~
)Pergamon
Biochemical Systematics and Ecology, Vol. 22, No. 2, pp. 203-209, 1994 Copyright © 1994ElsevierScience Ltd Printed in GreatBritain. All rights reserved 0305-1978/94$6.00+ 0.00
Alkane Distribution in Epicuticular Wax of some Solanaceae Species JULIO A. ZYGADLO, DAMIAN M. MAESTRI and NELSON R. GROSSO C&tedra de Quimica Org,~nica, Facultad de Ciencias Exactas, Fisicas y Naturales, Universidad Nacional de Cbrdoba. Avda. V~lez Sarsfield 299, 5000 Cbrdoba, Argentina
Key Word Index--Solanaceae; Nicotianeae; alkanes; epicuticular wax; chemotaxonomy. Abstract--Alkane distribution patterns were determined in the epicuticular wax of 20 species of Solanaceae. Most species are characterized by the predominance of tritriacontane and hentriacontane. Their use as possible taxonomic markers is also discussed.
Introduction Solanaceae is a family of great importance, and its highest diversity is in South America (Hunziker, 1979; D'Arcy, 1991). Our studies of the epicuticular waxes of the Solanaceae covered 20 species from central to northwestern Argentina, belonging to two tribes: Solaneae and Nicotianeae. The habitats covered include montane forestopen thorny woodland, montane forest with lowland species, open woodland, dry chaco forest, open forest (Cabrera, 1976), montane forest, montane forest-open thorny woodland-evergreen shrubland, mountain grassland, mountain grassland and woodland and open shrubland with columnar Cactaceae (Luti, 1979). The aim of the survey is to get data on the waxes of the Solanaceae, which have not been studied previously to any great extent (Tulloch, 1976; Harborne and Turner, 1984). A comparison of the distribution patterns of epicuticular wax alkanes between different habitats, combined with the determination of the variability within and between taxa, may provide evidence for or against the acceptance of alkane distribution pattern as a useful chemotaxonomic indicator. Materials and Methods Details of plant material used in this study are given in Table 1. Voucher specimens are deposited in the Herbarium of the Museo Botbnico, Facultad Ciencias Exactas, Fisicas y Naturales, Universidad Nacional de Cbrdoba. The milled leaves (500 g) were extracted with 3 I of n-hexane at room temp. The extract was concentrated to a syrup in vacuo at 30°C. Original extract containing approximately 200 mg of wax was chromatographed on 15 g of neutral alumina (May & Baker). Hydrocarbons were eluted by n-hexane. Analysis of the isolate was by a Shimadzu G1A gas chromatograph with a flame ionization detector. Injection port temperature was 360°C. The column used was stainless steel, 60 cm long with 0.4 cm o.d. It was packed with 3% Dexsil 300 coated on a 100/120 Supelcoport. The temperature was programmed from 70360° at 4°C min-1; carrier gas was N2 at 20 ml rain-~. Alkanes were identified by retention time with respect to reference samples run under identical conditions and by their IR spectra (2923, 2354, 1481 and 1375 cm-1). Species relationships were investigated using Principal Components Analysis (PCA) (Sneath and Sokal, 1973). The analytical data were submitted to ordination methods by NTSYS (Rohlf, 1987).
Results and Discussion Results are given in Table 2. Significant qualitative and quantitative variations in alkane compositions were observed among the species. Wax yield (as percentage of dry wt. of leaves) was highest (>4.0%) in Nierembergia (NHm, NH, NS and NA), Petunia (Pert) and Bouchetia(BA) species, while the lowest yield was obtained from the tribe Solaneae and Nicotiana(Nil, NiG and NFI') species. (Received 12 August 1991) 203
J.A. ZYGADLO ETAL.
204 TABLE 1. COLLECTION DATA FOR ALKANE ANALYSIS Taxon Tribe Nicotianeae Nierembergia hippomanica vat. montana Miers N. hippomanJca Miers
Pop. Location
Abbreviate
AIt.
