Alkali metal salts as set accelerators for high alumina cement

Alkali metal salts as set accelerators for high alumina cement

CEMENT and CONCRETE RESEARCH. Vol. 23, pp. 177-186, 1993. Printed in the USA. 0008-8846/93. $6.00+.00. Copyright © 1993 Pergamon Press Ltd. ALKALI M...

436KB Sizes 2 Downloads 83 Views

CEMENT and CONCRETE RESEARCH. Vol. 23, pp. 177-186, 1993. Printed in the USA. 0008-8846/93. $6.00+.00. Copyright © 1993 Pergamon Press Ltd.

ALKALI

METAL

SALTS

AS

SET ACCELERATORS

FOR

HIGH

ALUMINA

CEMENT

T . M a t u s i n o v i c and N.Vrbos U n i v e r s i t y of Zagreb D e p a r t m e n t of Chemical E n g i n e e r i n g and Technology Marulicev t r g 20, 41000 Zagreb, C r o a t i a

(Sef=eed) (Received Feb. 4; in fnudform March 4, 1992)

ABSTRACT

The effect of alkali metal salts on the setting time of high aluminia cement (HAC) has been studied. The influence of c o n c e n t r a t i o n of the salts, chemical nature of anion and the type of alkali metal cation have been investigated. The results of the research indicate that alkali metal salts are set accelerators of HAC. The lithium cation has more effect on the setting time than other alkali cations because of its ability to form tetrahedral symmetry while the others will form the octahedral type. L i t h i u m salts remove the n u c l e a t i o n barrier, caused by an initially fast precipitation. The influence of pH in mixing water is not important. The effect of hydroxyl group is greater than effect of other i n v e s t i g a t e d anions due to the replacement leading to a further centre for oxobridge formation. The l i t h i u m salts cause d e c r e a s i n g of flexural and compressive s t r e n g t h of H A C mortars but also cause the strength d e v e l o p m e n t at early ages.

Introduction

L i t h i u m salts have been reported as accelerating setting agents for alumina concretes in the patent literature(l-3). Parker r e p o r t e d that the setting time of HAC pastes could be influenced by a d d i t i o n of small amounts of m a n y materials. Double(4) and Currell(5) studied the c h e m i s t r y of hydration of HAC in the p r e s e n c e of accelerating and retarding admixtures. Novinson et ai.(7,8) i n v e s t i g a t e d the effects of lithium salts on r e f r a c t o r y mortars. In chemical terms, the mode of action of these admixtures is not well understood. In this paper alkali metal salts as set accelerators of HAC have been studied. The influence of c o n c e n t r a t i o n of the salts, chemical nature of anions and the type 177

178

T. Matusinovic and N. Vrbos

Vol. 23. No. 1

of a l k a l i m e t a l c a t i o n s h a v e b e e n i n v e s t i g a t e d . T h e r e s e a r c h has b e e n c a r r i e d out to d e v e l o p r a p i d s e t t i n g and h a r d e n i n g m a t e r i a l s for the r e p a i r of c o n c r e t e . We have b e e n c o n d u c t i n g e x p e r i m e n t s to determine the optimal setting time and the strength of the m a t e r i a l s m a d e w i t h l i t h i u m salt a d m i x t u r e s .

