities of deuterium and tritium have also been investigated [46, 51]. Table 2.8 gives the most probable values of the equilibrium solubility of hydrogen; but besides normal sources of error, the presence of hydrogen in micropores [52-55], surface absorption [43, 561 and possibly supersaturation due to fast cooling all contribute to inaccuracy. High pressure during solidification increases the amount of dissolved hydrogen [56bl. The solid solubility is reduced in metal under stress [57]. The presence of hydrides has been mentioned [58], but their existence out of solution or above room temperature is very doubtful [59, 601. Two or more hydrides

296 Table 2.8

SOLUBILITY OF HYDROGEN IN ALUMINUM AT ATMOSPHERIC PRESSURE

°K

300

op

80

Solubility ppm wt. cmVlOOgr Solid

°K

1.1 xlO- 10 4

1.2xl0- 1 0

Solubility ppm wt. cm7100gr Liquid

933 1 220

0.36

0.4

4

1 000 1 340

0.54

0.6

600

620

4.0 xlO-

700

800

3.7 xlO- 3

4.1 xlO- 3

1 100 1 520

1.3

1.5

980

2

2

1 200 1 700

2.3

2.5

800

1.4 xlO-

4.4 xlO"

op

1.6xl0-

900 1 160

3.5xlO- 2

0.04

1 300 1 880

3.9

4.2

933 1220

4.5x10-2

0.05

1 400 2 060

21.0

23.0

lcm3/100gr=0.899ppmwt. with compositions from A1H to A1H3 have been reported [59-74|. Most of the information available is on the properties in solutions, the molecular structure or the atomic bonding. Of some interest to the metallurgist are the heat of formation of A1H (-90kJ/mol [58] or -47kJ/mol [71]) and, for A1H3, heat of formation (-11.5 to 12.5kJ/mol [75-77]), density (1 718kg/m3) and d spacings of the X ray pattern [68]. Values for the heat of solution of hydrogen in aluminum range from 100 to 180kJ/mol [11, 62, 78, 79]. Absorption of deuterium in aluminum has been investigated by [80, 81], absorption of tritium by [821. The lattice parameter of aluminum is increased by dissolved hydrogen [831. A possible increase in resistivity [84], fluidity in the liquid state [851 and modulus of elasticity up to 8% (!) [32] and an embrittlement in forging or rolling [86, 871 are attributed to hydrogen in solution. On the other hand, 1881 report no correlation between gas content and properties of aluminum-silicon alloys. Hydrogen does not affect recrystallisation [81]. Dissolved hydrogen tends to enhance pitting in electropolishing [89], or more probably electropolishing enlarges the micropores in the metal. The porosity of castings and fusion welds is due mostly to the evolution of hydrogen in freezing because of the tenfold decrease of solubility from the liquid to the solid state. A copious literature exists on the effect of porosity on properties [5, 9, 25, 26, 90-104]. Another effect that has been attributed to hydrogen is 'High-Temperature Deterioration' (HTD), also called 'High-Temperature Oxidation'. Figure 2.30 shows a severe case of it. Similar effects result from proton bombardment [105, 1061. The most probable origin of this porosity that develops within the metal in annealing at high temperature is hydrogen diffusing in from the surface and precipitating in the form of bubbles within the metal [9, 11, 15, 107-1091. The presence of hydrogen-bearing compounds, supersaturation of hydrogen within the metal or condensation of micropores [15, 54, 55, 56b] may be a contributing cause, but the kinetics of HTD formation and the fact that fluoride coatings on the metal [ 1101 or a dry atmosphere [93] prevent or at least reduce substantially it [9, 151 indicate a diffusion from the outside. Diffusion constants have been given ranging from D 0 = 1.2 x 10~5S, Q= 1.4eV to D0 = 0.21 S, g = 0.45 eV [34, 111-113], with some reports of no diffusion in the solid [114-116]. Diffusion coefficients in the liquid are D0 = 2.34 S, Q = 0.65 eV [50, 1121. Diffusion is strongly dependent on surface films and the state of the hydrogen (atomic

297

Figure 2.30. Severe case of high-temperature deterioration, x 100; not etched or molecular) [15, 38, 42, 56, 111, 113, 116-1181. Porosity in the metal increases diffusion [54b]. The permeability of the oxide to hydrogen has the constants D 0 =3.86S, ß = 1.01 eV [50, 1191. Alloying elements affect both the solubility and the diffusion: hydride-forming elements such as cerium, lithium, thorium and titanium increase strongly the solubility in the liquid, iron, chromium only slightly; copper, tin and silicon decrease it [10, 120-126]. Fluorine [110] and beryllium [13, 1221, which produce more impervious films, eliminate or reduce absorption of hydrogen at the surface; sodium and magnesium, which make the surface more porous, increase absorption M3, 122|. Nickel reduces diffusion [117]. The permeability of the oxide films is structure dependent [123].

