Forensic Science International 148 (2005) 225–231
Announcement of population data
Allele frequencies and haplotypes of the STR loci of the PowerPlex Y-system in southern populations from Korea Byung-Won Chuna,c, Sang-Churl Shina, Yang-jung Kima, Kyung-Sook Kima, Dong-Ho Choia, Kwang-Hoon Kima, Jae-Young Kimb, Ho-Sung Kangc,* a
Department of Forensic Medicine, Southern District Office, National Institute of Scientific Investigation, Busan 606-081, South Korea b Department of Environmental Health, Harvard School of Public Health, Boston, MA 02215, USA c Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, South Korea Received 5 April 2004; received in revised form 19 April 2004; accepted 30 April 2004 Available online 17 June 2004
Abstract In this study, 12 Y-specific STR loci – DYS391, DYS389 I, DYS439, DYS389 II, DYS438, DYS437, DYS19, DYS392, DYS393, DYS390, DYS385a/b – were analyzed in 259 unrelated males from the southern populations in Korea using the PowerPlex Y PCR system. # 2004 Elsevier Ireland Ltd. All rights reserved. Keywords: PowerPlex Y-system; DYS391, DYS389 I, DYS439, DYS389 II, DYS438, DYS437, DYS19, DYS392, DYS393, DYS390, DYS385a/b; Gene diversity; Haplotype; Southern Korean
Population: Blood and buccal swab samples were collected from 259 unrelated healthy Korean males (107 were from Gyeongnam province, 119 from Jeonnam province, and 33 from Jeju – the biggest island of Korea). Extraction: Genomic DNA was isolated from buccal swabs and bloods by the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany). PCR: We used a commercially available multiplex amplification and typing kit (PowerPlex Y, Promega, USA) for 12 STR loci (DYS391, DYS389., DYS439, DYS389., DYS438, DYS437, DYS19, DYS392, DYS393, DYS390, DYS385a/ b), including the allelic ladder. PCR amplification was performed using 5–10 ng of DNA in a final volume of 12.5 ml. PCR was performed in a Gene Amp PCR system 9700 Thermal Cycler (Applied Biosystems, CA, USA) according to the procedure described in the instruction manual of Promega. Detection system: ABI PRISM 310 Genetic Analyzer (Applied Biosystems, Foster City, CA, USA) and GeneScan * Corresponding author. Tel.: þ82 51 510 22 75; fax: þ82 51 510 22 75. E-mail address:
[email protected] (H.-S. Kang).
software 3.7 (Applied Biosystems); the genotyping of the PCR products at each 12 STR loci was carried out based on the sequenced allelic ladder using PowerTyper Y Macro software (Promega, USA). Analysis of data: Haplotype and allele frequencies were estimated by gene counting. Gene and haplotype diversities were estimated according to the formula by Nei [1]. Access to the data: The complete data are available to any interested researcher via email from the author (http:// www,
[email protected]). Results: See Tables 1, 2 and 3. Other remarks: Each of the twelve loci in the kit has been well studied from various populations [2–8]. We applied this PowerPlex Y-system to analyze southern populations in Korea. The Koreans, the Han ethnics in China and the Honshu-Japanese populations showed very similar allele distribution patterns [3–7]. Tables 1 and 2 show the allele frequencies distribution of each locus in the south Koreans. In the southern Korean populations, 233 different haplotypes were observed and the discrimination power was calculated to be 0.8996. The haplotype diversity for 12 loci was 0.9987, which was equal with the value observed for the HonshuJapanese population [3]. In this study, the allele frequencies
0379-0738/$ – see front matter # 2004 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.forsciint.2004.04.076
226
B.-W. Chun et al. / Forensic Science International 148 (2005) 225–231
Table 1 Allele frequencies and gene diversity values at 10 Y-STR loci in a southern Korean populationa Allele
DYS391
DYS389
DYS439
DYS389
DYS438
DYS437
DYS19
DYS392
DYS393
DYS390
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 hb
0.004 – 0.004 0.039 0.822 0.131 – – – – – – – – – – – – – – – – – – – – – 0.306
– – – – – – 0.293 0.309 0.375 0.023 – – – – – – – – – – – – – – – – – 0.680
– – – – 0.027 0.270 0.525 0.162 0.012 0.004 – – – – – – – – – – – – – – – – – 0.626
– – – – – – – – – – – – – – – – – – – – 0.004 0.050 0.239 0.409 0.224 0.066 0.008 0.720
– – – – 0.514 0.100 0.054 0.320 0.012 – – – – – – – – – – – – – – – – – – 0.622
– – – – – – – 0.004 0.792 0.193 0.012 – – – – – – – – – – – – – – – – 0.337
– – – – – – – 0.019 0.104 0.413 0.363 0.100 – – – – – – – – – – – – – – – 0.678
– – – – 0.004 0.208 0.112 0.479 0.166 0.027 0.004 – – – – – – – – – – – – – – – – 0.689
– – – – – – 0.309 0.467 0.158 0.062 0.004 – – – – – – – – – – – – – – – – 0.659
– – – – – – – – – – – – – – – 0.015 0.097 0.548 0.220 0.100 0.019 – – – – – – 0.633
a b
n¼259. h: Gene diversity value.
