311 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 41b. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58.
S. Bernadziekiewicz, etc., JIMMA 1, 563 H. K. Hardy, etc., 7./AW/. Metals, 1950/51,78, 169,657: 1955/56,84,423.429 W. R. D. Jones, etc., JIMMA 26, 823 Z. A. Sviderskaya,etc.,Mé?M 1,310952 M. E. Drits, etc., CA 78,46821g G. V. Akimov, etc., JIMMA 10, 182; 11, 371; 15, 516 E. I. Gurovich, CA 37, 5937 P. S. Moiseev, etc., JIMMA 12, 150 C. E. Elis, etc., JIMMA 27, 648; 30, 257, 795 D. W. Lillie, JIMMA 28, 341 G. T. Murray, etc., JIMMA 29, 193, 695; 32,459 E. Kamienski, etc., JIMMA 32, 863 V. Levy, etc., JIMMA 32, 1212 H. R. Glide, etc., Phil. Mag., 1965, 12, 997 R. Kelly, etc., MA 1, 1501 J. Pissavy, etc., Met A 1, 160067 V. Levy, etc., Met A 1, 720026 K. Shiraishi, etc., Met A 3, 160134; 4, 160270, 160347: 5, 160238 L. N. Karikov, etc., Met A 1, 351198 I. O.Smith, etc., Met A 3, 160327:4, 160084, 160186 A. Wolfenden, Met A 4, 130014 J. R. Cost, etc., Met A 4, 130015 J. M. Silcock, / . Inst. Metals, 1959/60, 88, 357 C. L. Angermann, JIMMA 32, 1023 T. Yoshiyama, etc., Met A 2, 120278 M. Tamura, etc., Met A 4, 140133; WAA 7, 610064 I. N. Fridlyander, etc., Met A 5, 110528 K. Shiraishi, Met A 4, 160174; 5, 160085 S. Terai, etc., JIMMA 31, 345; 32, 276 S. Sakui, etc., Met A 5, 310392 B. A. Kopeliovich, etc., Met A 5, 311256 V. P. Ivanov, Met A 4, 312372
Al-Lu Aluminum-Lutetium system The compound at the aluminum end is LuAl 3 (68.4% Lu); space group Pm3m; 4 atoms in the unit lattice; lattice parameter a = 4.187 x 10~ 10 m [ 11. A compound LuAl 2 (76.4% Lu) has also been reported [21. For phases richer in lutetium see also [3]. REFERENCES 1. 2. 3.
1.1. Zalutsky, etc., MA 2, 1340, 1520 S. E. Haszko, JIMMA 28, 974 W. B. Pearson, Met A 1, 120344
Al-Mg Aluminum-Magnesium system Magnesium is the major constituent in the aluminum-magnesium group of alloys, which achieve high strength with good ductility through cold work, together with AASP—11
312 excellent corrosion resistance and weldability. To aluminum-magnesium suicide alloys it imparts heat treatability, still retaining good corrosion resistance and weldability; to aluminum-zinc-magnesium alloys it can impart good corrosion resistance and weldability or extremely high strength. It is added to aluminum-copper alloys to improve the aging characteristics; to aluminum-manganese alloys to increase the strength without loss of corrosion resistance or ductility; and to aluminum-silicon alloys to make them heat treatable. At the aluminum end of the diagram there is a eutectic, liq.—* A1 + Mg5Al8, at 34% Mg, 723 °K [1-3] (Figure 2.36). The solid solubilities shown in Table 2.9 are the most probable ones [2, 4-13]. Pressure reduces the solubility: at 1 GN/m 2 the solubility at 723 °K is 11% Mg, at 700°K it is 10.3% Mg. at 600°K it is 6.3% Mg and at 500 °K it is 3% Mg [14]. The vaporisation line in Figure 2.36 is from data of [15, 16]. Sublimation of magnesium from alloys is accelerated by lattice defects 117|. The composition of the eutectic by zone melting [18], the rate of solidification |19|, superplasticity [19b] and structure and properties of liquid alloys [ 19c] have been investigated.
°F 1600 1400
2500 Liq. + Vapor 2000
Liq.
1200
800 H 800
600
-UOO 40
Wt. % Mg
60
Figure 2.36. The aluminum-magnesium equilibrium diagram. At top: vaporisation line of magnesium
The phase in equilibrium with aluminum (ß) is usually given as Mg2Al3 [1-2] in spite of the fact that this composition (37.3% Mg) is outside the limits of existence (34.8-37.1% Mg) [19d, 20], whereas the formula Mg5Al8 (36% Mg) fits the composition and most of the structures given. Several structures have been proposed for Mg5Al8, as shown in Table 2.10', the most recent [251 is the most probable. The
313
Table 2.9
SOLID SOLUBILITY OF MAGNESIUM IN ALUMINUM
°K
op
Solubility % wt. % at.
723 700 650 600 550 500 450 400 300
842 800 710 620 530 440 350 260 80
17.4 15.3 11.5 8.1 5.5 3.7 2.6 2.0 1.9
18.5 16.4 12.5 9.0 6.4 4.5 3.3 2.7 2.3
Table 2.10 STRUCTURES OF Mg5Al„
Type
Space group
Atoms
F.c.c.
Fd3m
1 166-1 172
F.c.c. F.c.c. Hex.