Experimental

Methods

T h e h i g h a l u m i n a c e m e n t u s e d was a n o r m a l p r o d u c t i o n of " G i u l i o R e v e l a n t e " , Pula, C r o a t i a . T h e g e n e r a l a n a l y s i s of s u c h c e m e n t was: CaO, 40.2%, A1203, 39.0%, FeO, 4.3%, Fe203, 11.7%. T h e a d m i x t u r e s used were commercial Analar grade reagents dissolved in d e m i n e r a l i z e d w a t e r p r i o r to m i x i n g w i t h HAC. LizS a n d R b O H w e r e prepared in o u r l a b o r a t o r y (9-11). The s e t t i n g t i m e of HAC in d e p e n d e n c e of the pH of l i t h i u m salts in m i x i n g w a t e r has b e e n measured. T h e pH of e a c h s o l u t i o n w a s m e a s u r e d w i t h a s t a n d a r d g l a s s e l e c t r o d e . T h e e l e c t r o d e was c a l i b r a t e d w i t h b u f f e r s o l u t i o n at 25°C at pH 4 a n d 9. The salt s o l u t i o n was p o u r e d into the b o w l a n d the HAC w e r e a d d e d to the water. T h e s e w e r e m i x e d t o g e t h e r b y means of m e c h a n i c stirrer for p r e s c r i b e d time intervals. All experiments used a water/cement (w/c) r a t i o of 0.24. T h e s e t t i n g time was determined using a modification of the JUS ~ m e t h o d B.C8.023. In o u r m o d i f i c a t i o n the p e n e t r a t i o n of the n e e d l e into h a r d e n i n g p a s t e was m e a s u r e d e v e r y 5 s e c o n d s due to e x t r e m e l y r a p i d setting time for l i t h i u m salt m o d i f i e d . The e x p e r i m e n t s were r e p e a t e d t h r e e times to o b t a i n r e l i a b l e s t a n d a r d d e v i a t i o n s a n d s t a t i s t i c a l means. For d e t e r m i n a t i o n of c o m p r e s s i v e a n d f l e x u r a l s t r e n g t h the s p e c i m e n s (40 x 40 x 160 mm) w e r e p r e p a r e d a c c o r d i n g to JUS B . C 8 . 0 2 2 at w/c r a t i o of 0.5. The s p e c i m e n s w e r e t e s t e d at the age of 1,3,7,28, and 90 days. T h r e e s p e c i m e n s w e r e t e s t e d for e a c h age. Results

T h e m e a s u r e m e n t of the i n f l u e n c e of d i f f e r e n t m a s s f r a c t i o n , ( w ) , of l i t h i u m n i t r a t e on the s e t t i n g t i m e of HAC has b e e n d o n e to c h o o s e the f r a c t i o n of the salt w h i c h can give a s e t t i n g t i m e c o n v e n i e n t for t h e r e s e a r c h . The r e s u l t s of the m e a s u r e m e n t are s h o w n in T a b l e i. The m e a s u r e m e n t s of the i n f l u e n c e of d i f f e r e n t a l k a l i m e t a l s a l t s on the s e t t i n g t i m e has b e e n made. The r e s u l t s of the r e s e a r c h are s h o w n in T a b l e 2. *JUS

- Yugoslav

standard

Vol.23,No. I

Lithium

SET ACCEI22ATORS,ALKALIMETAL SALTS,ALUMINATE CEMENT

nitrate:

Lithium

Comparison fractions.

salt

TABLE 1 of s e t t i n g t i m e s

at d i f f e r e n t

w(LiNO~)/%

Setting

mass

time/s

16500

0

LINO 3

179

0.0005

7330

0.001

1650

0.005

710

0.01

440

0.05

F

0.i

M

F - s e t t i n g of HAC w i t h l i t h i u m n i t r a t e d u r i n g the m i x i n g t i m e M - s e t t i n g of HAC i m m e d i a t e l y by a d d i n g of the l i t h i u m n i t r a t e

Alkali

metal

Anions

salts:

OH-

TABLE 2 C o m p a r i s o n of s e t t i n g fraction.

S=

Cations

C03 =

Br"

Setting

time/s

times

at 0.01% m a s s

CI-

NO3 =

SO Z

Li

300

325

370

305

360

440

560

Na

5140

5620

6300

8940

9720

6480

7800

K

7200

7400

7980

10120

10200

7920

8100

Rb

9140

9260

10930

10680

9360

9300

Cs

iiii0

11990

11200

11400

11480

11630

- dash

llne

indicates

The d i f f e r e n t l i t h i u m s h o w n in the T a b l e 3.

that the c h e m i c a l salts

have

been

was

not a v a i l a b l e

tested

and the

results

are

Discussion

T h e r e s u l t s of the r e s e a r c h i n d i c a t e that a l k a l i m e t a l s a l t s are set a c c e l e r a t o r s of HAC. The d a t a in T a b l e 1 d e m o n s t r a t e t h a t L i N O 3 a c c e l e r a t e s the s e t t i n g time of HAC e v e n at the m a s s f r a c t i o n of

T. Mamsinovic and N. Vrbos

180

Lithium

salts:

Lithium

VoL 23. No. 1

TABLE 3 C o m p a r i s o n of s e t t i n g times and pH of 0.01% l i t h i u m salts in m i x i n g water.

salt

pH values

Setting

LiOH

12.3

300

Li~S

11.8

325

Li2CO ~

11.2

370

LiBO 2

10.4

390

Li2SO 4

6.4

560

LiNO~

5.9

440

LiCI

5.6

360

LiBr

5.4

305

TABLE 4 F l e x u r a l s t r e n g t h s of HAC m o r t a r s and HAC m o r t a r s alkali metal salts. Time/ days

