Journal Pre-proof An Albian–Turonian shallow-marine carbonate succession of the Bey Dağları (Western Taurides, Turkey): biostratigraphy and a new benthic foraminifera Fleuryana gediki sp. nov Cemile Solak, Kemal Tasli, Hayati Koç PII:
S0195-6671(19)30297-6
DOI:
https://doi.org/10.1016/j.cretres.2019.104321
Reference:
YCRES 104321
To appear in:
Cretaceous Research
Received Date: 21 July 2019 Revised Date:
13 November 2019
Accepted Date: 16 November 2019
Please cite this article as: Solak, C., Tasli, K., Koç, H., An Albian–Turonian shallow-marine carbonate succession of the Bey Dağları (Western Taurides, Turkey): biostratigraphy and a new benthic foraminifera Fleuryana gediki sp. nov, Cretaceous Research, https://doi.org/10.1016/ j.cretres.2019.104321. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Elsevier Ltd. All rights reserved.
1
An Albian–Turonian shallow-marine carbonate succession of the Bey Dağları (Western
2
Taurides, Turkey): biostratigraphy and a new benthic foraminifera Fleuryana gediki sp. nov.
3
Cemile SOLAK *, Kemal TASLI , Hayati KOÇ
4
1
5
MERSİN
6
* Corresponding author.
7
E–mail address:
[email protected]
8
Abstract
9
The studied Cretaceous succession is exposed at the Toçak Mountain in the southeastern part of the
10
Bey Dağları Carbonate Platform (BDCP). The Alakır outcrop section presents seemingly continuous
11
shallow-marine carbonate sedimentation during the Albian–Turonian times which is known from very
12
few parts of the peri-Mediterranean platforms. Approximately 550 meters thick platform carbonate
13
succession is unconformably overlain by carbonate breccia/conglomerate and pelagic limestones of
14
Campanian age. A benthic foraminiferal biostratigraphic zonation scheme is presented. The biozones
15
are tentatively placed into the stages, without chronostratigraphic calibration, based on stratigraphic
16
distribution of common benthic foraminifera in the peri-Mediterranean platforms. Protochrysalidina
17
elongata–Cuneolina pavonia assemblage zone and Coskinolinella bariensis taxon range subzone are
18
assigned to the upper Albian. In the conformably overlying limestones, Sellialveolina gr. viallii taxon
19
range zone (lower–middle Cenomanian), Pseudorhipidionina casertana assemblage zone (upper
20
Cenomanian), Pseudorhapydionina dubia–Pseudolituonella reicheli assemblage zone (uppermost
21
Cenomanian) and Pseudocyclammina sphaeroidea assemblage zone (Turonian) have been
22
distinguished. Two-step pattern of extinction of benthic foraminifera across the Cenomanian–Turonian
23
boundary interval, which was first recorded from the Apennine Carbonate Platform, has been
24
documented also from the BDCP. The tentative Cenomanian–Turonian Boundary is constrained into
25
an interval of one meter between the last occurrence of the Cenomanian larger foraminifera and the
26
first occurrence of the Turonian benthic foraminiferal assemblage comprising morphologically-simple
27
and less-known taxa and other taxa left in open nomenclature. Fleuryana gediki sp. nov. is described
28
from the Turonian.
1,
1
1
Mersin University, Department of Geological Engineering, Çiftlikköy Campus, 33343, Yenişehir,
1
29
Keywords: Benthic Foraminiferal Biozones; Albian–Turonian; Carbonate Platform; Bey Dağları
30
Autochthon; S Turkey.
31
1. Introduction
32
The Cenomanian–Turonian transition with shallow-marine carbonate facies has been recorded from
33
very few localities in the peri-Mediterranean carbonate platforms, because most of the platforms were
34
either drowned (Adriatic Carbonate Platform, e.g., Gušić and Jelaska, 1993; Vlahović et al., 2005;
35
Korbar et al., 2012) or subaerially exposed (e.g., Southern Apennines, Abruzzi, and Western
36
Campania, Chiocchini et al., 1989). The Cenomanian–Turonian boundary (CTB) interval was a major
37
episode of carbonate-platform crisis (e.g., Schlager and Philip, 1990) and also the time of Oceanic
38
Anoxic Event 2 (OAE2) (Schlanger and Jenkyns, 1976). After the platform crisis, the restart of shallow-
39
marine carbonate sedimentation occurred at least after a few million years (Arriaga et al., 2016). In
40
many platform parts, the platform crisis lasted much longer until the Coniacian (Chiocchini et al., 1989)
41
and even the late Campanian (Solak et al., 2017, 2019). Very few platform parts recorded a
42
continuous carbonate platform accretion across the CTB interval (e.g., Parente et al., 2007, 2008;
43
Taslı and Solak, 2019). Such continuous shallow-marine carbonate successions are an important key
44
to reveal biotic changes across the CTB interval previously documented from the peri-Mediterranean
45
carbonate platforms (Grosheny and Tronchetti, 1993; Calonge et al., 2002; Parente et al., 2008). The
46
studied succession of the Bey Dağları Carbonate Platform (BDCP) is one of these exceptional
47
successions which presents a continuous shallow-marine carbonate sedimentation during the Albian–
48
Turonian times and therefore permits to document the vertical distribution of benthic foraminiferal
49
assemblages.
50
With respect to the Upper Cretaceous stratigraphy of the BDCP, Bignot and Poisson (1974)
51
distinguished two levels including Pseudedomia viallii below and Pseudorhapydionina laurinensis at
52
the top of the Cenomanian section of the Katran Dağ (Bey Dağları). Farinacci and Yeniay (1986) gave
53
an overall list of the rich Cenomanian benthic foraminifera assemblage the Bey Dağları sequences.
54
Sarı et al. (2009) defined the Pseudolituonella reicheli– Pseudorhapydionina dubia zone comprising
55
Cisalveolina lehneri and Coxites zubairensis subzones from the middle–upper Cenomanian of the
56
BDCP. Although there are many studies asserted the existence of the Turonian stage in the Bey
57
Dağları (Farinacci and Yeniay, 1986; Sarı et al., 2009; Sarı and Özer, 2002), the upper Turonian
2
58
rudistid limestones were first documented by Sarı et al. (2004) based on strontium isotope
59
stratigraphy.
60
This study aims (1) to illustrate benthic foraminiferal taxa, (2) to define main bioevents (appearance
61
and disappearance of benthic foraminiferal taxa) during the Albian–Turonian in the Bey Dağları
62
Carbonate Platform and to correlate them with those in the peri-Mediterranean platforms, (3) to
63
describe a new benthic foraminifera Fleuryana gediki sp. nov. from the Turonian.
64
2. Geological setting
65
The Bey Dağları Autochthon is situated at the Western Taurides (Fig. 1A) and composed of shallow-
66
marine carbonates from the Triassic to the Eocene in the south and from the Triassic to the
67
Cenomanian in the north, surrounded by mainly deep-marine settings from Turonian to Oligocene
68
(e.g., Günay et al., 1982; Poisson et al., 1984; Poisson et al., 2003). It is bounded to the east by the
69
Antalya nappes (=Antalya Complex) and to the west by the Lycian nappes (Poisson, 1977) (Fig. 1B).