Pm3m
108
Parameters ( 10~ w m) a c 28.2 (Al end) 28.6 (Mg end) 4.71 = 28.26/6 12.419 11.2-11.38
Ref. 21-23
16.0-17.88
24 25 26-28
density of the compound is 2 230kg/m 3 [29, 301: the Vickers hardness has been reported as ranging from 2 000MN/m 2 [29, 31, 321 to 3 400MN/m 2 [331, decreasing slowly from 2 000MN/m 2 at room temperature to 1 600MN/m 2 at 600 °K and then rapidly to 0 at 723 °K [29]. Mg5Al8 is very brittle below 600°K but shows some plasticity at higher temperatures [34-361. The e phase, probably Mg23Al10 (40.6% Mg), has a narrow range of existence but does not form from the liquid. It has a rhombohedral lattice; space group R3; probably 53 atoms to the unit cell; parameters a= 10.36xl0- 1 0 m, a = 7 6 ° 2 7 ' ; with hexagonal parameters a = 12.82x 10- 10 m, c= 21.75 x 10- 10 m; and may be metastable [1, 2, 37, 38]. The Mg17Al12 (55.7% Mg) has a wide range of existence from 45 to almost 60% Mg [1,2, 38bj. It is cubic; space group 143 m; 58 atoms to the unit lattice; parameter a = 10.56 x 10~10m [1, 2, 37-41]. Liquid aluminum-magnesium alloys have a random distribution of atoms [42, 431. For the thermodynamic properties see [44-541; for the electronic structure see [54b, 54c]. By splat cooling the solid solubility can be extended to 37% Mg and some of the compounds can be suppressed [55, 56] or metastable phases may be made to appear [56b]. Less drastic solidification under non-equilibrium conditions leads to coring, with the Mg5Al8 phase appearing at magnesium contents as low as 4 - 5 % Mg [57-59]. Equilibrium in solidification is obtained only with cooling rates of less than 5xl0-4oK/hr[60]. The lattice parameter of aluminum expands by approximately 0.005 x 10~10m for every 1% Mg, to a value of 4.129 4 x 10_1()m at the equilibrium solubility limit [10, 12, 61-64] and to 4.215 5 x 10"10 with 37% Mg in solution [55, 561. The lattice strain was measured [65]. The density in the solid state decreases linearly by 0.47% for every 1% Mg in solution, 0.5% for every 1% Mg as Mg5Al8 [62, 66-701; in the liquid state it can be calculated by the additive rule [70b]. The expansion coefficient increases by a few per cent [71—73]; and shrinkage in solidification decreases slightly [73-781. Viscosity
314
is increased [79-83]; its activation energy is 0.15-0.18eV 1841; liquid-vapor surface tension drops very rapidly to one-third to one-quarter of the pure aluminum value with the addition of 1-2% Mg, then more slowly [82b. 85-881: additions of strontium reduce it further [86]. Interfacial energy between Al and Mg5Al8 is very low and this allows rapid coagulation of precipitate particles 188bI. Thermal conductivity is reduced by magnesium to values approximately half at 5-6% Mg and one-third at 15% Mg [89-91]. Electric resistivity increases almost linearly with the % Mg in solution, to reach a value of 10-11 x 10- 8 ohm.m at the solubility limit (17.4% Mg) [89, 91-1011. Cold work raises the resistivity: at 60% deformation the increase is of the order of 2 - 3 % [102]. Neutron irradiation also increases resistivity |102b|. The temperature coefficient of resistance drops exponentially to a value of 2 x 10~ ,2 ohm.m/°K at 5% Mg and 1 x 10- 12 ohm.m/°K at 25% Mg |95, 103, 1041. Resistivity at 875 °K rises from 8.5 x 10~8ohm.m for pure aluminum to 14.5 x 10~8ohm.m at 12% Mg [1051. For a 1% Mg alloy, at the melting point, the resistivity is approximately 12 and 29 x 10~8ohm.m in the solid and liquid state, respectively. 1105bj. The Lorentz coefficient is reported to rise with the first magnesium addition, drop to a minimum at 12% Mg of the order of 24 x 10~8 W/ohm/°K 2 and then rise again [89]. The thermoelectric power of aluminum is increased at-the rate of approximately 20% for every 0.1% Mg dissolved [1061. The magnetic susceptibility reaches a minimum value of 9.7 x 10~3mm3/gr-at at 7-8% Mg, after which it rises slightly and levels off at a value of 10.5 x 10~3mm3/gr-at up to the Mg,7Al12 phase 1107-1101; in the liquid state, on the other hand, it increases slowly with magnesium additions, to reach a value of 13.5xlO- 3 mm 3 /gr-at at 900°K [1081. The Hall coefficient at 800°K decreases from the - 3 . 8 9 x 10- n m 3 /C of pure aluminum to - 3 . 2 3 x 10- n m 3 /C at 9% Mg and then rises to — 3.56 x 10 -11 m 3 /C at 12% Mg [1051. For magnetoacoustic effects see [111]. The reflectivity to light in the 2 500-3 500 μηι range is decreased by some 10% by additions of 3% Mg and reaches a minimum some 15% below pure aluminum at 58% Mg [112-114]. On the other hand, [115] reports a 5% increase in reflectivity on mirrors coated with aluminum-magnesium alloys 8-35% Mg, as compared with mirrors coated with pure aluminum. The change in reflectivity with oxidation of thin aluminum-magnesium films is reported [1161. The speed of ultrasound increases a few hundred m/sec up to 12% Mg and then decreases [70]. The absorption of radiation and neutrons is decreased, the decrease being proportional to the electronic volume rather than the atomic number [117]. Experimental data on the mechanical, chemical and technological properties of binary alloys indicate that for these properties there is no substantial difference between high-purity and commercial alloys (see Part 4). Hardness, strength and fatigue resistance increase and ductility decreases, as shown in Figure 2.37. Cold work also increases the strength at the expense of the ductility. Above 5-6% Mg the alloys respond to heat treatment and some increase of properties can be obtained from