Table 2 Allele frequencies and gene diversity values at DYS385 in a southern Korean population
Table 2 (Continued ) Allele
DYS385
Allele
DYS385
Allele
DYS385
Allele
DYS385
9–18 9–19 9–20 10–10 10–12 10–13 10–17 10–18 10–19 10–20 10–21 10–22 11–11 11–12 11–13 11–14 11–15 11–16 11–17 11–18
0.004 0.008 0.004 0.012 0.008 0.004 0.042 0.154 0.085 0.058 0.015 0.004 0.004 0.031 0.023 0.004 0.004 0.027 0.012 0.023
12–15 12–16 12–17 12–18 12–19 12–20 13–13 13–14 13–15 13–16 13–17 13–18 13–19 13–20 13–23 14–17 14–18 14–19 14–20 14–21
0.012 0.015 0.035 0.046 0.019 0.019 0.012 0.004 0.004 0.008 0.015 0.031 0.042 0.035 0.004 0.012 0.012 0.012 0.012 0.012
11–19 11–20 11–21 11–22 12–12 12–13 12–14 ha
0.015 0.012 0.004 0.004 0.008 0.012 0.004 0.953
14–22 15–18 15–19 15–20 15–21 15–22 16–20
0.015 0.004 0.008 0.012 0.012 0.004 0.004
a
h: Gene diversity value.
of the several loci of southern Koreans were more similar to those in the Honshu-Japanese population than in the Korean population data reported previously by Lee et al. and Kim et al [3,5–7]. For instance, the allele frequency patterns of loci DYS391, DYS389, DYS438 and DYS437 are quite closer to the Honshu-Japanese population. Therefore, we propose that there are distinct allele distributions and several alleles which are not common among the regional subpopulation groups in Korea. Because of these reasons, we
B.-W. Chun et al. / Forensic Science International 148 (2005) 225–231
227
Table 3 List of 233 Y-specific STR haplotypes detected in 259 unrelated males in southern population of Koreaa Haplotype DYS391 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 10 11 10 11 10 10 10 11 10 11 11 10 10 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10 10
DYS389
DYS439
DYS389
DYS438
DYS437
DYS19
DYS392
DYS393
DYS390
DYS385
nb
13 12 13 14 13 14 14 12 12 13 14 13 12 14 14 14 12 13 12 14 14 14 13 14 14 12 12 14 14 13 12 14 14 12 13 14 13 13 14 14 14 12 14 14 13 13 14 12 13 13 12 12 14 13 12 12
11 10 10 12 12 13 11 12 11 12 12 12 11 12 12 11 12 11 11 13 11 12 11 12 13 11 14 12 14 12 11 13 12 12 12 12 13 12 11 12 12 13 12 12 12 13 13 12 11 12 12 12 12 12 13 12
29 30 30 29 28 31 31 28 29 29 29 28 27 29 29 29 28 29 28 30 31 29 28 29 28 31 28 29 31 30 29 29 29 28 30 30 29 29 30 30 29 28 31 30 29 29 21 27 30 28 28 28 29 28 30 30
10 10 11 13 13 12 13 10 10 10 13 12 10 13 13 13 14 10 10 12 11 13 10 13 13 10 11 13 12 10 10 13 13 11 10 13 10 10 10 13 10 11 13 10 13 10 10 11 10 13 10 12 13 13 10 10
14 15 14 14 14 14 14 14 15 14 14 14 14 14 14 14 14 14 15 14 14 14 14 14 14 15 16 14 14 14 15 14 14 15 14 14 14 14 14 14 14 15 14 16 14 14 14 15 14 14 15 15 14 14 15 15