70
The BDCP term s.str. is used here for a paleogeographic entity which existed from the Triassic to the
71
Campanian when it was finally drowned.
72
The oldest exposed rocks are dolomites of Triassic age (Kuyubaşı dolomite). They are conformably
73
overlain by the Bey Dağları formation (Günay et al., 1982) which is composed of Lower Jurassic–
74
Upper Cretaceous (lower Santonian) peritidal carbonates and the middle–upper Santonian
75
hemipelagic limestones. The upper Campanian–upper Maastrichtian pelagic cherty limestones (Akdağ
76
formation) overlie the Bey Dağları Formation along a nondepositional and/or an erosional surface
77
(e.g., Sarı and Özer, 2001; Sarı and Özer 2002; Sarı et al., 2004). The remaining successions of the
78
autochthon are represented by the upper Paleocene–lower Eocene Sobute Formation (limestone,
79
marl and claystone), upper Lutetian–Oligocene Kücükköy Formation (marl, claystone and limestone),
80
Aquitanian Karabayir Formation (algal limestone), Burdigalian Karakuçtepe Formation (alternation of
81
sandy
82
(conglomerate, sandstone and claystone) (Poisson, 1977).
83
3. Materials and methods
84
This study is based on two outcrop sections from the southeastern part of the BDCP. The Alakır
85
section
86
36°24'42.87"N) is located just to the west of the A lakır Dam in the eastern of the Toçak Mountain
limestone,
claystone
and
limestone)
(F–30°13'28.14"E–36°25'17.09"N,
and
Burdigalian–Langian
Fa–30°13'53 .66"E–36°26'27.63"N,
Kasabu
Formation
Fb–30°14'24.67"E–
3
87
(approximately 15 km northeast of Finike) (Fig. 1C). The Alakır section includes the Albian–Turonian
88
interval and was sampled starting from about 550 meters below the first pelagic cover sediments as a
89
reference
90
approximately 15 km northwest of the Alakır section, was logged from a Limyra limestone quarry, 3,5
91
km from Alacadağ village. It starts within the rudistid limestones 70 meters below the first Campanian
92
pelagic limestones. Sampling is at average spacing of 2 meters. The studied material contains two
93
hundred ninety-two (292) limestone samples and three hundred ten (310) thin sections labelled F1–
94
251, Fa1–6, Fb1–5 and Ad1–30 that are stored at the thin section archive of the General Geology
95
Laboratory, Department of Geological Engineering, Mersin University, Turkey. The illustrations and the
96
stratigraphic distribution of benthic foraminifera in the lower 165 meters of the Alakır section, which
97
includes the upper Albian, are provided in Taslı and Solak (2019). In this study, additional seven thin
98
sections (52, 70, 71, 75, 88, 92, 172) labelled B from the Turonian of the Belkahve section in the
99
Bornova Flysch Zone (Solak, 2019), are used for description of Fleuryana gediki sp. nov. But,
level.
The
Alacadağ
section
(Ad–30°4'2.15"E–36°25'21.68"N),
which
is
s ituated
100
micropaleontological results of the Belkahve section are not published yet.
101
4. Results
102
4.1. Lithostratigraphy and facies
103
4.1.1. Alakır Section
104
The Alakır section presents a continuous shallow-marine sedimentation during the Albian–Turonian
105
times, although there are discontinuities indicating short-term platform emersion (Fig. 2A). A 550
106
meters thick section can be subdivided into two intervals on the basis of lithofacies. The lower 390
107
meters of the section (interval I) is composed of beige and cream-colored, medium to thick (mostly 30–
108
40 cm, up to 1 m) and well-bedded, thinly laminated limestones and dolomitized limestones with thick-
109
bedded dolomite intercalations. Laminations are visible on rain-etched surface, not on a fresh
110
fractured surface. Mottled-dolomitized limestone beds are common. Small gastropods are the most
111
frequent macrofossils. Bivalve (Fig. 2B) and rudistid shells are recorded only at 122. m from the base.
112
There is a 30 cm thick polymictic breccia at 115. m from the base (sample F41), which may be
113
evidence
114
wackestone/packstone, intraclastic/peloidal packstone/grainstone and laminated peloidal packstone
115
alternating with frequently ostracod wackestone, bioclastic wackestone/floatstone and rarely
116
mudstone.
of
subaerial
exposure.
Interval
I
consists
of
mainly
benthic
foraminiferal
4
117
The upper 160 meters of the section (interval II) is represented by beige and white-colored, thick to
118
very thick and weakly bedded, apparently massive limestones (Fig. 2C) with lesser dolomite
119
intercalations. Rudist shell fragments occur in the upper part of the Interval II. Laminations occur less
120
frequently than interval I. Interval II is composed of mainly benthic foraminiferal wackestone/packstone
121
and
122
packstone/grainstone and bioclastic floatstone. An incertae sedis Thaumatoporella (e.g., Schlagintweit
123
et al., 2015) and also a cyanobacterian Decastronema (e.g., Golubic et al., 2006) become frequent in
124
lower half of this interval. Dasycladalean algal wackestone occurs only at one level in the upper
125
Cenomanian. CTB interval is represented by similar facies which make up of this interval and it does
126
not present a facies change throughout the Cenomanian–Turonian transition. Wackestone with
127
Decastronema has been observed at one level in the Turonian limestones (Fig. 2D). Sedimentologic
128
and micropaleontologic analysis suggest that the Albian–Turonian platform carbonates were deposited
129
in peritidal environments of restricted platform settings. The Alakır Albian–Turonian section is
130
unconformably overlain by carbonate breccia/conglomerates and pelagic limestones of the
131
Campanian–Maastrichtian age of the Akdağ Formation.
132
4.1.2. Alacadağ section
133
The Alacadağ section is composed of mainly white-colored, massive limestones including abundant
134
rudist/rudist buildups (Fig. 2E, F) and thick to medium bedded bioclastic limestones. Bioclastic and
135
rudistid limestones possess a benthic foraminiferal assemblage similar to that of the Turonian
136
limestones of the Alakır section. The Turonian limestones which present lateral changes in facies
137
include abundant rudist and rudist buildups, while the Alakır section which is located approximately 15
138
km southeastern of the Alacadağ, only contains a few whole rudist specimens. The lack of whole
139
rudist specimens in the Alakır section (it contains bioclastic levels with rudist shell fragments), may be
140
caused by variations in water temperature or the amount of nutrients. The Alacadağ Turonian
141
limestones
142
packstone/floatstone alternating with benthic foraminiferal wackestone, indicate the presence of local
143
high energy rudist and bioclastic sand shoals in the restricted platform. The platform carbonate section
144
is unconformably overlain by the Campanian pelagic limestones of the Akdağ Formation.