it. For the effect of strain rate, temperature and composition on microstructure and properties see [117b]. Lowering of the temperature increases appreciably the ultimate tensile strength and less so the yield strength and ductility, but there is little or no decrease in notch toughness. The critical shear stress is independent of temperature in the 120-300 °K range, increases with decreasing temperature in the 4-120°K range and decreases below that [118]. The decrease in strength with increasing temperature is less rapid than in other aluminum alloys. According to [1191, this is due to the formation of magnesium clouds around the dislocations, that hinder their movement. Structural changes in fatigue parallel those in other alloys: fatigue failure is preceded by strain hardening and piling of dislocations which flow in the precipitate-free zones at the boundaries, and a cell structure forms around the crack [120-1261. Magnesium is one of the few elements that lower the modulus of elasticity of aluminum; the decrease is linear, so that a 15% Mg alloy has a modulus of 58GN/m 2 [66, 127-130]. Damping capacity is also reduced [131, 131bl. Magnesium additions are very effective
315
Figure 2.37. Mechanical properties of aluminum-magnesium alloys as function of magnesium content. Hv = Vickers hardness; UTS = ultimate tensile strength; YS = yield strength; H = cold worked; O = annealed in reducing the rate of creep. Values of the activation energies for creep are reported ranging from 1.4 to 2.4eV [132-140]. Irradiation substantially reduces creep [141]. For development of anisotropy during creep see [141b]; for discontinuous yielding see [ 141c]. Superplasticity at high temperature has been reported [1421. Magnesium additions lower the potential of aluminum: against a calumel electrode, in a NaCl-H 2 0 2 solution, pure aluminum has a potential o f - 0 . 8 6 to —0.88 V, a 4% Mg alloy has a potential of —0.90V and Mg5Al8 has a potential of — 1.10V [143-146]. The specific volume of the oxide film is larger than that of the metal from which it forms, and this produces a very impervious film [147-1491, especially when it absorbs water and transforms to hydroxide [143b, 1501. The alloys have a better corrosion resistance to salt water and mild alkali than pure aluminum. For data and references on corrosion resistance see 'Commercial Alloys' (Part 4); for details on the mechanism of intergranular corrosion see below. For the formation, appearance and movement of lattice defects see [122, 151-1701; for the effect of irradiation see [171-178]. A tendency for magnesium to segregate at the grain boundaries and sub-boundaries has been reported by [ 1791.
316
One peculiarity of solid solution alloys, namely delayed yielding, is most pronounced in aluminum-magnesium alloys and has been extensively studied [137, 180-213]. Magnesium additions are reported to lower the stacking fault energy in aluminum [160, 166, 205, 214-2161 and to lead to mechanical twinning 1182, 2171. Magnesium in the form of coarse Mg5Al8 particles has no effect on the recrystallisation temperature, whereas when in solid solution it raises it. Diffusion of magnesium is affected by other elements present: copper, silicon and zinc reduce it, and iron, manganese and nickel have little or no effect 187, 218-2221. Diffusion of magnesium to harden the surface of aluminum is impractical [2231. According to [224], lanthanum and niobium accelerate diffusion of magnesium in aluminum, but the evidence for this is doubtful. Neutron irradiation accelerates diffusion; an activation energy decrease from 1.35 to 1.05 eV is reported [224bJ. For the diffusion of magnesium in liquid aluminum [225] give D = 6A-1.5 x 10 5 S at 1 000 °K and [226] gives log D = 0.4-0.8 for the range 1 000-1 100 °K. For the growth of compounds in bimetallic couples see 1226bI. In age hardening GP zones form within seconds from the quench 12401 in highenergy areas (grain boundaries, dislocations, etc.), but they are small (10-15 x 10~,0m dia.) and most of the excess vacancies remain around them as a cloud. As a result there is little or no strain and no appreciable hardening 1154, 156, 157, 211b, 227-244]. Upon aging for years at room temperature the zones grow up to 100 x 10~I0m dia. and tend toward a tetragonal lattice [244b|. The critical temperature above which zones do not form is very low (320-340°K) 1156, 231, 234, 237, 245-247]; above this temperature aging starts with the formation of the β' phase. This phase forms first at the grain boundaries and produces a solute depleted zone around them [28, 121, 196, 237, 248-2531. Around this solute depleted zone is another layer some lOnm thick, which is vacancy depleted and in which little or no precipitation occurs, even after β' has precipitated in the center of the grain 1121, 242, 253, 254]. As β' formation progresses from the grain boundary to the center, recrystallisation of the matrix follows [254]. The β' phase is coherent with the matrix (250, 2551 and is hexagonal, with parameters a = 10.02 x 10~10m, c— 16.36 x 10 _,0 m. It has the orientation relationship [23] (001V»(001) AI ;
[100]^||[110]AI