Phytogeographic areas Collector
2400 1800
Mountain grassland Moutain grassland and woodland Mountain forest Mountain forest Mountain forest-open thorny woodland Open forest (espinal) Open forest (espinal) Mountain forest Dry chaco forest Moutain forest with lowland species Open forest (espinal) Mountain forset with lowland species Mountain grassland and woodland Mountain forest-open thorny woodland Mountain forest-open thorny woodland with evergreen shrubland Open shrubland with columnar Cactaceae Open shrubland with columnar Cactaceae Mountain fol-est-open thorny woodland Chaco forest with Yunga element Mountain forest-open thorny woodland
1 2
Cba.; Champaqui Cba.: La posta
NHm NHm
3 4 5
Cba.: La Calera Cba.: B. Masse Cba.: B. Alegra
NH NH NH
500 700 800
6 7 8 9 10
Cba.: Capital Cba.: La Puerta Cba.: C. Monte Sgo. Est. Termas Cba.: S. Roque
NH NH NH NH NS
400 400 700 300 700
11 12
Cba.: Arroyita Cba.: AMC
NS NS
400 700
13
Cba,: Copina
NA
1500
14
Cba.: B. Alegre
NA
800
1
Cba: Tanti
NiL
900
2
La Rioja: Km 228
Nil_.
1000
3
Salta: Alemania
NiG
980
4
Cba.: Alta Graeia
NiG
700
N. tabacum L.
5
Jujuy: S. Salvador
Nil
1552
Bouchetia anomala (Miers) Britton et Rushby Petunia hybrida L.
1
Cba.: Mallin
BA
980
1
Cba.: Capital
Pert
400
Open forest (espinal)
D M Maestri (50)
1
Cba,: Alta Gracia
SP
700
J, A. Zygadlo (47t
2 3
Cat.: El Alto Cba.: Agua de Oro
SP SP
600 700
4 5 6 7
Cat.: El Alto Sgo. Est.: Frias Cba,: Capital Cba.: Agua de Oro
SA SA SA ST
600 200 400 700
8 9
Cba.: Las Tapias Cba.: Agua de Oro
SC SC
800 700
10
Cba.: Flor Serrana
SH
1100
11
Cba.: Agua de Oro
SH
700
12
Cba.: Ftor Serrana
SS
1100
13
Cba: Sta. R. Cat.
SS
700
Mountain forest-open thorny woodland Open woodland Mountain forest with lowland species Open woodland Dry chaco forest Open forest (espinal) Mountain forest with lowland species Mountain forest Mountain forst with lowland species Mountain forest-open thorny woodland with evergreen shrubland Mountain forest with lowland species Mountain forest-open thorny woodland with evergreen shrubland Mountain forest open thorny woodland
N. stricta Sweet
N. aristata Cav.
Nicotiana Iongiflora Cav.
N. glauca Graham
Tribe Solaneae Solanum palinacanthum Dun.
S. argentinurn Bitter et Lillo S. atriplicifolium Ness & chenopodioides Lain S. chacoense Bitter
S. sisymbriifolium Lam.
N. R. Gross (Cord 61) N. R. Grosso (Cord 60) N R. Grosso (Cord 54) N. R. Grosso (Cord 58) N. R Grosso (Cord 57) N. R. Grosso (Cord 55) N, R. Gmsso (Cord 56) N.R. Gross (Cord 6) J A. Zygadlo (57) N R. Grosso (Cord 67) N. R. Grosso (Cord 66) N. B. Grosso (Cord 64) N. R. Gross (Cord 63) N. R. Grosso (Cord 62) D. M. Maestri (1)
D M. Maestri (2) D. M. Maestri (23) D. M. Maestri (24) D. M. Maestri (25) J A. Zygadlo (122)
R. Subils (4457) J. A. Zygadlo (20) R. Subils (4458) R Subils {4413) N, Dot~ory (140) J. A. Zygadlo (21) J. A. Zygadlo (27) J. A. Zygadlo (26) J. A. Zygadlo (101