145
4.2. Biostratigraphy and chronostratigraphic interpretation
peloidal
packstone
which
are
alternating
composed
of
with
ostracod
dominantly
wackestone,
microbioclastic
rarely
intraclastic-peloidal
packstone
and
bioclastic
5
146
The micropaleontologic analysis of the two stratigraphic sections has provided a detailed biozonation
147
based on the stratigraphic distribution of benthic foraminiferal taxa (Figs. 3 and 4). For designating the
148
biozones, a numbered zonation with Benthic Foraminiferal Zone (BFZ) prefix is used in addition to
149
names of index taxa. In the 165 m thick lower part of the Alakır section, Protochrysalidina elongata–
150
Cuneolina pavonia assemblage zone (BFZ–1) and Coskinolinella bariensis taxon range subzone
151
(BFZ–1b) in the middle part of the BFZ–1, which are assigned to the upper Albian, were defined by
152
Taslı and Solak (2019). For more detail, see Taslı and Solak (2019).
153
In the conformably overlying limestones, Sellialveolina gr. viallii taxon range zone (BFZ–2, lower–
154
middle Cenomanian), Pseudorhipidionina casertana assemblage zone (BFZ–3, upper Cenomanian),
155
Pseudorhapydionina
156
Cenomanian) and Pseudocyclammina sphaeroidea assemblage zone (BFZ–5, Turonian) are defined.
157
The chronostratigraphic range of each biozone and some important species was discussed and given
158
to enable correlation of the studied succession in the following sections.
159
4.2.1. BFZ–2: Sellialveolina gr. viallii taxon range zone (lower–middle Cenomanian) (Figs. 5 and
160
6)
161
Description: The lower boundary is marked by the last occurrence (LO) of Protochrysalidina elongata
162
and the first occurrence (FO) of Ovalveolina maccagnoae/Sellialveolina viallii. The 160 m thick
163
biozone is defined by the stratigraphic range of Sellialveolina gr. viallii. This biozone is distinguished
164
from the previous biozone by the absence of Protochrysalidina elongata, Coskinolinella bariensis and
165
by the occurrence of many Cenomanian index taxa (Fig. 5) in addition to pre-existing long-range
166
species including Pseudonummoloculina heimi (Fig. 6A), Pseudonummoloculina regularis (Fig. 6B),
167
Spiroloculina cretacea (Fig. 6C, G), Nezzazatinella picardi (Fig. 6D, E), Nezzazata sp. (Fig. 6F, I),
168
Nezzazata simplex (Fig. 6L), Nezzazata gyra, Cuneolina pavonia (Fig. 6T). The appearance of
169
Ovalveolina maccagnoae (Fig. 5A–C), Sellialveolina gr. viallii (Fig. 5E–I), Scandonea phoenissa (Fig.
170
6J, K), Peneroplis turonicus (Fig. 6M), Orbitolinidae indet. (Fig. 6O, S), Biplanata peneropliformis (Fig.
171
6P, Q), Canaliculate walled Textulariidae? (Fig. 6R), Sabaudia minuta are in the lower part of biozone,
172
while Praealveolina cf. P. iberica (Fig. 5D), Biconcava bentori (Fig. 6N), Chrysalidina gradata,
173
Merlingina cretacea, Cisalveolina lehneri and Pseudolituonella reicheli (Fig. 6H) first appear in the
174
upper part of biozone (Fig. 3).
dubia–Pseudolituonella
reicheli
assemblage
zone
(BFZ–4,
uppermost
6
175
Micropaleontological remarks: Although the intervening unfavourable facies such as dolomites and
176
laminated peloidal packstones occur, Sellialveolina gr. viallii is almost continuous throughout the
177
biozone and a gradual increase in test diameter is upwardly evident. Most of the specimens in lower
178
part of the biozone correspond to those of type-species which is widespread in peri-Mediterranean
179
carbonate platforms (e.g., Colalongo, 1963, Pl. I; De Castro, 1985, Pl. 66; Vicedo et al., 2011, Fig. 5,
180
Fig.6/1–9). More compressed and larger specimens with peneropliform growth, reaching up to an
181
equatorial diameter of 1.7 mm (Fig. 5F), appear in the upper part of the biozone. Comparable
182
specimens illustrated by Bignot and Poisson (1974) from the Katran Dağ (Antalya, Turkey) have been
183
tentatively synonymized with S. gutzwilleri (Vicedo et al., 2011). The wall in all specimens of
184
Peneroplis turonicus which is found in the Cenomanian biozones is entirely recrystallized.
185
Discussion and correlation: This biozone may be subdivided into two parts based on; (1) the
186
presence of only small-sized (equatorial diameter ˂800 µm) specimens of the nominate species in its
187
lower part, (2) the appearance of larger size (up to 1.7 mm) specimens with peneropline growth (cf. S.
188
gutzwilleri) and the first occurrences of Biconcava bentori, Chrysalidina gradata and Pseudolituonella
189
reicheli in its upper part (Fig. 7). However, it is not possible to determine a precise boundary between
190
the lower and upper parts of the biozone due to the scattering of the benthic foraminiferal range data
191
(Fig. 3). Chiocchini et al. (1994) asserted that the FO of Sellialveolina viallii is in the lower
192
Cenomanian, although its range was given as the uppermost Albian–middle Cenomanian by De
193
Castro (1985) in Schroeder and Neumann (1985) (Fig. 8). It has been also used as an index taxon for
194
the lower Cenomanian in the peri-Mediterranean carbonate platforms (Fig. 8) (e.g., Velić, 2007;
195
Husinec et al., 2009; Vicedo et al., 2011). Bignot and Poisson (1974) stated that Pseudedomia viallii
196
was considered as an indicator of the middle Cenomanian in Italy (Sartoni and Crescenti, 1962;
197
Colalongo, 1963; De Castro, 1966), Greece (Fleury, 1972) and Lebanon (Saint–Marc, 1969). Another
198
controversy is that the stratigraphic range of Biconcava bentori, that first appears in the upper part of
199
the biozone (middle Cenomanian), is constrained to the upper Cenomanian based on the SIS data
200
(Frijia et al., 2015).
201
This biozone can be attributed to the lower–middle Cenomanian based on the FO of Pseudolituonella
202
reicheli that is in the middle Cenomanian in age (Velić and Vlahović, 1994; Velić, 2007) (Fig. 8) and on
203
the absence of important discontinuities throughout the transition to the upper biozone which is
204
assigned to the upper Cenomanian. This zone corresponds to four biozones from CEN–1 to CEN–4 in
7
205
the lower–middle Cenomanian limestones of the NW Istria (Croatia) determined by Velić and Vlahović
206
(1994) (Fig. 9). CsB1 (including Sellialveolina gr. viallii) defined by Fleury (1980) from Gavrovo–
207
Tripolitza is equivalent to this biozone (Fig. 9).