and is reported to form platelets on the (100), (111), (210), (310) planes, or rods in the [100], [110], [120], [111] directions [12, 22, 28, 238, 248, 256-258]. At temperatures up to approximately 550 °K the stable /3(Mg5Al8) forms from the ß'\ above 550 °K directly from the matrix [28, 247, 259], with loss of coherency [250, 2541. For coagulation of Mg5Al8 see [88b, 260, 2611 and for its solution into the matrix see [262]. Hardening from the formation of the GP zones is scarcely detectable. Lattice parameter changes are also anomalous: at low and high temperature they follow the usual pattern of the equilibrium solution coexisting for some time with the supersaturated one [19, 263, 264], but at 500 °K the change is continuous, and only one solid solution is visible at all times [243, 247, 265-2671. The lattice parameter expands before shrinking [243-247], but this expansion may only be caused by distortion of the lattice. The resistivity increases at first and then decreases, and there is an increase in hardness and strength when the/3' phase forms, followed by a decrease when the/3' is replaced by the equilibrium phase. The electrolytic potential changes when the β' forms and the thermoelectric force decreases with the appearance of the β phase. The magnetic susceptibility is at a minimum when zones are present and reverts to normal when the/3' phase forms [8, 19, 143, 154, 231, 234-237, 240, 245-247, 249, 253, 263, 264, 268-281]. Thermal conductivity changes have been reported [90b, 282]. The corrosion resistance reaches a minimum at the time when the/3' starts to form, when the alloys are most susceptible to intergranular and stress corrosion. This susceptibility was usually attributed to a supposedly continuous precipitate film at the
317 grain boundaries [162, 247, 248, 251, 253, 270, 277, 283-3061; some reports deny its existence or effect [196, 306b] or attribute the susceptibility to the solute depleted zone [307]. Most probably the susceptibility is due to the thin vacancy-poor, magnesiumrich layer that surrounds the solute depleted zone at the grain boundary and is anodic to the depleted matrix. Annealing at 500-525 °K or prolonged aging result in the spheroidising of the Mg5Al8 and formation of the precipitate in the vacancy depleted zone, thus removing most, if not all, of the susceptibility to stress or intergranular corrosion [162, 228, 270, 283, 288, 291, 302, 304, 307b, 307c]. Corrosion of the precipitate varies with its structure: β' corrodes mostly at the edges, ß all over [307d, 307ej. The effect of the magnesium content on the timing and size of the properties changes is normal: the higher the magnesium content (up to the solubility limit) the larger and faster are the changes in properties. There is very little hardening below 5% Mg [308-308c]. Strength increases up to approximately 12-14% magnesium, then higher magnesium contents result in aged alloys that are too brittle not only for use but even for accurate determination of properties [102, 143, 277, 308cl. Susceptibility to intergranular or stress corrosion increases with magnesium content: negligible below 3-4% Mg, it becomes most important above 6-7% Mg 1270, 298, 309-3131. The effect of composition on the timing of the transformations is normal: roughly, in the 7% Mg alloys transformations are one order of magnitude slower than in the 12% Mg and in the 15-16% Mg one order of magnitude faster [231, 247, 265, 277, 313bl. Quenching stresses and a limited amount of cold work (<20%) before aging increase the number of dislocations and tend to distribute precipitation more evenly, thus resulting in improved strength and corrosion resistance. Larger amounts of work (> 40%) on the other hand, tend to concentrate the precipitation at the slip planes, thus greatly reducing corrosion resistance [162, 223, 228, 253, 254, 258, 270, 283, 293, 301, 302, 304, 314-321]. Neutron irradiation accelerates the early stages that depend on excess vacancies and slows down the latter stages [141, 236]. Shock waves have a similar effect [322]. Slow quenching affects not only the quenched properties, which naturally tend to be higher because they correspond to a partially aged condition, but reduces the subsequent aging in both size and speed [274, 3231. If a precipitate forms during the quench, it has the equilibrium structure and does not act as nucleus for precipitation during the aging [274]. Rapid quench favors the formation of the vacancy depleted zone, and thus makes the alloys susceptible to intergranular or stress corrosion (see 'Aluminum-Magnesium commercial alloys' for references). A low quenching temperature slows down the aging, both because it may result in a smaller amount of magnesium in solution [1021 and because it reduces the number of quenched in vacancies [156, 232, 2451. Small additions of beryllium, bismuth, cadmium, chromium, copper, iron, germanium, indium, manganese, molybdenum, silicon, tin, titanium, vanadium and zirconium retard the formation of the Guinier-Preston zones and accelerate the β' formation. Several of them (silver, beryllium, cadmium, indium, etc.) also tend to reduce the formation of the precipitatefree zone [324, 325]. The activation energy for precipitation is reduced by additions of chromium, titanium and zirconium, from the original 2.6 to 1.01, 1.05 and 1.35 eV, respectively [326]. REFERENCES 1. 2. 3. 4. 5. 6. 7. 8.
Hansen, 1958 G. V. Raynor, JIMMA 12,424 E. Butchers, etc., JIMMA 12, 389 E. H. Dix, etc., JIM 41,438; 42, 435 E. Schmid, etc., JIM 50, 12 P. Y. Saldau, etc., JIMMA 1, 563 Hansen, 1936 J. J. Trillat, etc., JIMMA 5,474
318 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 19b. 19c. 19d. 20. 21. 22. 22b. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 38b. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 54b. 54c. 55. 56. 56b. 57. 58. 59.