Flexural HAC + LiNO I

HAC + NaNO~

time/s

made with

0.01%

strength/MPa

HAC + KNO~

HAC + RbNO~

HAC + CsNO~

HAC

1

7.32

7.44

7.68

7.92

8.14

8.62

3

7.92

8.30

8.15

8.35

8.72

8.95

7

8.99

9.88

10.12

10.30

10.67

11.10

28

9.65

10.12

10.51

10.72

10.94

11.20

90

10.68

10.77

10.91

11.03

11.25

11.36

C o m p r e s s i v e s t r e n g t h s of 0.01% alkali metal salts.

TABLE 5 mortars

Compressive

Time/ days

HAC

HAC + LiNO~

HAC + NaNO~

1

49.18

52.09

3

61.87

7

HAC + KNO~

and

HAC

mortars

made

with

strength/MPa HAC + RbNO~

HAC + CsNO~

HAC

53.62

55.42

56.45

58.70

62.12

63.78

64.95

66.35

67.97

70.10

73.71

75.05

79.55

82.66

84.50

28

76.25

79.85

82.29

86.90

88.75

92.60

90

82.08

85.73

88.75

91.15

93.12

96.25

Vol. 23, No. 1

SET ACCELERATORS,AI.,KALIMETAL SALTS, ALUMINATECEMENT

181

TABLE 6 C o m p r e s s i v e and flexural strengths of HAC mortars and HAC mortars made w i t h 0.05% Li2CO3. Time/h

C o m p r e s s i v e strength/MPa HAC

HAC+ Li~CO 3

Flexural s t r e n g t h / M P A HAC

HAC+ Li2CO 3

0.5

X

1.82

X

X

1.0

X

3.86

X

X

1.5

X

4.89

X

X

2.0

X

5.93

X

1.42

2.5

X

8.96

X

2.44

3.0

X

12.60

X

3.11

3.5

X

13.12

X

3.93

X

4.21

4.0

2.65

18.33

4.5

8.80

20.02

2.19

4.37

5.0

24.58

21.25

2.64

4.56

6.0

36.65

23.87

3.34

4.96

i0.0

43.83

30.62

4.61

6.48

15.0

46.77

32.16

6.95

6.88

20.0

48.12

36.56

7.22

7.15

x - test could not be p e r f o r m e d because specimens were too soft to be removed from the mold 5xi0-4%. With increasing the fraction of LiNO~, the setting time decreases. With the fraction of 0.1% setting occurs i m m e d i a t e l y by a d d i n g of LiNO~. The principal hydraulic constituent in HAC is CaAl204 (CA). The h y d r a t i o n process of CA is generally believed to occur through initial dissolution, formation of a metastable gel and s u b s e q u e n t p r e c i p i t a t i o n p r i n c i p a l l y CaAI204xlOH20 (CAHI0), but also Ca2Al2OsxSH20 (C2AHB), and their c o n v e r s i o n to Ca3A1206x6H20 (C3AH6) (12). The c o m p o s i t i o n of the hydration products shows a t i m e - t e m p e r a t u r e dependency: the l o w - t e m p e r a t u r e hydration products (CAHI0) is t h e r m o d y n a m i c a l l y unstable e s p e c i a l l y in w a r m and humid storage c o n d i t i o n w h e n a more stable compound, C~AH6, is formed. L a b o r a t o r y and field experience with HAC concretes show that on p r o l o n g e d storage the hexagonal CAHI0 and C2AH 8 phases tend to convert to the cubic C3AH 6 (13). After d i s s o c i a t i o n of CA, the formed m e t a s t a b l e gel will acquire stability by c o n d e n s a t i o n of m o n o c o o r d i n a t e d OH groups linked to A1 to form oxobridges b e t w e e n