16 16 16 15 16 15 15 15 15 16 16 16 15 16 16 15 15 17 15 15 15 15 16 14 15 16 14 16 15 17 15 15 16 14 17 15 15 15 15 16 16 14 15 16 15 16 16 14 15 17 15 14 14 15 15 15
14 13 11 13 13 14 13 14 12 11 13 13 13 13 14 13 13 14 12 14 12 13 11 13 13 13 14 14 14 13 12 13 13 14 11 13 11 11 11 13 11 15 13 11 13 11 11 14 14 13 12 14 13 13 12 12
13 12 13 13 13 12 13 13 12 15 13 13 12 13 13 12 13 13 13 13 14 13 14 13 13 12 12 13 12 12 12 13 13 12 13 13 14 14 15 13 14 12 13 15 13 15 13 12 13 13 12 12 13 13 13 12
22 24 25 24 23 23 23 23 23 23 24 23 25 23 23 23 23 22 23 23 24 22 23 23 23 24 24 23 23 24 24 21 23 25 26 22 24 23 23 23 23 24 22 23 22 23 25 24 24 23 23 24 23 22 23 23
11.13 13.19 11.13 10.18 10.18 10.20 10.20 13.13 12.15 11.16 10.18 10.18 12.19 10.17 10.18 10.20 10.18 11.13 12.19 10.20 12.16 10.21 11.18 10.20 10.19 13.20 13.20 10.17 10.21 12.20 12.15 10.21 10.18 13.19 13.18 10.19 11.12 12.17 11.20 10.19 12.19 13.20 9.20 10.19 11.19 11.16 13.17 14.18 12.20 10.18 12.16 13.19 10.18 10.20 13.18 10.12
1 1 1 3 3 1 1 1 2 2 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
228
B.-W. Chun et al. / Forensic Science International 148 (2005) 225–231
Table 3 (Continued ) Haplotype DYS391
DYS389
DYS439
DYS389
DYS438
DYS437
DYS19
DYS392
DYS393
DYS390
DYS385
nb
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
13 13 13 14 14 13 14 13 12 14 14 13 13 14 12 12 14 13 12 12 14 13 14 13 14 12 14 14 13 15 14 12 12 12 13 13 14 12 12 13 13 13 14 12 14 13 13 14 14 12 14 12 13 14 14 12 14
11 12 12 12 12 11 15 11 12 11 12 12 12 12 12 11 13 11 12 13 13 12 12 13 12 12 12 12 11 10 11 11 12 10 11 13 11 12 13 12 12 12 12 11 12 12 12 10 12 12 12 11 11 12 10 12 11
29 29 29 30 29 31 30 32 29 29 29 30 28 30 28 29 29 29 27 28 32 28 29 27 30 30 30 29 29 31 30 29 28 28 29 29 30 29 29 30 30 29 29 28 29 29 28 30 30 28 29 28 30 29 31 28 31
10 10 10 13 13 10 12 10 10 10 10 10 10 13 10 10 10 13 10 10 10 13 13 13 12 11 10 10 10 10 10 10 10 11 10 10 12 11 10 10 12 10 13 10 13 10 14 10 10 10 13 10 10 13 10 10 10
14 14 14 14 14 14 14 14 14 14 14 15 15 14 14 15 14 14 13 14 15 14 14 14 14 15 14 14 14 14 14 15 14 14 14 14 14 15 15 15 14 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14
14 6 16 15 15 15 16 16 17 15 16 15 15 15 17 15 16 15 16 16 16 16 16 15 15 14 16 16 15 14 15 16 17 14 16 16 13 15 16 15 16 16 15 17 16 16 16 15 15 17 16 15 15 16 15 15 15
15 11 11 13 14 13 14 11 13 11 11 12 12 13 13 12 11 13 13 12 12 13 13 13 14 14 11 11 14 14 11 13 13 14 11 11 14 12 13 12 13 13 13 12 13 11 13 11 11 16 13 13 11 13 14 13 13
13 14 14 13 14 12 12 15 12 14 14 13 12 13 12 12 15 13 12 12 12 14 13 13 13 12 14 15 13 13 14 12 12 12 14 14 14 12 12 13 13 12 13 12 13 14 13 15 14 13 13 12 13 13 13 12 14