G. Siebel, etc., JIM MA 7, 104 H. Küstner, Z. Metallkunde, 1942, 34, 114 H. Borchers, etc., JIMMA 11, 73, 358 P. Lacombe, etc., JIMMA 12, 350 E. H. Wright, etc., Alcoa Res. Labs. Tech. Pap. 15. 1960 M. I. Zakharova, etc., JIMMA 20, 332 W. Leitgebel,//M50, 736; 53, 553 A. Schneider, etc., JIMMA 7, 147; 9, 305; 17, 906 S.Z. Bokshtein, etc., MA 1, 1341, 1666 A. S. Yue, etc., JIMMA 29, 218 P. A. Parkhutik, etc., Met A 5, 120431 N. R. Bochvar, etc., Met A 6, 540124 Y. Waseda, etc., Met A 7, 150296 W. C. Fink, etc., JIMMA 4, 34, 35 N. S. Kurnakov, etc., JIMMA 4, 594; 5, 252; 8, 292 H. Perlitz, JIMMA 12,47; 13, 164 A. Saulnier, etc., Mem. Sei. Rev. Met., 1960, 57, 91 ; Met. Treat. Drop Forging. 1960. 27, 91 S. Samson, Nature, 1962, 195, 259 M. Bernole, etc., Met A 5, 110768 Y. N. Trehan, Met A 2, 121329 K. Taketoshi, Met A 5, 110496 K. Riederer, JIMMA 3, 506 F. Laves, etc., JIMMA 5, 532 M. Feller-Kniepmeier, etc., JIMMA 32, 1188 E. R. Petty, JIMMA 28, 779 W. J. Helfrich, etc., JIMMA 31, 812 A. Saulnier, JIMMA 21,18 D. Gualandi, etc., JIMMA 22, 145 F. Schultz, etc., JIMMA 10, 361 E. M. Savitsky, etc., JIMMA 17, 253; 20, 81, 1002 E. R. Petty, JIMMA 30, 717 I.I. Novikov, etc., JIMMA 3l92\l;MetA 1,310372.310861 S. Samson, etc., Met A 1, 121039 Shunk, 1969 F. Honda, etc., Z. Anal. Chem., 1972, 262, 170 P. Schobinger-Papamantellos, etc., Met A 3, 121126 J. Bandyopadhyay, etc., Met A 5, 110090 M. Kogachi, etc., Met A 5, 110220 S. Steeb,etc.,M4 2,832 Y. Waseda, etc., Met A 5, 121050 G. D. Roos,//M15,349 M. Kawakami,//M44, 526; JIMMA 1, 169 O. Kubaschewski, etc., Thermochemical Data of Alloys. Pergamon Press, 1956 R. Hultgren, Ed., Selected Values for the Thermodynamic Properties of Metals and Alloys, Univ. of California, Berkeley, 1958 V. N. Eremenko, etc., JIMMA 31, 155 R. C. Sinvhal, etc., Met A 2, 150274 M. M. Tsyplakova, etc., Met A 3, 150617 J. A. Brown, etc., Met A 4, 110217 G. I. Batalin, etc., Met A 4, 151299; 6, 151592, 152236 G. S. Makarov, Met A 4, 440218 E. E. Lukashenko, etc., Met A 5, 150378, 150433 P. S. Grover, etc., Met A 6, 150697 G. Hibbert, etc., Met A 6, 150731 H. L. Luo, etc., JIMMA 32, 1017 K. Kumada, etc., Met A 4, 120644 V. N. Gudzenko, etc., Met A 7, 110231 R. D. Vengrenovich, etc., Met A 4, 110022 U. O. Gagen-Torn, CA 44, 26 I. S. Miroshnichenko, MA 1, 481; Met A 1, 121194
319 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 69b. 70. 70b. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 82b. 83. 84. 85. 86. 87. 87b. 88. 88b. 89. 90. 90b. 91. 92. 93. 94. 95. 96. 97. 98. 99. 100. 101. 102. 102b. 103. 104. 105. 105b. 106. 107. 108. 109. 109b. 110. 111.
J. Guillet, etc., Met A 4, 110010 J. E. Dorn, etc., JIMMA 18, 455; 19, 175 W. J. Helfrich, etc., JIMMA 30, 433 E. C. Ellwood, JIMMA 19, 825 D. M. Poole, etc., JIMMA 19, 826 T. J. Rowland, JIMMA 23, 37 Z. Nishimura, JIM 43, 489 F. Kutner, etc., Met A 4, 320197 J. L. Snoek, JIMMA 19, 161 D. Kunkle, etc., MA 1, 1895 K. Takeuchi, etc., JIMMA 31, 77 L. L. Rokhlin, etc., Met A 3, 320068, 320147 I. I. Novikov, etc., Met A 6, 151737 W. Claus, etc., JIM 47, 336 W. Hume-Rothery, etc., JIMMA 16, 632 K. Hori, JIMMA 24, 559 T. Takase, JIMMA 6, 99, 236 F. Sauerwald, JIMMA 11, 12, 251 A. A. Bochvar, etc., JIMMA 13, 319 A. Tatur, JIMMA 20, 45; 23, 681 E. Pelzel, JIMMA 7, 153 F. Lihl, etc., Met A 1, 320376; 2, 320739 L. W. Eastwood, etc., JIMMA 7, 393 W. R. D. Jones, etc., JIMMA 20, 237 E. Gebhardt, etc., JIMMA 21, 323, 778, 977; 22, 292; 23, 865 G. Lang, Met A 6, 510399, 510615, 510643 M. R. Sheshradri, etc., MA 2, 125 E. Gebhardt, etc., JIMMA 28, 24 A. M. Korolkov, JIMMA 24, 673; 28, 713 L. Kubichek, JIMMA 27, 629 P. Bastian, JIMMA 7, 200; 10, 43; 11, 1, 741; 12, 143, 395 H. F. Keese, etc., Met A 6, 320567 E. Pelzel, JIMMA 17, 157 R. D. Vengrenovich, etc., Met A 6, 130061 W. Mannchen, JIM 50, 10, 425 R. Hase, etc., JIMMA 9, 65 P. Taubert, etc., Met A 6, 221010 A. V. Logunov, etc., Met A 2, 320294 W. Fraenkel, JIM 53, 694 H. Bonner, JIMMA 1, 168 G. Gauthier, JIMMA 3, 629 T. Morinaga, JIMMA 6, 45; 7, 469 A. T. Robinson, etc., JIMMA 19, 175, 825 R. H. Harrington, JIMMA 16, 265, 775 W. Syz, JIMMA 23, 215 K. R. Vassel, JIMMA 25, 897; 26, 514 P. Alley, etc., JIMMA 27, 780 M. V. Zakharov, etc., MA 1, 254 H. Vosskühler, JIMMA 7, 56 H. Mayer, etc., Met A 7, 160104 W. Browniewski, JIM 5, 315; 7, 281 T. Halstead, etc., JIM 35, 538; 37, 452 T. Matsuda, etc., MA 2, 250 A. V. Romanov, etc., Met A 6, 332111 C. Crussard, etc., JIMMA 15, 561; 16, 5, 466 H. Auer, JIMMA 2, 51 E. Wachtel, etc., MA 2, 402 H. J. Blythe, etc., MA 1, 561 J. Mimault, etc., Met A 7, 330789 H. Borchers, etc., Met A 3, 330740 L. L. Myasnikov, etc., Met A 1, 320166
320 112. 113. 114. 115. 116. 117. 117b. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 131b. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 141b. 141c. 142. 143. 143b. 144. 145. 145b. 146. 147. 148. 149. 150. 151. 152. 153. 154. 155. 156. 157. 158. 159. 160. 161. 162. 163. 164. 165.