J. A. Zygadlo (25) J. A. Zygadlo (1)
J. A. Zygadlo (12)
205
ALKANE DISTRIBUTION IN EPICUTICULAR WAX OF SOME SOLANACEAE SPECIES TABLE 1--CONTINUED Taxon
Pop. Location
Abbreviate
14
Cba.: Tanti
SS
900
S. riparium Pers.
15 16 17
Tucuman: Cadillal Salta: R. Frontera Jujuy: Ledesma
SR SR SR
1200 1000 1500
S. diflorum Veil.
18
Cba.: Agua de Ore
SD
700
19
Cba.: Yacanto
SD
800
20
Cba.: Tanti
SD
900
21
Salta: Capital
SD
1221
1
Cba.: Agua de Oro
PVu
700
2
Cba,: Ascochinga
PV
750
3 4 1
Cat.: Ancasti Salta: Guemes Salta: Chorrilfos
PV PV LE
1200 1100 2000
1
Tucuman: Capital
LyA
500
1
Cba.: Mallin
CC
980
Physalis viscuosa L.
Lycopersicon esculentum Mill. Lycianthes asarifolia Kunth et Bouche Capsicum chacoense A. T, Hunz
AIt.
Phytogeographic areas Collector Mountain forest-open thorny woodland with evergreen shrubtand Yunga Yunga Open shrubland with columnar Cactaceae Mountain forest with lowland species Mountain forest with lowland species Mountain forest with lowland species Chaco forest with Yunga elements Mountain forest with lowland species Mountain forest with lowland species Open woodland Chaco forest Open shrubland with columnar Cactaceae Yunga Mountain forest-open thorny woodland with evergreen shrubland
J, A. Zygadlo (7)
J. A, Zygadlo (53) J.A. Zygadlo (183) J.A. Zygadlo (162) J.A. Zygadlo (24) S. Cosa (117) J.A. Zygadlo (130) J.A. Zygadlo (168) J.A. Zygadlo (22) J.A. Zygadlo (23) R. Subils (4424) J.A. Zygadlo (83) J.A. Zygadlo (85) R. Subils (4433) J.A. Zygadlo (120)
Abbreviations: Cba.: CSrdoba; Cat.: Catamarca and Sgo; Est.: Santiago del Estero; Pop.: population; AIt.: altitude (m).
The main features of the alkane distribution patterns resemble those reported previously for Solanum (Puri and Bhatnagar, 1978; Sen, 1987; Maxzud and Zygadlo, 1991), where the odd-carbon alkanes exceed their even-carbon neighbours, a predominance that is characteristic of biogenic alkanes (Eglinton and Hamilton, 1963). In most species the major alkane was hentriacontane, followed by tritriacontane; in Nicotiana Iongiflora (NIL) octadecane assumed a percentage as high as that of hentriacontane. Of the other alkanes, nonacosane was present as an important component in the tribe Nicotianeae and tetratriacontane in Solanum palinacanthum (SP) and Physalis populations (PV). Tin et al. (1971) suggested the adaptive significance of nnonacosane to dry habitats. However, no such correlations of alkane content and habitat could be found in this study. Table 2 suggests that there is greater alkane diversity within Solaneae than within Nicotianeae. The similarity of alkane patterns in the populations of Nicotianeae originating from different phytogeographic areas (Table 1) suggests a higher genetic homogeneity in the biosynthesis of alkanes in these species; outside the tribe Nicotianeae similar observations have been made in Ericaceae (Salasso, 1987) and Euphorbia (Hemmers and GL~Iz, 1986). In this study the genus Solanum have been grouped into two subgenera: Solanum and Leptostemonum (Fig. 1), according to Morton (1976). Leaf wax alkane compositions are quite simiar for the species of subgenus Leptostemonum examined (Ci33C33 accounted for at least 23.4% of the total alkanes) and is a feature which may separate it from subgenus Solanum. The alkane composition of S. chacoense (SH) (Table 2) is closely related to that of S. tuberosum (Sen, 1987); they are both kinds of potato (D'Arcy, 1972). There was evidence for the presence of branched alkanes. Small percentages of
206
J.A.