182

T. Matusinovic imdN. Vrbos

Vol. 23, No. 1

two A1 c e n t e r s l e a d i n g to the c r y s t a l l i n e CAHI0 (6). To produce such an o x o b r i d g e s condensation structure it is n e c e s s a r y to b r i n g the OH g r o u p in a p o s i t i o n that a lone p a i r on the o x y g e n can o v e r l a p w i t h a d o r b i t a l of AI, r e s u l t i n g in the f o r m a t i o n of an o x o b r i d g e and a m o l e c u l e of w a t e r w h i c h w o u l d r e m a i n h y d r o g e n b o n d e d to the o x y g e n atom. S o l i d - s t a t e N M R d a t a i n d i c a t e that a l u m i n i u m in CA is e n t i r e l y 4c o o r d i n a t e d but the p r i n c i p a l h y d r a t i o n p r o d u c t s of CA, CAHI0, C2AHs, AH~ and C3AH 6 c o n t a i n 6 - c o o r d i n a t e d a l u m i n i u m . The 27AI N M R w o r k shows that the h y d r a t i o n of c a l c i u m a l u m i n a t e c e m e n t s p r o c e e d s as a c o n v e r s i o n of 4- to 6- f o l d - c o o r d i n a t e d a l u m i n i u m (14). In situ 2VAl N M R s t u d i e s of the h y d r a t i o n p r o c e s s w e r e c a r r i e d out on c e m e n t s a m p l e s h y d r a t e d w i t h d e m i n e r a l i z e d w a t e r and w i t h a s o l u t i o n of Li2CO 3 in d e m i n e r a l i z e d w a t e r (8). W i t h o u t any a d d i t i v e , the A1 c o n v e r s i o n s t a r t s o n l y a f t e r a p p r o x i m a t e l y 3-4 h i n d u c t i o n p e r i o d and a p p e a r s to end a f t e r 18-20 h. At a w/c r a t i o of 0.5 the f r a c t i o n of 4 - c o o r d i n a t e d a l u m i n i u m in the final p r o d u c t a m o u n t s to approximately 30% to 40% of the e n t i r e A1 content. The d a t a o b t a i n e d w i t h the a d d i t i v e are in s h a r p c o n t r a s t to the h y d r a t i o n w i t h d e m i n e r a l i z e d water, the c o n v e r s i o n of AI(4) to AI(6) s t a r t s i m m e d i a t e l y a f t e r mixing, if f r a c t i o n of 0.5% a q u e o u s l i t h i u m c a r b o n a t e s o l u t i o n is u s e d as the h y d r a t i o n medium. H o w e v e r , the rate constant of the a l u m i n i u m conversion process is w i t h i n e x p e r i m e n t a l error, i d e n t i c a l to that found in the a b s e n c e of the l i t h i u m a d d i t i v e . Thus, the a c t i o n of l i t h i u m - c o n t a i n i n g s e t t i n g a c c e l e r a t o r s is b a s e d on a s h o r t e n i n g of the i n d u c t i o n p e r i o d w h i l e h a v i n g no e f f e c t on the rate of the p h a s e t r a n s f o r m a t i o n p r o c e s s . The i n d u c t i o n p e r i o d d u r i n g the p r e c i p i t a t i o n of CAHI0 and C2AH 8 from a s u p e r s a t u r a t e d s o l u t i o n is a r e f l e c t i o n of the n u c l e a t i o n b a r r i e r to the f o r m a t i o n of t h e s e c o m p o u n d s . D o u b l e et al. (5) a t t r i b u t e the a c c e l e r a t i n g e f f e c t of l i t h i u m salts to a r e m o v a l of this n u c l e a t i o n b a r r i e r , c a u s e d by an i n i t i a l l y fast p r e c i p i t a t i o n of l i t h i u m h y d r o m e t a a l u m i n a t e . This c o m p o u n d is t h e n t h o u g h t to act as a h e t e r o g e n e o u s nucleation substrate, thus e l i m i n a t i n g the i n d u c t i o n period. This v i e w is e n t i r e l y c o m p a t i b l e w i t h N M R r e s u l t s p r e s e n t e d by N o v i n s o n (8), w h i c h i n d i c a t e that the a c c e l e r a t o r a f f e c t s o n l y the i n d u c t i o n but not the rate of p h a s e c o n v e r s i o n once the n u c l e a t i o n b a r r i e r has b e e n broken. The N M R r e s u l t s s u g g e s t f u r t h e r that the m e a s u r e m e n t s of s e t t i n g time a p p e a r s to be m o s t c l o s e l y r e l a t e d to the end of the i n d u c t i o n period, at w h i c h p o i n t the A I ( 4 ) - to -AI(6) c o n v e r s i o n is a b o u t to begin. The r e s u l t s of such a m e a s u r e m e n t in the p r e s e n t s t u d y p r o v e it. The o x o b r i d g e s c o n d e n s a t i o n s t r u c t u r e s w i l l be a f f e c t e d by a l k a l i m e t a l c a t i o n s f o r m i n g c o - o r d i n a t i o n l i n k a g e w i t h the h y d r o x y l groups. Of the ions studied, Li* s h o u l d be d i f f e r e n t in b e h a v i o u r from the o t h e r c a t i o n s b e c a u s e of the a b i l i t y to form t e t r a h e d r a l symmetry w i t h OH groups, w h i l e Na ÷, K ÷, Rb ÷, and Cs ÷ w i l l f o r m the o c t a h e d r a l type (15). This is p r o v e d by our e x p e r i m e n t a l r e s u l t s