R. G. Waltenberg, etc., JIM 23, 617; 26, 517 R. Hase, JIM MA 2, 2 A. Boettcher, etc., JIMMA 19, 338, 375, 387, 517 Y. A. Tsenter, JIMMA 13, 46 H. W. Edwards, etc., JIMMA 3, 73; 4, 231 A. I. Belyaev, JIMMA 29, 308 V. K. Afanasev, etc., Met A 6, 312668 V. P. Podkuiko, etc., Met A 5, 311452 V. A. Pavlov, etc., JIMMA 26, 521 R. F. Hanstock, etc., JIMMA 15, 329 E. J. McEvily, tic, JIMMA 31, 702 C. K.Wang, etc., Met A 1,130713 G. W. Waldron, MA 1,20 G. Mima, etc., Met A 2, 130820 M. Shimura, etc., Met A 2, 130633 M. A. Wilkins, etc., Met A 3, 311820; 4, 130209 W. Köster, Z. Metallkunde, 1940, 32, 282 C. Boulanger, JIMMA 21, 977, 978 B. N. Dey, etc., MA 1,62 N. Dudzinski, JIMMA 20, 80; 22, 1025 M. E. Drits, etc., Met A 5, 310685 T. Federighi,//MM4 25, 897 S. Dushman, etc., CA 38, 1993 J. E. Dorn, JIMMA 23, 961 J. Weertman, JIMMA 24, 142 R. Όολάοη, JIMMA 30, 434 T. Aramaki, etc., Met A 2,311829 K. Kucharova, etc., Met A 5,312451 J. Vergnol, etc., Met A 4, 311048 K. L. Murty, etc., Met A 6, 130145 V. P. Podkuiko, etc., Met A 5, 312549 A. Jostson, etc., Met A 5, 160307 A. V. Burlakov, etc., Met A 6, 313169 J. Kariya, etc., Met A 7, 310744 Z. Misiolek, etc., Met A 5, 311907 G. Chaudron, etc., JIMMA 2, 280, 462 V. O. Kroenig, etc., JIMMA 9, 252; 10, 323 G. B.Clark, etc., JIMMA 10, 182; 11, 371; 15, 516 E. Franke, JIMMA 21, 1045 S. Terai, etc., Met A 3, 350193, 550178 K. Sugimoto, etc., Met A 3,351213 R. Delavault, JIMMA 1,412 I. B. Rimmer, JIMMA 3, 534 F. Canac, etc., JIMMA 6, 463 A. R. Weill, JIMMA 26, 73 V. P. Ketova, etc., JIMMA 29, 211, 450 W. G. NWson, JIMMA 29, 315 K. H. Westmacott, tic, JIMMA 30, 381 J. Takamura, etc., JIMMA 31, 13, 474 J. D. Embury, tic, JIMMA 31, 337 A. Eikum, etc., JIMMA 31, 474; 32, 628, 1121 M. J. Makin, etc., JIMMA 30, 804; 31, 75 S. Ceresara, etc., JIMMA 32, 624 C. Hsiu-Mu, etc., MA 1, 668; 2, 1937, 2007; Met A 1, 130629 V. C. Kannan, etc., MA 1, 186; 2, 1160 V. K. Lindroos, etc., MA 1, \Z21\MetA 1, 130030, 130354;2, 130925, 131023 A. Giarda, etc., Met A 1, 130682; 2, 121075,351082, 130880:4, 120212 P. S. Dobson, etc., Met A 1, 130581; 2, 130363 E. I. Sosnina, etc., Met ^4 1, 130917 D. R. Spalding, etc., Met A 3, 130554
321 166. 167. 168. 169. 169b. 169c. 170. 171. 172. 173. 174. 175. 176. 177. 178. 179. 180. 181. 182. 183. 184. 185. 186. 187. 188. 189. 190. 191. 192. 193. 194. 195. 196. 197. 198. 199. 200. 201. 202. 203. 204. 205. 206. 207. 208. 209. 210. 211. 21 lb. 212. 213. 214. 215. 216. 217. 218. 219. 220. 221. 222.