208
4.2.2. BFZ–3: Pseudorhipidionina casertana assemblage zone (upper Cenomanian) (Figs. 10
209
and 11)
210
Description: This biozone differs from the previous biozone by the absence of Sellialveolina gr. viallii,
211
Ovalveolina maccagnoae, Praealveolina cf. P. iberica and by the presence of Pseudorhipidionina
212
casertana (Fig. 10A–C), Pseudorhapydionina dubia (Fig. 10D–F), Pseudorhapydionina laurinensis
213
(Fig. 10G), Vidalina radoicicae, Vidalina sp. (Fig. 10H). The following benthic foraminiferal species
214
continue from the previous biozone: Pseudonummoloculina regularis (Fig. 10I, N), Chrysalidina
215
gradata (Fig. 10P), Peneroplis turonicus (Fig. 10S, T), Pseudonummoloculina heimi (Fig. 10K, L),
216
Dicyclina sampoi (Fig. 10U), Cornuspiridae (Fig. 10M, R), Nubeculariidae (Fig. 10Q), Pseudolituonella
217
reicheli (Fig. 10J, O), Bolivinopsis sp., Quasispiroplectammina sp., Nezzazata simplex (Fig. 11A, B),
218
Nezzazata concava (Fig. 11C), Nezzazata sp. (Fig. 11D), Nezzazatinella picardi (Fig. 11E–H, L),
219
Biconcava bentori (Fig. 11J, K), Biplanata peneropliformis (Fig. 11M), Cuneolina pavonia (Fig. 11N,
220
O). Pseudocyclammina aff. P. sphaeroidea (Fig. 11I), Pseudotextulariella sp. (Fig. 11P–X) and
221
Charentia cuvillieri rarely accompany this foraminiferal assemblage.
222
Micropaleontological remarks: Alveolinids (cf. Cisalveolina lehneri) are represented by very scarce
223
and poorly preserved specimens. Pseudotextulariella sp. is found in two samples and comparable with
224
the type-species P. cretosa described from the Cenomanian of Europe (Loeblich and Tappan, 1988).
225
Discussion and correlation: Pseudorhipidionina casertana and Vidalina radoicicae are known as
226
upper Cenomanian index species in the peri-Mediterranean carbonate platforms (Fig. 8) (e.g., Velić
227
and Vlahović, 1994; Velić, 2007; Consorti et al., 2016). Also, Strontium Isotope Stratigraphy (SIS)
228
calibrated ranges of these two species were given by Frijia et al. (2015) as upper Cenomanian (Fig. 8).
229
Bignot and Poisson (1974) indicated that Pseudorhapydionina laurinensis marks the upper
230
Cenomanian in the Katran Dağı (Antalya). Pseudorhapydionina dubia has been recorded in the late
231
Ceonomanian benthic foraminiferal association of the Chenarch Gorge section, Iran (Consorti et al.,
232
2015).
8
233
According to these data, the biozone is assigned to the upper Cenomanian. CsB2 defined from the
234
Gavrovo–Tripolitza Platform by Fleury (1980) and CEN–5 defined from the Adriatic Carbonate
235
Platform (AdCP) (NW Istria, Croatia) by Velić and Vlahović (1994), which contain common index
236
species such as Vidalina radoicicae, Pseudorhapydionina dubia, and Pseudorhapydionina laurinensis,
237
are equivalent to this biozone (Fig. 9). Vidalina radoicicae–Chrysalidina gradata concurrent–range
238
zone defined by Velić (2007) from the Karst Dinarides that correlated with CEN–5 corresponds to
239
BFZ–3. Interval A and B defined from the Monte Coccovello section (Apennine Carbonate Platform
240
(ACP)) by Parente et al. (2007) are equivalent to this biozone (Fig. 12).
241
4.2.3.
242
(uppermost Cenomanian) (Fig. 13)
243
Description: It is represented by 33 m thick, very thick-bedded–massive, white-grey, micritic
244
limestones without macrofossil. Although Chrysalidina gradata (Fig. 13A, B), Pseudorhapydionina
245
dubia (Fig. 13C–E), Pseudolituonella reicheli (Fig. 13K) and Nezzazatinella picardi (Fig. 13F–H, J, O)
246
are species that continue from the previous biozone, they come into prominence following the
247
disappearance of the characterizing taxa of the previous biozone. Cornuspiridae (Fig. 13L), Peneroplis
248
turonicus, (Fig. 13I), Bolivinopsis sp. (Fig. 13Q, T) and Discorbidae (Fig. 13S) are the other taxa which
249
continue in this biozone from the previous biozone.
250
Micropaleontological remarks: Nezzazata simplex (Fig. 13P) continues into this biozone with a
251
population composed of small-sized and a small number of specimens. Smaller-sized specimens of
252
Spiroloculina sp. (Fig. 13R) represented by smaller number instead of Spiroloculina cretacea, occurs
253
in this biozone.
254
Discussion and correlation: Parente et al. (2007) studied carbon isotope stratigraphy of
255
Cenomanian–Turonian platform carbonates in the southern Apennines (Italy). In their study, Interval C
256
defined from the Monte Coccovello section and the late Cenomanian benthic foraminiferal assemblage
257
of Interval C defined from the Monte Cerreto section, correspond to this biozone (Fig. 12). The
258
conformably overlying levels that correspond to Interval D in the Monte Coccovello section have a very
259
poor microfossil content. The Cenomanian–Turonian boundary was placed by Parente et al. (2007) at
260
the LO of Pseudorhapydionina dubia, Pseudolituonella reicheli, and Chrysalidina gradata, i.e. at the
261
upper boundary of Interval B (in the Monteforte Cilento section) and Interval C in the Monte Coccovello
BFZ–4:
Pseudorhapydionina
dubia–Pseudolituonella
reicheli
assemblage
zone
9
262
section according to the biostratigraphic schemes of De Castro (1991) and Chiocchini et al. (1994).
263
Based on this, Pseudorhapydionina dubia–Pseudolituonella reicheli assemblage zone is placed at the
264
uppermost Cenomanian.
265
Chrysalidina gradata–Pseudolituonella reicheli zone (from the ACP) which is assigned to the
266
uppermost Cenomanian by Chiocchini et al. (2008) corresponds to the Pseudorhipidionina casertana
267
assemblage zone (BFZ–3, upper Cenomanian) according to benthic foraminiferal taxa including
268
Biconcava bentori, Vidalina radoicicae.
269
4.2.4. BFZ–5: Pseudocyclammina sphaeroidea assemblage zone (Turonian) (Fig. 14)
270
Description: Following the LOs of Pseudorhapydionina dubia, Pseudolituonella reicheli, and
271
Chrysalidina gradata, foraminiferal assemblage is characterized by the presence of Fleuryana gediki
272
sp. nov. (Fig. 14A–E), small-sized specimens of Moncharmontia apenninica (Fig. 14F, G), Fleuryana
273
adriatica (Fig. 14H–K), Pseudocyclammina sphaeroidea (Fig. 14O–Q), and Fleuryana sp. (Fig. 14L),
274
Reticulinella fleuryi (Fig. 14U), Spiroloculina sp. (Fig. 14Y, Z). Arenobulimina sp. (Fig. 14W1–W3) has
275
a high trochospire test and first appears in this biozone. Discorbids (Fig. 14X) become more abundant
276
and diversified than those in the previous zone. Nezzazatinella picardi (Fig. 14R1–R3), Cuneolina
277
pavonia (Fig. 14S), Nezzazata simplex (Fig. 14T) are the species that continue in this biozone from
278
the previous biozones.
279
Micropaleontological remarks: Small and morphologically simple forms dominate in the renewed
280
assemblage. It is difficult to distinguish planispiral forms such as Moncharmontia and Fleuryana.