T A B L E 2. A L K A N E
DISTRIBUTION
Number of
Populations
caq'tons
l N H m 2NHm 3NH
IN EPICUTICULAR
4NH
5NH
6NH
7NH
WAX
8NH
OF LEAVES
9NH
ZYGADLO
ETAL
OF SOLANACEAE
10NS l l N S
12NS ;3NA 14NA 1NiL
2Nil
3NiG
4NiG
5NiT
211
08
05
0/
tr
09
10
08
60
50
1BA
1PeN
52
08
13 15 16 17 ]18 18
193
19
06
20 i21
; 9 tr
21
05
i22 22
tr
tr
23
tr
t{
24 25
28
51
0.8
26 27
3.2
62
23
07
tl
52
~I
tr
41 tr
~2 tl
62
/7
1!
I; t¢ if
0 /
tr
b
tT
t~
h 16
tr
Ii
o8
4.6
41
46
47
13
21
16
23
53
85
18
77
51
22
07
09
11
11
31
30
07
27
05
~0
18
18
24
15
}2
23
tr
09
! 4
10 118
0~;
/ ,'
] 1
21
~9
16
43
156
18.1
41
68
25 28 i29 ;6,g
112
BO
10
2.4
30
31
23
29
i31
29
30
31
302
255
i32
51
57
32
34
3(5
i33
10
16
33
22.9
130
1i ~
/01
!88
86
3S
114
49
48
26
42
21
22
29
17
27
21
13
20
320
295
264
344
2? 9
233
295
292
254
312
29
16
48
47
41
20
20
tr
05 81
82
B?
57
7,9
i69
14.0
18.2
14
10
32
30
32
131
162
110
!1
r~9
08
24
19
18
54
22
4.2
50
1~9 320
46
39
2
334
198
212
tr
10
32
74
14
42
14
05
16
16
3C
21
0£ 84
26
I 3
33
14
10
h2 b2
2.4
t~02
574
29 5
322
3:2 S
31
68
22
60
4"~ 31
63
! 56
268
240
243
410
22.,3
404
362
231
22 g
340
211
20.8
223
206
234
112
100
15 £
22 b
!1
15
19
13
27
25
24
28
16
10
10
10
25
22
3!
1/
1!
13
i2
36
i35
13
2,]
17
;.8
~0
17
18
0.6
10
12
35
26
52
35
52
32
62
102
30
25
22
40
31
33
84
31
~r
64
~
36
23
tr
1]
27
37
I 9
[r
18
38
4.0
11'
tr
13
15
3/
32
4
23 2~' I~
A [3 C D %
62
58
40
65
67
bl
5.8
67
41
50
48
62
54
46
38
31
26
45
5~1
ALKANE
DISTRIBUTION
1SP
3SP
2SP
4SA
5~,
tr
IN EPICUTICULAR
6SA
07
7$T 1.1
8SC 9SC
WAX
OF SOME
SOLANACEAE
SPECIES
207
10SH 11SH 12SH 135S 14SS 15SR 16SR 17SR 18SD 19SD 20SD 21SD 1PV
2PV
3PV 4PV
1LE
0.6
1.0
12
0.7
1.0 1.4
0.6 0.7
0.8
1.2
tr 0.7 tr
0.7
1.0 tr
~
0.5
0.7 tr 1.3
1.9 7.5 20
0.9
1.0
2.9 2.5 2.1
tr
0.7
1.0 1.7
1.1
0.7
2.2
7.1
2.2
3.9
4.2
11.1
10.0
12.2
4.1
3.7 tr
1.0
1.4
1.4 6.5
0.9 7.6 1.0 1.9
tr
tr
1.0
1.2
2.3
1.5
1.5
2.1
3.4 4.5
3.0
2.5
1.0
1.1
1.0
1.3
0.9 2.0
2.4 2.5
1.0 2.4
0.6 tr 1.7 0.6
1.0 1.0
3.2
2.5
1.6
1.4
1.0 tr
1.3
2.0
0.9 1.1
10 1.1
5.3
6.3
5.7
2.5
4.5
4.5
3.5
3.3
1.3
1.1
1.1
tr
2.5
2,8
3.2
4.6 1A
5.2 0.9
4.8 1.2
3.2
2.8