21 23 23 22 23 25 23 24 24 23 23 23 24 22 24 23 25 22 25 24 25 23 22 23 23 25 23 24 22 23 23 24 24 23 23 23 24 23 24 23 23 24 23 24 23 23 23 23 23 23 23 26 24 23 21 25 24
12.14 12.17 12.18 9.19 10.19 10.18 10.20 11.17 12.17 11.18 12.20 12.18 12.17 10.18 14.22 12.12 10.21 10.18 14.19 13.17 15.19 10.18 10.10 10.18 10.20 13.20 11.20 10.20 11.13 11.12 11.21 15.21 12.18 13.19 12.18 11.16 15.19 11.15 15.22 11.12 9.18 12.20 10.17 13.20 10.19 12.17 10.18 11.18 12.18 14.20 10.18 14.19 11.13 10.10 11.12 12.19 11.17
1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 6 1 1 1 1 1 4 2 1 1 1 1 1
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 9 10 10 10 10 11 11 10 10 9 10 10 10 10 10 10 10 10 10 10 10
B.-W. Chun et al. / Forensic Science International 148 (2005) 225–231
229
Table 3 (Continued ) Haplotype DYS391
DYS389
DYS439
DYS389
DYS438
DYS437
DYS19
DYS392
DYS393
DYS390
DYS385
nb
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
13 12 14 12 14 14 12 12 13 14 14 14 13 12 14 12 12 14 12 14 13 12 12 12 14 13 14 13 12 12 13 13 13 15 12 12 12 12 14 12 13 12 12 12 14 13 14 13 14 13 12 13 13 13 12 13 13
12 12 11 12 12 13 11 12 13 11 13 12 12 11 12 11 12 11 12 11 10 11 12 12 13 11 12 12 13 11 12 13 12 12 12 12 11 12 13 13 11 11 12 12 12 11 13 13 14 12 12 12 11 11 11 12 13
28 29 29 28 30 29 28 29 29 29 31 29 30 29 29 28 27 29 29 29 29 28 27 28 29 30 29 30 29 27 30 29 29 30 28 28 28 28 30 28 28 27 28 28 30 28 28 28 29 29 29 28 30 29 29 29 29
13 10 13 13 11 13 11 10 10 13 10 13 10 10 13 10 10 13 10 13 10 10 11 10 10 10 10 10 11 10 10 10 10 13 11 10 10 10 13 11 10 11 11 10 12 10 13 13 10 13 10 13 12 10 12 10 10
14 14 14 14 14 14 15 14 14 14 15 14 14 15 14 15 14 14 14 14 14 14 15 15 14 14 14 15 14 14 14 14 14 14 14 14 14 14 14 15 14 15 15 15 14 16 14 14 14 14 15 14 14 14 15 14 14
16 16 16 15 16 15 14 17 17 16 17 15 15 15 16 17 17 16 16 16 16 17 14 15 15 13 15 15 17 17 17 16 15 15 15 16 17 16 15 14 15 17 14 14 13 16 16 16 16 15 15 16 13 16 15 15 16
13 14 13 13 14 13 14 13 13 12 13 13 11 13 13 13 11 13 12 13 11 13 14 12 13 14 11 12 11 13 11 11 11 13 12 13 13 13 13 14 12 13 14 11 15 13 13 13 11 13 12 13 15 11 13 11 11
13 13 13 13 12 13 12 12 14 14 12 13 13 12 13 12 13 13 12 13 13 12 12 13 14 14 14 12 13 12 15 14 14 13 12 12 12 12 13 12 12 12 12 12 14 12 13 13 14 14 12 13 14 13 12 15 15
23 23 23 23 23 23 23 24 25 23 24 23 23 23 23 24 23 23 23 23 25 25 23 23 25 23 23 23 26 25 23 23 23 23 23 25 24 26 22 23 23 24 24 24 25 25 23 23 23 22 22 23 25 24 23 23 23