281
Specimens close to Moncharmantia (Fig. 13M, N) first appear in the underlying biozone (BFZ–4,
282
uppermost Cenomanian) and precursors of Pseudocyclammina sphaeroidea (Fig. 11I) are found in the
283
Pseudorhipidionina casertana zone (BFZ–3, upper Cenomanian), but they are very scarce. Our
284
Turonian specimens of Nezzatinella are comparable with Nezzazatinella cf. aegyptiaca (Chiocchini et
285
al., 2012) and Nezzazatinella sp. (Arriaga et al., 2016) described from the Turonian of the Apennine
286
Carbonate Platform. We illustrated stratigraphically different populations of Nezzatinella through the
287
Cenomanian–Turonian biozones (Figs. 6D, E; 11E–H, L; 13F–H, J, O; 14R1–R3) under the tentative
288
name N. picardi s.l., due to lack of detailed morphometric analysis. Pseudonummoloculina sp. (Fig.
289
14V) is represented by a small number of specimens and similar to Nummoloculina cf. irregularis of
10
290
Chiocchini et al. (2012). The species survived from the extinctions in late Cenomanian, Cuneolina
291
pavonia and Nezzazatinella picardi are locally abundant.
292
Discussion and correlation: The Cenomanian–Turonian Boundary (CTB) interval is sampled in the
293
Alakır section from two different localities 225 meters away from each other. In the first sampling, the
294
change in the benthic foraminiferal assemblages occurs within a nine meters due to unfavourable
295
facies (Thaumatoporella-Decastronema bindstones-mudstones with fenestral fabric) between the
296
samples F200 and F206, while in the second one within one meter between the samples F229 and
297
F230 (Fig. 3). Some of the common species in the underlying biozones such as Cuneolina pavonia,
298
Nezzazatinella picardi cross the CTB interval without a significant morphological change, while
299
Nezzazata simplex and Spiroloculina cretacea are represented by smaller specimens. Although F.
300
adriatica, P. sphaeroidea, M. apenninica are represented by small-sized specimens, their first
301
appearance datum is in beginning of the Turonian (Figs. 3 and 7). So, the FOs of the latter species
302
can be used for determination of the Cenomanian–Turonian boundary.
303
Nezzazatinella cf. aegyptiaca–Nummoloculina cf. irregularis zone defined from the ACP by Chiocchini
304
et al. (2008) corresponds to Pseudocyclammina sphaeroidea assemblage zone (BFZ–5, Turonian)
305
(Fig. 9).
306
4.3. Cenomanian–Turonian Boundary Interval
307
Benthic foraminiferal records from the upper Albian–Turonian shallow-marine carbonate succession of
308
the BDCP are negatively affected by the intervening of unfavourable facies such as ostracod
309
wackestones, laminated peloidal packstones, mudstones and dolomites. Even so, the following
310
bioevents across the CTB interval could be documented:
311
(1) Alveolinid taxa Ovalveolina, Sellialveolina, Praealveolina and Cisalveolina disappeared
312
approximately end of the middle Cenomanian, that is coupled with the FOs of Pseudorhipidionina
313
casertana, Pseudorhapydionina dubia, Pseudorhapydionina laurinensis, Vidalina radoicicae. Their
314
absence is interpreted herein as local extinction or pseudoextinction, because many alveolinid taxa
315
exist in the upper Cenomanian of the peri-Mediterranean platforms (e.g., Schroeder and Neumann,
316
1985; Parente et al., 2007).
11
317
(2) Most of the Cenomanian index taxa disappear before the end of the Cenomanian (Fig. 7). Their
318
last occurrence level was placed, by carbon isotope stratigraphy in the middle part of the Metoicoceras
319
geslinianum ammonite zone at 93.78 Ma (Parente et al., 2008). This level represents the first step of
320
benthic foraminiferal extinction. The survived species C. gradata, P. reicheli, P. dubia, and Peneroplis
321
turonicus disappeared at a 33 m higher level which corresponds to the second step of the extinction
322
(Fig. 7). Causes of the extinctions are explained as a major carbonate platform crisis and a major
323
perturbation of global carbon cycle in the late Cenomanian, known as Oceanic Anoxic Event 2
324
(Parente et al., 2008).
325
(3) The Cenomanian common species N. picardi and C. pavonia survived both extinction events
326
without a significant morphological change.
327
(4) A renewed benthic foraminiferal assemblage, dominated by small size (mostly ˂300 µm) and
328
morphologically simple imperforate forms, appears one meter (sampling interval) above this level. In
329
the Apennine Carbonate Platform, the second step extinction was correlated with the lower part of the
330
Neocardioceras juddii ammonite zone at ~93.63 Ma, below the Cenomanian–Turonian boundary
331
(Parente et al., 2008). In the CTB interval of the Alakır section there are no rudist shells commonly
332
used for SIS. Carbon isotope stratigraphy may contribute to solving a higher resolution dating and
333
correlation problems.
334
4.4. Systematic palaeontology
335
For the low-rank foraminiferal classification, we follow Loeblich and Tappan (1988) by considering
336
opinion of De Castro et al. (1994, p. 139) that the genus Fleuryana should be placed into the same
337
family together with the genus Moncharmontia. For the terminology used in the description, see
338
Hottinger (2006).
339
Superfamily Biokovinacea Gušić, 1977
340
Family Charentiidae Neumann, 1965
341
Genus Fleuryana De Castro, Drobne and Gušić, 1994
342
Type species Fleuryana adriatica De Castro, Drobne and Gušić , 1994
343
Fleuryana gediki sp. nov.
344
Figs. 14A–E, 15
12
345
Origin of the name. The new species is attributed to Prof. Dr. İsmet GEDİK (Karadeniz Technical
346
University, Turkey) for his contributions to the geology of the Taurus Mountains.
347
Holotype. Equatorial section in Fig. 14A, thin section F247.
348
Paratypes. Various oriented sections in Figs. 14B–E, 15 (thin sections F247, Ad12, Ad21, B52, B70,
349
B75, B88, B92).
350
Type material. Approximately 150 specimens in 40 thin section from 25 samples (B138, 154, 155, 92,
351
91, 90, 76, 75, 154, 181, 179, 92, 88, 70, 68, 66, 57, 56, 52, 49 and F211, 214, 223, 247).
352
Type location. Spillway side of Alakır Dam axis, approximately 15 km northeastern of Finike district of
353
Antalya, coordinates: 36°25'39.23"N, 30°14'9.17"E.
354
Type level. Turonian, Bey Dağları formation.
355
Diagnosis. Hemispherical shell with rounded periphery is planispirally coiled, involute, consisting of
356
1.0–2.5 whorls. The wall is thin, microgranular and canaliculate. Aperture single, basal and a wide
357
tunnel-shaped slit rimmed by a lip or neck (peristomal rim) extended toward the chamber interior.
358
Description. Test hemispherical, planispirally coiled with involute arrangement, consisting of maximum
359
2,5 whorls. The number of chambers in the first whorl is 6–7, in the second whorl mostly 8, rarely 9.