3.6
3.0
4.0
5.7
2.1
2.2
1.8
2.4
3.6
4.1
2.0
2.1 1.1
2.2 0.9
1.7
2.1
0.9 2.4
1.0 2.4
1.5 3.5
4.7
7.4 1.5
5.1
8.0
6.2
7.1
3.5 1.8
7.4
5.8
6.6
7.4
5.6 1.1
8.0 0.9
7.0 1.1
4.3
4.4
4.0
1.9
4.0
4.3
3.6
4.1
(17
0.8
1.0
9.3
9.7
9.8
3.0 3.8
6.2
4.1
6.0
7.4
10.8
2.9 2.2 2.4 5.0 51 15.1 14.4 15.1 12.4 29.4 28.7 31.6 28,5 7.3
6.7
8,4
8.5
8.5
7.0
3.8 tr
1.1
1.2 1.2
0.5 tr
0.5 tr
9.7
11.0
6.4
5.4
9.0
7.8
4.0
3.8
4.4
5.1
1.3
1.3
1.0
2.9
2.4
1.5 1.1
1.0 1.1
2.1
1.9
3.4
2.2
47
9.0
8.7
8.8
8.1
91
9.2
7.1
6.0
6.3
5.7.
4.3
4.0
4.2 tr
2.7
4.0
4.6
41
2.I
4.5
2.1
2.3
1.8
2.7
2.7
1.4
2.5
tr
8.7 4.5
9.4
10.4
3.7 10,5
17.8 17.1 9,7 8.4
14.0 18.2 18,8 3.7 tr 5.2 2.2 tr
4.6
3.6
50
3.3
2,6
11
0.9
1.6
6.0
6.5
1.0
1.4
1.8
2.4
3.2
2.8
4.1
0.5
0.5
5.5
6.3
1.9
2.2
2.3
1.8
3.6
2.7
2.5
3.2
3.3
3.7
2.5
2.7
4.3 tr
7.3 12.8 11.7 2.3 2.0 1.8
5.5 2.5
7.0 5.7
12,5 4.3
6.1 20,5 21.0 17.1
3.9
7.4 6,0
3,1 3.4
3,2 1.7 0.9
3.8
7.1 3.9
1.1 0.7
5.0
8.4
2.5 21.0 25.0
2.2 1.1
5.1
11.1
9.3
17,2 12.3 19.1 0.8 6.7 5,8
5.5
5.0
18.2 10.0
5.8
7.3
3.5 tr 2.3 tr tr tr
3.1
2.1 3.1
0.6
1.5
0.5
1.9 1.5
5.1
3.0
1.1
2.3
1.1
4.5
2.0 1.2
4.8
3.5
1.8
1.1
3.5
6.2
2.4 3.7
0.6
8.6
5.1
10.2
3.7
0.5 tr 0.8 2.4
5.0
2.3 4,5
2.2 5.9 2.6
1.0
1.2
2.8 2.7
4.0
2.9
1.3
1.0
3,5
tr
tr
0.6
tr
1.2 tr
tr
0.5
tr
4.9
6.8 2.4
1.5 0.9
1.5 0.5 tr
13.3 4,8
5.4 11.2 10,8 13.2 3.8 3.9 4,2 4.5
3.9 3.8 4.1 2.2 tr tr
1.6
6.8
2.3
6.5 5.3 0.7
4.1 2,4
7.9
12.7 4.8
3.0
7.9 4.8 1.3
4.5 1,9
tr
t.7
16.1 29,6 24.0 13.2 6,4 5.7 3,0 4.0 5.2
3.2
7.5 5.2
12.4 13.7 14.2 4.0 5.8 5,6 3.6 4.8
1.4
0.9
2.9
4.2
2,4 2.3
tr
1.7
2.0
5.2
7.4 1.5
0.6
1.1
12.0 10.0 6.0 4.9 4.4. 1.3 4.5 3.2 4.0 3.6 4.3 11,6 12.0 13.0 24.0 30,4 31.4 31.4 13,3 24.5 26.5 22.7 27,6 25.2 24.8 26.1
20.1 15.1 18.2 12,4 10.9 10.6 9,2 2.5 10.1 6.1 07
5.5
8,7
2.5
1.8
7.5
2.1 12.1
2.0
0.6
7.3
2.1
2.0
0.7
8.5
1.3
2.3
1.5
0.7
1.0
4.6 10.2
2.5
0.7
1.3
0.9
3.1 9.9
0.5
0.8
0.8
tr
1.0
1.0
0.5
2.7
0.5 tr
1.2
0.6
1.3
tr
1.2
1.4
tr 0.5
1.0
0.9
1.0
3,0
1LyA 1CC
1.0
0.9 1,0
5.5 2.5 4,3 6.0 0.6 0.7
2.6 2.9
3.4
3.8
3.5
4.0
2.5
3.1
3.8
Trace (tr) = (<0.5%) *Wax yield is expressed as percentage of dry wt. of leaves. Letter codes follow those given in Table 1.