REFERENCES 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.

M. Guichard, etc.,//M8, 321 L. Guillet, etc., JIM 38,409 ; 41, 607 A. Villachon, etc., JIM 42,425 P. Roengten, etc., JIMMA 50, 721 ; CA 28, 3357 H. Nipper, JIMMA 53, 326, 658, 714 L. Moreau, etc., JIMMA 2, 704; CA 31, 3840 S. Iwamura, etc., CA 41,4754 H. A. Sloman,/. Inst. Metals, 1945, 71, 391 Y. A. Klyachko, CA 29, 2488;//ΜΜΛ 5, 2, 137; 3, 237; 10, 197 B. P. Burylev, MA 1, 131 V. A. Danilkin, etc., MA l91442;MetA 1, 150818; 3, 440113 H. Plate, etc., Met A 1, 510461 R. Ichikawa, etc., Met A 2, 510872 V. A. Livanov, etc., Met A 4,460037, 460038 A. E. Jenkins, etc., JIMMA 25, 267, 927 E. J. Whittenberger, etc., JIMMA 20, 595 F. Rohner, JIMMA 25, 699; 30, 815 P. Junghanns, etc., Met A 2, 510866 M. B. Altman, etc., Met A 4, 340333 G. S. Makarov, Met A 4,430161; 6, 150830

298 21. 21b. 21c. 22. 23. 23b. 24. 25. 25b. 25c. 25d. 26. 26b. 27. 28. 29. 29b. 30. 30b. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 54b. 55. 56. 56b. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70.

S. J. Hellier, etc., Met A 4, 460053 O. G. G\osiQtn,tic.,AIMETMSPap. A 71-39. 1971 J. Villate, Met A 6, 460070 K. Alker,A/é>M 6, 510622 D. R. Tullis, CA 22, 3875 R. D. Pehlke, etc., JIMMA 31, 105 V. P. Ivanov, etc., JIMMA 32, 147 D. F. Chernega, etc., MA 2, 1653; Met A 1, 110100; 3, 110763 B. Tarjan, Met A 2, 230428; 3, 510600 A. A. Spoludennaya, etc., Met A 6, 430212 F. N. Streltsov, etc., Met A 6, 430194; 7, 430080 V. B. Gogin, etc., Met A 6, 510471 G. I. Eskin, etc., Met A 6, 430090 K. J. Brondyke, etc., JIMMA 32, 1323 W. Bunk, etc., Met A 2, 130301 M. V. Brant, etc., Met A 4, 430146 D. A. Wenz,MeM 5,430195 Y. P. Pimenov, etc., Met A 4, 440264 A.M. Bosov,Mé>M 7,430128 H. Nishimura, CA 26, 1553 L. Moreau, etc., CA 40, 1370 W. Siegelin, etc., JIMMA 25, 598, 600 S. Matsuo, etc., Met A 3, 130148 K. L. Dreyer, etc., JIMMA 17, 49 D. P. Smith, Hydrogen in Metals, Univ. of Chicago Press. 1948 R. Castro, etc., Rev. Met., 1949, 46, 594 A. S. Russell, JIMMA 17,481 Y. Dardel, JIMMA 16, 529; 17, 689, 785 W. Hofmann, etc., JIMMA 24, 769 Hansen, 1958 W. Eichenhauer, etc., JIMMA 25,481; 30, 257; 32, 419 H. Goto, etc., MA 1, 1363 Elliott, 1965 H. Plate, MA 1, 884 W. Eichenauer, Met A 2, 110005 G. M. Grigerenko, etc., Met A 1, 110745 V. A. Danilkin, etc., Met ^1 3, 440113 M. Imabayashi, Met A 5, 110674 K. I. Vashchenko, etc., Met A 5, 130561 V. B. Demin,etc.,MeM5, 110544 C. Renon, etc., Mem. Sei. Rev. Met., 1961, 58, 835 D. E. Talbot, etc., JIMMA 30, 833 A. N. Agrawal, etc., MA 2, 663 R. M. Gabidullin, etc., Met A 6, 152453; 7, 130076 G. Scharf, etc., Met A 2, 130646 B. McCarroll, etc., Met A 3, 340278 Y. Nishida, etc., Met A 6, 110509, 110965 S. Feverstein, etc., Met A 3, 340017 H. Lepp, Discussion of [39] O. Stecher, etc., CA 38, 1699; 44, 966 B. Siegel, JIMMA 28, 194 Gmelins Handbuch der Anorganische Chemie, Teil A. Lfg. 1, 1934, 161, 219, 326; Teil B. Lfg. 1, 1933, 1 H. V. Wartenberg, JIMMA 4, 33 H. Schüler, etc., JIMMA 7, 1 E. Hulthen, CA 33, 8497 R. Parshad, JIMMA 11, 321 H. C. Longuet-Higgins, CA 40, 3357 A. E. Finholt, etc., CA 41,4396 M. J. Rice, etc., CA 54, 17132 R. F. Nickerson, CA 52, 15317 C. L. Mader, CA 57, 5364