N. F. Vildanova, etc., Met A 2, 130580; 4, 140184 S. Kritzinger, Met A 5, 130035 D. Hardie, etc., Met A 4, 140390 K. H. Westmacott, etc., Met A 4, 130737, 130996 Y. V. R. K. Prasad, etc., Met A 4, 13115 7 F. Morito, etc., WAA 7, 530012 V. P. Swart, etc., Met A 6, 130610 G. R. Piercy, etc., JIMMA 30, 106 A. Boltax, JIMMA 30, 851 B. Vigeholm, etc., MA 1, 1057 C. Frois, etc., MA 2, 999 K. R. Garr, etc., Met A 1, 160022, 160023 Y. V. R. K. Prasad, etc., Met A 2, 140497 C. Dimitrov, etc., Met A 2, 160247; 3, 160059 K. Shiraishi, Met A 4, 160176 A. V. Grin, JIMMA 26, 51, 1023 Anon., JIMMA 6,457 J. Herenguel, etc., JIMMA 19, 533 R. Chadwick, etc., JIMMA 19, 109 V. A. Phillips, etc., JIMMA 21, 19, 20, 1001 W. H. L. Hooper, JIMMA 20, 831 A. H. Cottrell JIMMA 21, 1001 F. Sacchi, etc., JIMMA 23, 494 M. Renouard, etc., JIMMA 23, 180 L. A. Shepard, etc., JIMMA 24, 559 E. Hâta, etc., JIMMA 28, 341; 29, 624 J. Caisso, etc., JIMMA 28,499 R. L. N o l d e ^ e t c ^ S M r r . , 1962,55,505 P. R. Sperry, JIMMA 32, 276 G. Mima, etc., MA 1, 20 N. Takahashi, etc., MA 1, 329 C. M. Wang, etc., Met A 1, 130631 A. T. Thomas, MA 1, 330; 2, 220 L. Mori, MA 2, 59 K. Matsuura, etc., Met A 1, 310387 H. Borchers, etc., Met A 1, 150411, 310746 K. Mukherjee, etc., MeM 2, 130293;3, 130813, 130814:4,310781 W. Thury, etc., Met A 3, 3105 51 B. J. Brindley, etc., Met A 3, 310520 K. Matsuura, etc., Met A 5, 310758 R. Horiuchi, etc., Met A 3, 312102, 312103 H. M. Tensi, etc., Met A 4, 311247, 311251 ; 5, 151137 ; 6, 311018 Y. V. R. K. Prasad, etc., Met A 4, 511028 J. G. Morris, Met A 3, 311825 M. Otsuka, etc., Met A 6, 311648 S. R. MacEwen, etc., Met A 4, 310877, 312590 S. Miura, etc., Met A 4, 130718; 5, 140017; 6, 311700 K. Aoki, etc., Met A 5, 120188; 6, 311632 S. Misra, etc., Met A 5, 140663 J. Decerf, etc., Met A 5, 310584; 6, 312140 J. Guillet, etc., Met A 5, 130846,311752 H. J. Seemann, etc., JIMMA 30, 298 B. Hudson, etc., MA 1,495 J. Karp, etc., Met A 1, 130914 S. C. Dexter, etc., Met A 4, 130611 H. R. Freche, JIMMA 3, 296, 649 J. Hauk, CA 42, 3298 M. Renouard, JIMMA 19, 516; 22, 175 T. Amitami, JIMMA 28, 417 W. Roth, JIMMA 28, 929
322 223. 224. 224b. 225. 226. 226b. 227. 228. 229. 230. 231. 232. 233. 234. 235. 236. 237. 238. 239. 240. 241. 242. 243. 244. 244b. 245. 246. 247. 248. 249. 250. 251. 252. 252b. 253. 254. 255. 256. 257. 258. 259. 260. 261. 262. 263. 264. 265. 266. 267. 268. 269. 270. 271. 272. 273. 274. 275. 276. 277.
W. Bungardt, JIMMA 4, 379; 6, 451 G. B. Stuchinsky, JIMMA 31, 761 G. Moreau, etc., Met A 4, 160302 N. A. Beloserski, etc., JIMMA 5, 659 K. Uemura,//ΜΜΛ 6, 137; 8, 81 Y. Funamizu, Met A 6, 130516 M. F. Komarova, etc., Met A 1, 140069 E. C. W. Perryman, JIMMA 23, 35, 414 A. V. Grin, etc., JIMMA 25, 344 A. R. C. Westwood, etc., JIMMA 25, 149 H. Cordier, etc., JIMMA 29, 833 J. D. Embury, etc., JIMMA 30, 804 P. R. Sperry, JIMMA 30, 106 C. Panseri, etc., AIME Tr., 1963, 227, 1122 W. B. Grupen, etc., JIMMA 32, 1124 K. Detert, etc., JIMMA 32, 17, 863 W. A. Pollard, JIMMA 32, 947 K. Matsuura, etc., MA 1, 340 Y. A. Bagaryatsky, etc., MA 1, 861 W. Koster, etc., MA 2, 1542 S. L. Cundy,etc.,Mé>M 2, 120342 L. I. Van Torne, Met A 1, 130320 A. Dauger, etc., Met A 6, 140149 M. F. Nikitina, Met A 6, 110134 M. Bernole, etc., Met A 6, 140411 ; 7, 140059 A. R. Weill, JIMMA 19, 715; 20, 159 C. Panseri, etc., JIMMA 25, 129; 26, 28 P. Lacombe, etc., JIMMA 3,450; 4, 594; 