360
Chambers appear rectangular shaped in equatorial section (Fig. 15L, Q, R) and slowly increase in size
361
during ontogeny. The wall and septa thickness are equal. The septa are smooth in equatorial sections
362
and do not show any curvature. The canaliculate (or pseudokeriothecal) wall microstructure appears
363
as very narrow and outwardly opening spaces arranged perpendicular to the wall (Fig. 15A, C, I). The
364
embryo is formed by an ovoid (or spherical) proloculus and a hemispherical deuteroloculus. As a result
365
of the melting of the thin wall between the proloculus and deuteroloculus separated by a simple
366
opening, proloculus appears as ovoid shape (Fig. 15E, G, W). Dimorphism is no evident. The aperture
367
is in the form of a single arched-slit at the base of the septa. The apertural margin of each septa
368
includes a lip or neck (peristomal rim) extending the chamber interior (Figs. 14A, C; 15C, K).
369
Dimensions. See Table 1.
370
Comparison. The new species is very closely similar to Moncharmontia apenninica (De Castro, 1967)
371
in overall test shape, wall composition and structure. But it differs in having a single and basal
372
aperture, thinner wall (8 µm against 17 µm in adult stage), and less number of chambers in the last
373
whorl (8, rarely 9 against 9–10.5). The maximum equatorial diameter of the new species does not
374
reach up to 0.40 mm (see Table 1), while that of M. apenninica is more than 0.40 mm (De Castro,
13
375
1966) (see Table 2). The other coexisting species Fleuryana adriatica has a lenticular shell with more
376
number of chambers in the last whorl and an aperture composed of arched slit in the central position
377
(De Castro et al., 1994), instead of basal. While chambers of the new species appear distinctly
378
rectangular in equatorial section, those of F. adriatica are square-like (Fig. 14K).
379
Stratigraphic and geographic distribution. Fleuryana gediki sp. nov. is reported from the levels
380
following the extinction of Cenomanian benthic foraminifera assemblages both in the Bornova Flysch
381
Zone and Bey Dağları. It has been observed in Pseudocyclammina sphaeroidea assemblage zone
382
(Turonian) truncated by a disconformity, in the Alakır section (Bey Dağları). In the Bornova Flysch
383
Zone (B labelled thin sections), it has been found in the Turonian-Coniacian shallow-marine
384
limestones which are conformably overlain by the Santonian pelagic limestones (Dicarinella
385
asymetrica zone) (Solak, 2019).
386
5. Conclusions
387
The Albian–Turonian succession exposed in the southeastern part of the BDCP consists entirely of
388
peritidal carbonates within an inner platform setting and does not include any evidence of a major
389
unconformity.
390
chronostratigraphic calibration could not be made. With respect to previous benthic foraminiferal
391
biozonations of the Albian to Turonian shallow-marine carbonate deposits of the peri-Mediterranean
392
platforms, a more detailed biostratigraphic subdivision is proposed. The following biozones are
393
defined: the upper Albian Protochrysalidina elongata–Cuneolina pavonia assemblage zone and
394
Coskinolinella bariensis taxon range subzone, the lower–middle Cenomanian Sellialveolina gr. viallii
395
taxon range zone, the upper Cenomanian Pseudorhipidionina casertana assemblage zone, the
396
uppermost Cenomanian Pseudorhapydionina dubia–Pseudolituonella reicheli assemblage zone, and
397
Turonian Pseudocyclammina sphaeroidea assemblage zone.
398
Ranges of some benthic foraminiferal taxa are revised and/or confirmed based on spatial relationships
399
between them (Fig. 7). Nezzazata gyra and N. conica appear in the upper Albian, before the first
400
occurences of Sellialveolina viallii, Ovalveolina maccagnoae and Biplanata peneropliformis. FOs of
401
Chrysalidina gradata, Pseudolituonella reicheli, and Biconcava bentori may correspond to the lower–
402
middle Cenomanian boundary interval. The middle and upper Cenomanian boundary interval is
403
characterized by the disappearance of the taxa characterizing the previous zone and by the
404
appearance of Pseudorhipidionina casertana, Pseudorhapydionina laurinensis, P. dubia, Vidalina
Thus
the
benthic
foraminiferal
bioevents
are
well
documented,
but
their
14
405
radoicicae (Fig. 7). Many Cenomanian index taxa, excluding Chrysalidina gradata, Pseudolituonella
406
reicheli, P. dubia and Peneroplis turonicus, disappear before the end of the Cenomanian. LOs of the
407
latter ones are immediately followed by FOs of Pseudocyclammina sphaeroidea, Moncharmontia
408
apenninica, Fleuryana adriatica, and Fleuryana gediki sp. nov. This major benthic foraminiferal
409
bioevent may correspond to the tentative Cenomanian–Turonian boundary. Thus, the two-step major
410
extinction event across the CTB interval, first recorded in the Apennine Carbonate Platform (Parente
411
et al., 2007, 2008), has been also documented from the BDCP.
412
Fleuryana adriatica, which was first described from the upper Maastrichtian (De Castro et al., 1994)
413
and afterwards discovered also in the Campanian (Solak et al., 2017, 2019, Moro et al., 2018), is
414
represented by small-sized (equatorial diameter <0.45 mm) specimens with less number of whorl (up
415
to 2.5) in the Turonian.
416
A new benthic foraminifera Fleuryana gediki sp. nov. is described from the Turonian limestones of the
417
Bey Dağları and from the Turonian–Coniacian limestones in the Bornova Flysch Zone (West Turkey).
418
Acknowledgements
419
This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK)
420
with Project Number 115Y130. We are grateful to Dr. Eduardo Koutsoukos, Dr. Felix Schlagintweit, Dr.
421
Lorenzo Consorti and one "anonymous reviewer" for valuable recommendations which improved the
422
manuscript. We thank Samet SALAR (Mersin University) for the preparation of thin sections.
423
Appendix
424
Author and date of species mentioned in the text in alphabetical order.