3.0
3.2
2.7
2.6
3.2
3.6
3.3
2.6
208
J. A ZYGADLO ET.4L.
1,0 Subg Leptostemonum
13SS 12SS I&SS ',
0.5
1SP
', "" . . 2PV
1LyA
~
;
~sm
Subg, Sotonum
2SP ,
10SH 21SD 1CC
Ipv16SR 11SH
]9SD
~
20SD 18sD ISSR 0 .--~iS----~,Pv 1 N I L ' - . 17SR 7NH BNH9NH 5NiG " ' , \ 5NH 2 N i L 3NiG \ \ 2NHm IBA llNS 3NH 1NHm 10NS .13NA 12NS 14NA ~NH 6NH 1Pert
8SC 9SC
3PV
5SA
7ST Tribe Sotaneae
1LE 6SA
0,! Tribe r4icotianeae
-1,( 4SA
0
05 COMPONENT I
1.0
FIG. 1. PCA OF ALKANES FOR 21 SPECIES OF SOLANACEAE. Component I accounts fol 34,56% and component II 18.39%, of the total variation in the data set. Correlation coefficient = 0.90. Letter codes follow those given in Table 1.
branched alkanes have been reported in So/anum po/yadenium, S. hougasii(Mecklenburg, 1966) and Nicotiana tabacum (Carruthers and Johnstone, 1959; Mold et a/,, 1963). Among the branched chain hydrocarbons, only the iso-series was present, with chain lengths of C18, C21, C22, C28 to C33, and C35. Iso-hentriacontane and isotritriacontane were present in variable amounts, ranging from zero in some Nierembergia populations to as much as 21% in Solanum sisymbriifolium (SS). AIkanes of higher carbon chain lengths, such as unidentified compounds A, B, C, and D, were present in S. palinacanthum (SP), S. argentinum (SA), S. atriplicifolium (ST), L. esculentum (LE), L. asarifolia (LyA) and C. chacoense (CC) and alkanes of lower carbon chain length, such as tridecane, pentadecane, hexadecane and heptadecane, were present in Solanum, L esculentum (LE) and L. asarifolia (LyA); in the tribe Nicotianeae the chain lengths ranged from octadecane to tetracontane (Table 2). Patterns observed from the two-dimensional ordination (Fig. 1) suggest that support of the tribes (Hunziker, 1979) with alkane data is tenuous at present. However, fatty acid composition indicates these species to be delineated within two tribes (Grosso et al., 1991). We think that more investigations are required to determine the value of alkanes in the chemosystematic studies of Solanaceae.