10.20 13.13 10.18 10.18 10.20 10.18 13.19 12.18 13.20 10.18 11.20 10.19 13.14 15.20 10.17 14.21 11.16 10.17 12.18 10.19 10.12 14.21 13.20 13.18 12.16 11.12 11.18 12.16 14.17 14.18 11.19 12.17 13.18 10.19 11.12 14.17 14.21 14.20 10.19 13.19 14.17 13.15 13.19 13.18 15.21 12.18 10.19 10.19 11.18 10.22 13.16 10.17 15.21 12.13 12.17 11.19 11.18
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 10 10 10 10 10 10 10 11 10 10 10 9 10 11 10 11 10 10 10 10 11 10 10 10 10 10 10 10 11 10 10 10 10 9 10 10 10 9 10 11 10 10 10 9 11 10 10 10 10 11 10 9 9 10 10 11
230
B.-W. Chun et al. / Forensic Science International 148 (2005) 225–231
Table 3 (Continued ) Haplotype DYS391
DYS389
DYS439
DYS389
DYS438
DYS437
DYS19
DYS392
DYS393
DYS390
DYS385
nb
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
14 14 12 12 14 12 12 12 14 14 13 12 14 12 13 12 15 14 13 14 13 12 13 14 13 15 12 14 13 14 13 13 14 15 12 14 12 15 13 14 13 14 12 12 14 12 13 13 13 13 14 14 12 13 13 14 13
12 12 11 12 12 12 12 12 13 12 12 11 12 12 13 12 12 11 12 12 11 13 12 13 11 12 11 12 12 11 11 13 13 12 11 12 11 11 11 11 13 13 11 13 11 13 12 12 13 13 11 11 11 12 11 12 11
29 29 30 30 30 28 30 28 30 29 29 28 31 28 29 29 30 30 29 30 28 28 27 30 29 30 29 29 29 30 30 27 31 30 29 30 28 31 29 30 28 29 28 28 30 27 29 29 30 28 30 29 30 30 30 29 31
13 13 10 10 13 11 10 11 10 13 10 11 11 11 10 10 12 13 10 13 10 10 13 13 10 10 11 13 10 10 10 13 11 13 10 13 10 10 10 10 10 13 10 11 12 10 10 10 10 10 13 13 10 10 10 10 10
14 14 14 14 14 15 14 14 14 14 14 15 14 14 14 15 14 14 14 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 15 14 14 14 14 14 15 14 15 15 14 14 14 14 14 15 14 14 15 14 14 14 14
16 15 17 15 15 14 15 14 15 15 16 14 15 14 15 15 15 15 16 15 15 15 15 16 14 16 14 15 16 14 15 15 14 16 15 15 15 15 14 15 16 17 15 14 13 17 16 15 15 17 16 15 15 17 15 16 15
13 13 13 13 13 14 11 14 11 14 11 14 11 14 11 10 14 13 11 13 12 13 13 13 15 11 14 13 11 15 12 13 14 13 13 13 13 13 15 11 14 13 12 14 14 11 11 13 12 14 13 13 12 11 14 11 13
13 13 12 ‘12 13 12 14 12 14 14 14 12 13 12 14 12 13 13 14 13 13 13 13 13 13 15 12 13 14 13 15 13 13 13 12 14 12 14 13 16 12 13 12 12 14 13 15 12 12 12 13 13 13 13 13 15 12
24 23 24 24 23 24 23 24 23 22 23 25 24 24 23 25 23 22 23 22 23 23 22 23 21 24 23 22 23 23 25 23 23 23 24 24 25 22 22 23 22 23 24 25 24 23 23 24 23 22 23 23 23 26 24 24 24
10.19 10.19 14.22 13.13 10.17 13.19 11.13 13.17 11.22 10.18 12.18 13.20 13.18 13.19 12.17 10.13 10.10 10.20 13.16 11.19 15.18 14.20 10.18 10.18 11.14 10.20 13.19 10.20 12.19 12.13 10.18 10.18 11.12 10.20 15.20 10.19 14.18 12.17 12.13 14.22 11.11 10.19 12.12 13.18 16.20 11.16 11.17 12.18 11.16 11.12 10.18 10.17 13.17 13.20 12.20 10.19 14.22