425
Biconcava bentori Hamaoui, 1965
426
Biplanata peneropliformis Hamaoui and Saint–Marc, 1970
427
Charentia cuvillieri Neumann, 1965
428
Chrysalidina gradata, d’Orbigny, 1839
429
Cisalveolina lehneri Reichel, 1941
15
430
Coskinolinella bariensis (Luperto–Sinni and Reina, 1992)
431
Coxites zubairensis Smout, 1956
432
Cuneolina pavonia d'Orbigny, 1846
433
Dicyclina schlumbergeri Munier–Chalmas, 1887
434
Dicyclina sampoi Cherchi and Schroeder, 1990
435
Fleuryana adriatica De Castro, Drobne and Gušić , 1994
436
Merlingina cretacea Hamaoui, 1965
437
Moncharmontia apenninica (De Castro, 1968)
438
Murgeina apula (Luperto–Sinni, 1968)
439
Nezzazata concava (Smout, 1956)
440
Nezzazata conica (Smout, 1956)
441
Nezzazata gyra (Smout, 1956)
442
Nezzazata simplex Omara, 1956
443
Nezzazatinella aegyptiaca (Said and Kenawy, 1957)
444
Nezzazatinella picardi (Henson, 1948)
445
Nummoloculina irregularis (d'Orbigny, 1839)
446
Ovalveolina maccagnoae De Castro, 1966
447
Peneroplis turonicus Said and Kenawy, 1957
448
Praealveolina iberica Reichel, 1936
449
Protochrysalidina elongata Luperto–Sinni, 1999
450
Pseudocyclammina sphaeroidea Gendrot, 1968
16
451
Pseudolituonella reicheli Marie, 1955
452
Pseudonummoloculina heimi (Bonet, 1956)
453
Pseudonummoloculina regularis (Philippson, 1887)
454
Pseudorhapydionina dubia (De Castro, 1965)
455
Pseudorhapydionina laurinensis (De Castro, 1965)
456
Pseudorhipidionina casertana (De Castro, 1965)
457
Pseudotextulariella cretosa (Cushman, 1932)
458
Reticulinella fleuryi Cvetko, Gušić and Schroeder, 1997
459
Sabaudia minuta (Hofker, 1965)
460
Scandonea phoenissa Saint–Marc, 1974
461
Sellialveolina gutzwilleri Vicedo, Calonge and Caus, 2011
462
Sellialveolina viallii Colalongo, 1963
463
Spiroloculina cretacea Reuss, 1854
464
Vidalina radoicicae Cherchi and Schroeder, 1986
465
Ammonites:
466
Metoicoceras geslinianum (d'Orbigny, 1841)
467
Neocardioceras juddii (Barrois and Guerne, 1898)
468
References
469
Aguilera–Franco, N., 2003. Cenomanian–Coniacian zonation (foraminifers and calcareous algae) in
470
the Guerrero–Morelos basin, southern Mexico. Revista Mexicana de Ciencias Geológicas 20, 202–
471
222.
17
472
Arriaga, M.E., Frijia, G., Parente, M., Caus, E., 2016. Benthic foraminifera in the aftermath of the
473
Cenomanian–Turonian boundary extinction event in the carbonate platform facies of the southern
474
Apennines (Italy). Journal of Foraminiferal Research 46/1, 9–24.
475
Bignot, G., Poisson, A., 1974. Le Cénomanien du flanc oriental du Katran Dağ (Sam dağ) pres
476
d’Antalya (Turquie). Bulletin of Mineral Resources Exploration of Turkey 82, 71–77.
477
Calonge, A., Caus, E., Bernaus, J.M., Aguilar, M., 2002. Praealveolina (Foraminifera) species: A tool
478
to date Cenomanian platform sediments. Micropaleontology 48, 53–66.
479
Chiocchini, M., Mancinella, A., Romano, A., 1984. Stratigraphic distribution of Benthic Foraminifera in
480
the Aptian, Albian and Cenomanian carbonate sequences of the Aurunci and Ausoni Mountains
481
(Southern Lazio, Italy). Benthos '83; 2nd Int. Symp. Benthic Foraminifera, Pau and Bordeaux, March
482
1984. ISSN 0181–0901. ISBN 2–901026–14–1, 161–181.
483
Chiocchini, M., Mancinelli, A., Romano, A., 1989. The gaps in the Middle–Upper Cretaceous
484
carbonate series of the southern Apennines (Abruzzi and Campania regions). Geobios, Mémoire
485
Spécial 11, 133–149.
486
Chiocchini M., Farinacci A., Mancinelli A., Molinari V., Potetti M., 1994. Biostratigrafia a foraminiferi,
487
dasicladali e ealpionelle delle successioni carbonatiche mesozoiche dell'Appennino centrale (Italia). A.
488
Mancinelli, (Ed.), Biostratigrafia dell'Italia centrale. Studi Geologici Camertl, Camerino, 9–129.
489
Chiocchini, M., Mancinelli, A., 2001. Sivasella monolateralis Sirel and Gunduz, 1978 (Foraminiferida)
490
in the Maastrichtian of Latium (Italy). Revue de Micropaleóntologie 44, 267–277.
491
Chiocchini, M., 2008. The new genus Palaeocornuloculina (Foraminiferida, Cornuspiracea) and its
492
species from Cenomanian limestones of Southern Latium (Central Italy). Memorie Descrittive della
493
Carta Geologica d’Italia 84, 203–224.
494
Chiocchini, M., Chiocchini, R.A., Didaskalou, P., Potetti, M., 2008. Microbiostratigrafia del Triassico
495
superiore, Giurassico e Cretacico in facies di piattaforma carbonatica del Lazio centro–meridionale e
496
abruzzo: revisone finale. Chiocchini, M. (Ed.), Memorie Descrittive della carta Geologica d’Italia,
497
Torino 84, 5–170.
18
498
Chiocchini, M., Pampaloni, M. L., Pichezzi, R. M., 2012. Microfacies e microfossili delle successioni
499
carbonatiche mesozoiche del Lazio et dell’Abruzzo (Italia centrale) Cretacico: Memorie per Servire alla
500
Descrizione della Carta Geologica d’Italia, ISPRA, Servizio Geologico d’Italia–Dipartimento Difesa del
501
Suolo–Roma 17, 269 p.
502
Chiocchini, M., Pichezzi, R.M., 2016. Cairoella tricamerata n. gen., n. sp. (Foraminiferida, Milioloidea)
503
from the lower Cenomanian of Monte Cairo (Southern Latium, Central Italy). Rivista Italiana di
504
Paleontologia e Stratigrafia 122, 77–84.
505
Colalongo, M.L., 1963. Sellialveolina viallii n. gen. n. sp. di Alveolinidae cenomaniano dell’Appennino
506
meridionale. Giornale di Geologia 30, 361–373.
507
Consorti, L., Caus, E., Frijia, G., Yazdı-Moghadam, M.,
508
Species: Taberina bingistani Henson, 1948): A Stratigraphic Marker For The Late Cenomanian.
509
Journal of Foraminiferal Research 45/4, 378–389.
510
Consorti, L., Calonge, A., Caus, E., 2016. Pseudorhapydionininae of the Iberian Ranges
511
(Cenomanian, Iberian Peninsula). Spanish Journal of Paleontology 31/2, 271–282.
512
Cvetko Tešović, B.C., Gušić, I., Jeleska, V., Bucković, D., 2001. Stratigraphy and microfacies of the
513
Upper Cretaceous Pučišća Formation, Island of Brač, Croatia. Cretaceous Research 22, 591–613.
514
De Castro, P., 1966. Contributo alla conoscenza delle alveoline albiano–cenomaniane della
515
Campania. Bollettino della Società dei naturalisti in Napoli 75, 219–275.
516
De Castro, P., 1985. Sellialveolina viallii Colalongo, 1963. Schroeder, R., Neumann, N. (Ed.), Les
517
grands Foraminifères du Crétace moyen de la région méditerranénne. Geobios, Mémoire Special 7,
518
133–138.
519
De Castro, P. 1991. Mesozoic. In: Barattolo, F., De Castro, P., Parente, M. (Eds.) 5th International
520
Symposium on Fossil Algae. Field Trip Guide–Book. Giannini, Napoli, 21–38.
521
De Castro, P., Drobne, K., Gušić, I., 1994. Fleuryana adriatica n.gen. n.sp. (Foraminiferida) from the
522
uppermost Maastrichtian of the Brač Island (Croatia) and some other localities on the Adriatic
523
carbonate platform. Razprave IV. Razreda, SAZU 35/8, 129–149.