ALKANE DISTRIBUTIONIN EPICUTICULARWAX OF SOME SOLANACEAESPECIES
209
Acknowledgements--The authors thank Dr R. Subils, Dr N. Dottory and Dr S. Cosa for providing vegetal materials. Solvent (n-hexane) was provided by Antonio Garcia e hijos Co.
References Cabrera, A. L. (1976) Enciclopedia Argentina de Agricultura y Jardineria. Regiones Fitogeograficas Argentinas. Acme, Buenos Aires. Carruthers, W. and Johnstone, R. A. W. (1959) Composition of a paraffin wax fraction from tobacco leaf and tobacco smoke. Nature 184, 1131-1132. D'Arcy, W. G. (1972) Solanaceae studies Ih Typification of subdivisions of Solanum. Ann. MissouriBot. Gard. 59, 262-278. D'Arcy, W. G. (1991) The Solanaceae since 1976, with a review of its biogeography. In Solanaceae II1. Taxonomy, Chemistry, Evolution. (Hawkes, J. G., Lester, R. N., Nee, M. and Estrada, N., eds), pp. 75-136. The Royal Botanic Gardens, Kew, U.K. Eglinton, G. and Hamilton, R. J. (1963) In Chemical Plant Taxonomy (Swain, T., ed.), pp. 187-240. Academic Press, London. Grosso, N. R., Zygadlo, J. A., Abburra, R. E. and Decollati, N. (1991) Fatty acids composition in the seminal oil of some Solanaceae species. Herba Hungarica 30, 41-46. Harborne, J. B. and Turner, B. L. (1984) Plant Chemosystematics. Academic Press, London. Hemmers, H. and GiJIz, P. G. (1986) Epicuticular waxes from leaves of five Euphorbia species. Phytochemistry 9, 2103-2109. Hunziker, A. T. (1979) South American Solanaceae: a synoptic survey. In Linnean Society Symposium (Hawkes, J. G., Lester, R. N. and Skelding, A. D., eds), Series 7, pp. 49-56. Academic Press, London. Luti, R. (1979) Vegetaci6n. In Geogrefia Fisica de la Provincia de Cordoba (Miatello, H. ed.), pp. 300-370. Boldt, C6rdoba. Maxzud, M. K. and Zygadlo, J. A. (1991) Variaciones en alcanos foliares en Solanum (Solanaceae). Anales de Biologia (Murcia) 17, 134-137. Mecklenburg, H. C. (1966) Inflorescence hydrocarbons of some species of Solanum and their possible taxonomic significance. Phytochemistry 5, 1201-1203. Mold, J. D., Stevens, R. K., Means, R. E. and Ruth, J. M. (1963) The paraffin hydrocarbons of tobacco, normal, iso-, and anteiso-homologs. Biochemistry2, 605-610. Morton, C. V. (1976) A Revision of the Argentine Species of Solanum, Academia Nacional de Ciencias, C6rdoba. Purl, R. K. and Bhatnagar, J. K. (1978) Solanum platanifolium studies on the petroleum ether extracts of roots, stems and leaves. Lloydia 41, 634-637. Rohlf, F. J. (1987) Numerical Taxonomy and Multivariate Analysis System. Exeter, New York. Salasso, I. (1987) Alkane distribution in epicuticular wax of some heath plants in Norway. Biochem. Syst. Ecol. 15, 663-665. Sen, A. (1987) Chemical composition and morphology of epicuticular waxes from leaves of Solanum tuberosum. Z. Naturforsch. 42C, 1153-1156. Sheath, P. H. A. and Sokal, R. K. (1973) Numerical Taxonomy Freeman, San Francisco. Tin, W., Vasek, F. C. and Scora, R. W. (1971) Analysis of n-alkanes from three species of Clarkia. Am. J. Bot. 58, 255-256. Tulloch, A. P. (1976) Chemistry of waxes of higher plants. In Chemistry and Biochemistry of Natural Waxes (Kolattukudy, P. E., ed.) pp. 235-288. Elsevier, Amsterdam,