Vol. 23, No. 1

SET ACCELERATORS, AIJfAIJ METAL SALTS, ALUMINATE CEMENT

183

(Tables 2 and 3), l i t h i u m h a v i n g a d r a s t i c effect, but d i f f e r e n c e s b e t w e e n the o t h e r c a t i o n s are not g r e a t and e x h i b i t a d e f i n i t i v e trend. T h e s e t t i n g t i m e of HAC w i t h the d e c r e a s e s in the f o l l o w i n g order: Cs

>

Rb

>

K

>

same

Na

salts

>>

data

on the a l k a l i

Parameter Crystal

radii/nm

Hydrated Hydration

radii/nm number

-AHh/kJ mol -l

TABLE metal

7 cations

Na

K

Li

alkali

metal

Li

The s e q u e n c e f o l l o w s the t r e n d of c r y s t a l radii, and e n t h a l p i e s of h y d r a t i o n .

Hydration

of

hydration numbers

(16).

Rb

Cs

0.068

0.098

0.133

0.148

0.167

0.340

0.276

0.232

0.228

0.228

25

16

10

-

10

530

420

340

315

280

T h e c o m p r e s s i v e s t r e n g t h of HAC m o r t a r s c o u l d not be m e a s u r e d w i t h i n 4 h o u r s b e c a u s e the s p e c i m e n s w e r e too soft to be r e m o v e d from the mold. A f t e r 4 h, w h e n the p e r i o d of i n d u c t i o n time e n d e d the s p e c i m e n s had the m i n i m a l c o m p r e s s i v e s t r e n g t h of 2.65 MPa. It can be s e e n from t a b l e 6 that t h e r e is a s u d d e n i n c r e a s e in s t r e n g t h for HAC m o r t a r s up to the age of 4 h. A f t e r 20 h HAC m o r t a r h a d a c o m p r e s s i v e s t r e n g t h of 48.12 MPa, a p p r o x i m a t e l y 50% v a l u e s of the i n f i n i t i v e c o m p r e s s i v e s t r e n g t h . HAC m o r t a r s w i t h l i t h i u m c a r b o n a t e s h o w e d a f t e r 30 m i n a c o m p r e s s i v e s t r e n g t h of 1.82 M P a and i n c r e a s e s r a p i d l y w i t h aging. T h e s e r e s u l t s s u p p o r t the r e s u l t s of r e s e a r c h m a d e by D o u b l e (5) as w e l l as N o v i n s o n (8). The results of the m e a s u r e m e n t s of c o m p r e s s i v e and flexural s t r e n g t h of a l k a l i m e t a l n i t r a t e s (Tables 4 and 5) s h o w t h a t a l k a l i m e t a l s a l t s d e c r e a s e the s t r e n g t h of HAC. It is a p p a r e n t that the s t r e n g t h i n c r e a s e s w i t h an i n c r e a s e in age of H A C m o r t a r s as w e l l as HAC m o r t a r s w i t h a l k a l i m e t a l salts. T h e i n v e s t i g a t e d l i t h i u m salts can be c l a s s i f i e d in t w o g r o u p s , a l k a l i n e l i t h i u m salts, from l i t h i u m h y d r o x i d e and v e r y w e a k a c i d s (K^ ~ i0 -7 mol dm -3) and a c i d l i t h i u m salts d e r i v e d f r o m s t r o n g and v e r y s t r o n g a c i d s (K A ~ 10 -2 mol dm -3) (17). The d a t a w e r e p l o t t e d as s e t t i n g times v_ss. pH of the s o l u t i o n . Figs. 1 a n d 2 i l l u s t r a t e the r e l a t i o n s h i p b e t w e e n s e t t i n g t i m e and pH for a l k a l i n e salts and a c i d salts. Alkaline lithium salts, salts (hydroxide, carbonate, sulfide

of and

weak and very weak metaborate) have a

acids linear

184

VoL 23,No. 1

T. Matusinovlc and N. Vrbos

E 0 u3

r-

I;3t) 0 v

400

SETTING TIME 1 -O.059pH + 3.2116 t=lO I00 I

I

I0

II

pilaf

I

12

0.001°/o tithium salt in mixing water

FIG. 1 Setting times of paste v_ss. pH for alkaline lithium salts.

u') QU,

E

A

.,,.,

or) r-.