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 11 10 10 10 10 10 10 10 10 11 10 10 11 10 10 9 10 10 10 11 11 10 10 10 10 11 10 11 10 10 9 10 10 10 11 10 11 10 10 10 10 10 10 6 11 10 10 10 10 11 10 10 10 11 10 10
B.-W. Chun et al. / Forensic Science International 148 (2005) 225–231
231
Table 3 (Continued ) Haplotype DYS391
DYS389
DYS439
DYS389
DYS438
DYS437
DYS19
DYS392
DYS393
DYS390
DYS385
nb
228 229 230 231 232 233
13 13 12 14 12 13
13 13 12 12 11 12
28 28 28 30 26 31
14 13 11 10 13 10
14 14 15 15 14 15
16 16 14 16 15 16
13 13 14 13 13 13
13 13 12 13 13 12
23 23 24 25 23 24
10.18 10.18 13.19 13.23 10.18 15.20
1 1 1 1 1 1
a b
10 10 10 10 10 10
Haplotype diversity: 0.9987. n: Number of individuals.
need to further study about the relations among Korean and Japanese populations. This paper follows the guidelines for the publication of population data requested by the journal [9].
Acknowledgements The authors wish to thank Dr. Yang-Han Lee, the National Institute of Scientific Investigation, for kindly giving us some DNA samples as gifts.
[4]
[5]
[6]
[7]
References [1] M. Nei, Molecular Evolutionary Genetics, Columbia University Press, New York, 1987, pp. 176–181. [2] M. Fondevila, J.C. Jaime, A. Salas, M.V. Lareu, A. Carracedo, Y-chromosome STR halotypes on Co´ rdoba (Argentina), Forensic Sci. Int. 137 (2003) 217–220. [3] R. Uchihi, T. Yamamoto, K. Usuda, T. Yoshimoto, M. Tanaka, S. Tokunaga, R. Kurihara, K. Tokunaga, Y. Katsumata, Haplotype analysis with 14 Y-STR loci using two multiplex
[8]
[9]
amplification and typing systems in two regional populations in Japan, Int. J. Leg. Med. 117 (2003) 34–38. Y.P. Hou, J. Zhang, Y.B. Li, J. Wu, S.Z. Zhang, M. Prinz, Allele sequences of six new Y-STR loci and haplotypes in the Chinese Han population, Forensic Sci. Int. 118 (2001) 147–152. H.Y. Lee, J.E. Oh, G.R. Han, K.J. Shin, Allele frequencies and haplotypes of six new Y-specific STR loci in Koreans, Forensic Sci. Int. 136 (2003) 89–91. Y.J. Kim, D.J. Shin, J.M. Kim, J. Kim, H.J. Jin, K.D. Kwak, M.S. Han, S.K. Choi, W. Kim, Y-chromosome STR haplotype profiling in the Korean population, Forensic Sci. Int. 115 (2001) 231–237. K.D. Kwak, J.S. Ahn, W. Kim, Forensic Genetic Data on the Y-STR Marker of DYS437, DYS439 and DYS460 in the Korean Population, Korean J. Genet. 25 (2003) 47–55. M.T. Zarrabeitia, J.A. Riancho, L. Gusmao, M.V. Lareu, C. Sanudo, A. Amorim, A. Carracedo, Spanish population data and forensic usefulness of a novel Y-STR set (DYS437, DYS438, DYS439, DYS460, DYS461, GATA A10, GATA C4, GATA H4), Int. J. Leg. Med. 117 (2003) 306–311. P. Lincoln, A. Carracedo, Publication of population data of human polymorphisms, Forensic Sci. Int. 110 (2000) 3–5.