299 71. C E . Messer, CA 57, 6696 72. E. R. Lippincott, etc., CA 55, 94, 26663 73. L. Liepina, CA 55, 12131 74. C. W. Heitsch, CA 57, 14679 75. B. Siegel, etc., Energetics of Propellant Chemistry. Wiley, 1964 76. . G. C. Sinke, etc., Met A 1, 320123 77. E. P. Kirpichev, etc., Met A 4, 151731 78. L. L. Bircumshaw, JIMMA 2, 553 79. G. M. Grigorenko, etc., MA 1, 157, %%5\MetA 1,110340 80. A. A. Rodina, JIMMA 30, 1 81. C E . Elis, etc., JIMMA 29,971 82. L. M. Foster, etc., JIMMA 32, 452 83. G. A. Walker, etc., Met A 4, 120952 84. A. Portevin, etc., JIMMA 4, 279, 588 85. V. P. Ivanov, Met A 2, 510515 86. S. Burda, etc., JIMMA 26, 787 87. I. V. Shvetsov, etc., Met A 4, 311110 88. P. E. Chretien, etc., JIMMA 7, 145 89. F. J. Burger, etc., JIMMA 22, 538 90. J. Czochralski, JIM 28, 527 91. K. Iwase, JIM 37, 436; 41, 424 92. W. Koch, CA 28, 5378 93. W. Baukloh, etc., CA 32, 5748 94. P. Roengten, etc., JIMMA 6, 169 95. J. L. Erickson, JIMMA 13, 134 96. C. B. Griffith, etc., JIMMA 21, 387 97. C E. Ransley, etc., JIMMA 16, 684 98. B. Chamberlain, etc., JIMMA 32, 1225 99. H. Arbenz, MA 2, 296 100. T. S. Piwonka, etc., MA 2, 1339 101. A. D. Sarkar, etc., Met A 3, 510449 102. E. Dunkel, Met A 4, 120856 103. G. Gramatica, etc., Met A 4, 550450 103b. Anon., MÉ?M 6, 110136 103c. A. I. Litvintsev, etc., Met A 6, 120068 104. G. Nandori, etc., Met A 4, 510272 105. L. H. Milacek, etc., Met A 1, 160329; 2, 160103 106. R. D. Daniels, Met A 4, 160236 107. W. Gatzek, JIMMA 3, 718 107b. C. E. Elis, tic, JIMMA 31, 689 108. A. V. Shreider, Met A 1, 351109 108b. J. H. Dette, JIMMA 25, 299 108c. F. Kirch, Met A 6, 560056 109. Y. B. Ulanovsky, etc., Met A 5, 151684 110. R. Eborall, etc., JIMMA 12, 399; 14, 259 111. C. J. Smithells, etc., JIMMA 2, 197, 553; CA 31, 6088 112. C. E. Ransley, etc., JIMMA 23, 865 113. A. Sawatzky, etc., JIMMA 29, 559 114. H. G. Deming, etc., JIM 31,403 115. H. Lichtenberg, JIMMA 5, 645 116. F. Boetschoten, etc., JIMMA 29,418 117. W. E. Tragert, JIMMA 27, 391 117b. Y. B. Ulanovsky, Met A 6, 130064, 150332 118. C N. Cochran, JIMMA 29, 317 119. O. M. Byalik, etc., Met A 5, 210249 120. W. Baukloh, etc., JIMMA 12, 273 121. W. R.Opie, etc., JIMMA 18,350,481; 19, 161 122. H. Kostron,//MM^ 20, 717; 21, 306 123. A. A. Zhukhovitsky, etc., Met A 5, 320887 124. V. P. Ivanov, Met A 4, 3123 72 125. J. Renner, etc., Met A 6, 440070 126. M. Imabayashi, etc., Met A 6, 151006