-$

E} L) Lt} 133 0

u~

s<

600 _

4O0

cC Br~- ~ ' ~ ' ' /

j

J

r SETTING TIME L t= 100"2599pH+1,0935

200

l

55 pilaf

I

I

6 6.5 0.001°/o [ithium sort in mixing water

FIG.2 Setting times of paste v__ss, pH of acid lithium salts.

Vol. 23, No. 1

SET ACCELERATORS, ALKALI METAL SALTS. ALUMINATE CEMENT

185

e x p r e s s i o n w i t h a negative slope and follow the equation t

=

1 0 -°'°sgPs +

3.2116

w h e r e t is the setting time. The acids salts (bromide, chloride, nitrate, sulphate) follow a linear plot w l t h a positive slope and seem to obey the e q u a t i o n t

=

1 0 0"2599pH + 1.0935

The effect of hydroxyl group is greater than the effect of the other i n v e s t i g a t e d anions due to the replacement of m o l e c u l e s H20 by hydroxyl groups in the A1 environment leading to a further centre for o x o b r i d g e formation. The other investigated anions have a lesser effect w h i l e they substitute OH groups in the c o o r d i n a t i o n sphere of AI, w h i c h leads to the removal of a hydroxyl group n e c e s s a r y In the process of oxolation. Acknowledqment

The authors a c k n o w l e d g e financial support from the M i n i s t r y of science, t e c h n o l o g y and informatics of Croatia. References

I.

"Fluldizlng M o d l l n g Material for M a n u f a c t u r i n g Cores and Molds and a M e t h o d Therefor", U.S. Patent 3,600.203. 2. "Verfahren zur V e r k ~ r z u n g der A b b l n d e z e l t von T o n e r d e z e m e n t e n " R e l c h s p a t e n t a m t Patentschrlft, Deutschland, Nr. 648851. 3. "Setting and H a r d e n i n g of Alumlnous Cement", U.S. Patent 3,826.665. 4. T.W.Parker, Proc. Third Int. Symp. C h e m i s t r y of Cement, L o n d o n 1952, p512 (5), Cement and Concrete A s s o c i a t i o n (1954). 5. S . R o d g e r and D.D.Double, Cem. Concr. Res., 14, 73 (1984). 6. B.R.Currell, R.Grzeskowlak, H . G . M i d g l e y and J.R.Parsonage, Cem. Concr. Res., Z, 420 (1987). 7. T . I . N o v i n s o n and J.Crahan, Am. Concr. Inst. Mater. J., !, 12 (1988). 8. T.Luong, H.Mayer, H.Eckert and T.I.Novlnson, J. Am. Ceram. Soc., 72 (ii) 2136 (1989). 9. R.Juza and P.Laurer, Z. anorg, allgem. Chem., 275, 79 (1954). 10. R.Juza and P.Laurer, Z. anorg, allgem. Chem., 287, 113 (1956). ii. G.Brauer, H a n d b u c h der Praparatlven A n o r g a n l s c h e Chemle, F e r d i n a n d Enke Verlag, Stuttgart, (1960).

186

12. 13. 14. 15. 16. 17.

T. Matuslnovlc and N. Vrbos

Vol. 23, No. 1

F.M.Lea, The Chemisty of Cement and Concrete, Edward Arnold Ltd., London (1976). P.K.Mehta, Concrete Structure, Properties and Materials, Prentice-Hall., Engelwood Cliffs, New Jersey (1986). D.Muller, A.Rettel, W.Gessner and G.Scheler, J. Magn. Reson., 57, 152 (1984). A.F.WelIs, Structural Inorganic Chemistry, Oxford Press, London (1962). F.A.Cotton and G.Wilkinson., Advanced Inorganic Chemistry: A Comprehensive Text, Interscience Publishers, New York, (1972). J.C.Bailar, H.J.Emeleus, R.Nyholm and A.F.Trontman-Dickenson (Eds.), Comprehensive Inorganic Chemistry, Volume i, Pergamon Press, New York (1973).