6,44, 450: 11, 284, 291: 12, 310, 349; 14, 312, 363 P. J. E. Forsyth, etc., JIMMA 14, 90 E. C. W. Perryman, etc., JIMMA 18, 504 G. Thomas, etc., JIMMA 25, 83 B. Taylor, MA 1, 11 F. L. Lokshin, etc., MA 1, 1836 S. Liu, etc., CA 79, 107302h M . F. Komarova, etc., Met A 1, 140054; 2, 120659; 7, 350208 K. Sakai, etc., MA 2, 1953 A. Saulnier, JIMMA 24, 147, 717 A. H. Geisler, etc., JIMMA 11, 5 M. Paganelli, MA 2, 827 V. A. Pavlov, etc., Met A 1, 140073 F. L. Lokshin, etc., Met A 2, 110248 K. A. Dobryden, etc., MA 2, 505 V.l. Psarev, Met A 1, 120546 V. V. Teleshov, etc., Met A 1, 120124 W. A. Pollard, JIMMA 26, 157 L. N. Rogelberg, etc., JIMMA 30, 522, 523 E. Schmid, etc., JIMMA 2, 8 R. Michaud, etc., JIMMA 4, 238; 5, 86 F. C. Althof, JIMMA 17, 335 P. Vachet, JIMMA 3, 73, 246 J. Calvet, etc., JIMMA 6, 351 ; 7, 153 P. Brenner, etc., JIMMA 16, 700 E. S. Nachtman, Thesis, 111. Inst. Tech. Chicago, 1950 A. Yamamoto, Thesis, 111. Inst. Tech. Chicago, 1951 H. Vosskühler, JIMMA 18, 698 H. Jolivet, etc., JIMMA 19, 16, 108; 20, 10 A. F. Weinberg, Thesis, 111. Inst. Tech. Chicago, 1953 D. W. Levinson, Thesis, 111. Inst. Tech. Chicago, 1953 O. Dahl, etc., JIMMA 23, 626
323 278. 279. 280. 281. 282. 283. 284. 285. 286. 287. 288. 289. 290. 291. 292. 293. 294. 295. 295b. 296. 297. 298. 299. 300. 301. 302. 303. 304. 305. 306. 306b. 307. 307b. 307c. 307d. 307e. 308. 308b. 308c. 309. 310. 311. 312. 313. 313b. 314. 315. 315b. 316. 317. 318. 319 320. 321. 322. 323. 324. 325. 326.
L. J. G. Van Ewijk, JIMMA 27,404 T. Federighi, JIMMA 30, 363 L. Thomas, JIMMA 32, 393 F. J. Kievits, etc., MA 1,351;Λ/έ?Μ 1, 140242; 4, 140152 K. Ouvrier, Met A 1, 320772 G. Siebel, JIMMA 3, 8, 534 H. Vosskühler, JIMMA 5, 541 F. Meunier, etc., JIMMA 6, 462 F. Bollenrath, etc., JIMMA 8, 302 A. Beerwald, etc., JIMMA 9, 73 G. Siebel, etc., JIMMA 11,81 P. Menzen, JIMMA 12, 251 H. Vosskühler, JIMMA 12, 351 G. I. Metcalfe, JIMMA 14, 259 L. Graf, JIMMA 15,409 E. C. W. Perryman, JIMMA 16, 197 H. Vosskühler, JIMMA 17, 175 P. A. Jacquet, etc., JIMMA 19, 389; 20, 1017 E. C. Perryman, etc., JIMMA 17, 936; 18, 504, 531 H. Kostron, JIMMA 20, 705, 706 W. J. Vance, JIMMA 25, 863 F. C. Althof, etc., JIMMA 28, 55 V. I. Elagin, etc., JIMMA 27, 739; 29, 843 E. A. G. Liddiard, etc., JIMMA 28, 885, 979 J. Amosse, JIMMA 31, 102 T. N. Smirnova, etc., Met A 2, 350305 D. O. Sprowls, etc., Met A 3, 350128 H. Boswinkel, Met A 2, 350569 E. Di Russo, Met A 3, 350933; 4, 350039 R. Chandrasekhar, etc., Met A 4, 351497 C.Edeleanu,//ΜΜΛ 19,389 A. F. Beck, etc., Met A 3, 350127 J. Herenguel, etc.,//ΜΜΛ 16,595 G. Siebel, etc., JIMMA 16, 391 P. Jacquet, JIMMA 19,389 G. P. Ponzano, etc., Met A 6, 340796 E. Schmid, etc., JIMMA 2, 8 R. M. Brick, etc., JIMMA 2, 569, 671 W. Browniewski, etc., JIMMA 5, 85 L. N. Sergeev, etc., JIMMA 10, 105 G. Kitihara, JIMMA 8, 60; 11,150 H. Nishimura, etc., JIMMA 20, 705 P. Brenner, JIMMA 25, 719 W. J. Vance, JIMMA 25, 863 N. N. Buinov, Met A 6, 140462 C. S. Barrett, JIMMA 4, 156 W. Roth, JIMMA 4, 93 W. Lott, JIMMA 13,76 S. Matsuo, JIMMA 29, 339 K. Nishino, JIMMA 32, 534 N. N. Belousov, etc., Met A 1, 310435 T. K. Ryazhskaya, etc., Met A 2, 310824 T. V. Rajan, etc., Met A 4, 140361 P. Brenner, Met A 5, 350125 O. I. Andreeva, etc., MA 2, 1726 N. F. Vildanova, Met A 4, 140184 Y. Baba, Met A 6, 140223, 140291, 140395, 350619 L. N. Guseva, etc., Met A 6, 110112 A. P. Klimko, etc., Met A 6, 140298, 313536