2015. Praetaberina New Genus (Type
19
524
Farinacci, A., Yeniay, G., 1986. Biostratigraphy and event-analysis of the Cenomanian–Maastrichtian
525
carbonates of the Bey Dağları (Western Taurus, Turkey). Geologica Romana 25, 257–284.
526
Fleury, J.J., 1972. Le Cénomanien à Foraminifères benthoniques du massif de Vrassova (zone du
527
Gavrovo, Akarnania). Revue de Micropaléontologie 14/3, 181–194.
528
Fleury, J.J., 1980. Les zones de Gavrovo–Tripolitza et du Pinde–Olonos (Grèce continentale et
529
Péloponnèse du Nord): évolution d’une plate–-forme et d’un bassin dans leur cadre alpin. Société
530
Géologique du Nord 4, 1–651.
531
Fleury, J.–J., 2014. Données nouvelles sur Rhapydionina Stache, 1913 et Fanrhapydionina n.gen., un
532
groupe de Rhapydioninidae (Alveolinacea, Foraminifera) foisonnant en région périadriatique au
533
Campanien–Maastrichtien (New data about Rhapydionina Stache, 1913 and Fanrhapydionina n.gen.,
534
a bunch of Rhapydioninidae (Alveolinacea, Foraminifera) expanded in periadriatic area by
535
Campanian–Maastrichtian time). Geodiversitas 36/2, 173–208.
536
Fleury, J.J., 2016. Cuvillierinella salentina (Foraminifera, Rhapydioninidae) and its kindship in the
537
Western Mediterranean area during the Campanian–Maastrichtian. Revue de micropaléontologie 59/2,
538
200–224.
539
Frijia, G., Parente, M., Di Lucia, M., Mutti, M., 2015. Carbon and strontium isotope stratigraphy of the
540
Upper
541
Chronostratigraphic calibration of larger foraminifera biostratigraphy. Cretaceous Research 53, 110–
542
139.
543
Golubic, S., Radoičić, R., Seong–Joo, L., 2006. Decastronema kotori gen. nov., comb. nov.; a mat-
544
forming cyanobacterium on Cretaceous carbonate platforms and its modern counterparts. Carnets de
545
Géologie 127/2, Brest, Article 2006/2 (CG 2006_A02).
546
Görür, N., Tüysüz, O., 2001. Cretaceous to Miocene palaeogeographic evolution of Turkey
547
implications for hydrocarbon potential. Journal of Petroleum Geology 24, 119–146.
548
Grosheny, D., Tronchetti, G., 1993. La crise Cenomanien–Turonien: Réponse comparée des
549
assemblages de foraminifères benthiques de plate-forme carbonatée et de bassin dans le Sud–Est de
550
la France. Cretaceous Research 14, 397–408.
Cretaceous
(Cenomanian–Campanian)
shallow-water
carbonates
of
southern
Italy:
20
551
Gušić, I., Jelaska, V., 1993. Upper Cenomanian–Lower Turonian sea-level rise and consequences on
552
the Adriatic–Dinaric carbonate platform. Geologische Rundschau 82/4, 676– 686.
553
Günay, Y., Bölükbaşı, S., Yoldemir, O. 1982. Beydağlarının stratigrafisi ve yapısı. Abstracts of the 6th
554
Petroleum Congress of Turkey, 91–101.
555
Hottinger, L., 2006. Illustrated glossary of terms used in foraminiferal research. Carnets de
556
Géologie/Notebooks on Geology Memoir (2006/02), 1–125.
557
Husinec, A., Velić, I., Sokač, B., 2009. Diversity patterns in mid–Cretaceous benthic foraminifers and
558
Dasycladalean algae of the southern part of the Mesozoic Adriatic platform, Croatia. SEPM (Society
559
for Sedimentary Geology), ISBN 978–1–56576–137–7, 153–170.
560
Korbar, T., Glumac, B., Cvetko Tešović, Cadieux, S.B., 2012. Response of a carbonate platform to the
561
Cenomanian–Turonian drowning and OAE 2: a case study from the Adriatic Platform (Dalmatia,
562
Croatia). Journal of Sedimentary Research 82, 163–176.
563
Loeblich Jr., A.R., Tappan, H., 1988. Foraminiferal General and Their Classification Van Nostrand
564
Reinhold Company, New Yourk, 2 Volumes, 970 p.
565
Moro, A., Velić, I., Mikuz, V., Horvat, A., 2018. Microfacies characteristics of carbonate cobble from
566
Campanian of Slovenj Gradec (Slovenia): implications for determining the Fleuryana adriatica De
567
Castro, Drobne and Gušić paleoniche and extending the biostratigraphic range in the Tethyan realm.
568
The Mining-Geology-Petroleum Engineering Bulletin 33/4, 1–13.
569
Parente, M., Frijia, G., Di Lucia, M., 2007. Carbon-isotope stratigraphy of Cenomanian–Turonian
570
platform carbonates from southern Apennines (Italy): a chemostratigraphic approach to the problem of
571
correlation between shallow-water and deep-water successions. Journal of the Geological Society of
572
London 164, 609–620.
573
Parente, M., Frijia, G., Di Lucia, M., Jenkyns, H.C., Woodfine, R.G., Baroncini, F., 2008. Stepwise
574
extinction of larger foraminifera at the Cenomanian–Turonian boundary: a shallow-water perspective
575
on nutrient fluctuations during Oceanic Anoxic Event 2 (Bonarelli Event). Geology 36, 715–718.
576
Poisson, A. 1977. Recherches géologiques dans les Taurides occidentales. Ph.D. Thesis, Université
577
de Paris–Sud, Orsay, 795 p.
21
578
Poisson, A., Akay, E., Dumont, J.F., Uysal, Ş., 1984. The Isparta Angle: A Mesozoic paleorift in the
579
Western Taurides, in Tekeli, O. and Göncüoğlu, M.C. (Eds.), Proceedings of the International
580
Symposium on the Geology of the Taurus Belt 1983, Ankara, 11–26.
581
Poisson, A., Yağmurlu, F., Bozcu, M., Şentürk, M., 2003. New insights on the tectonic setting and
582
evolution around the apex of the Isparta Angle (SW Turkey). Geological Journal 38, 257–282.
583
Saint–Marc, P., 1969. Etude geologique de la region d'Hermel (Liban septentrional). Bulletin de la
584
Société Géologique de France 7, 379–387.
585
Sanders, D., Pons, J.M., Caus, E., 2004. Shallow-water limestone clasts in a Campanian deep-water
586
debrite (Krappfeld, Central Alps, Austria): implications for carbonate platform history. Annalen des
587
Naturhistorischen Museums in Wien 106 A, 139–165.
588
Sarı, B., Özer, S. 2001. Facies characteristics of the Cenomanian−Maastrichtian sequence of the
589
Beydağları carbonate platform in the Korkuteli area (western Taurides). International Geology Review
590
43, 830−839.
591
Sarı, B., Özer, S., 2002. Upper Cretaceous stratigraphy of the Beydağları carbonate platform,
592
Korkuteli area (Western Taurides, Turkey). Turkish Journal of Earth Sciences 11, 39–59.
593
Sarı, B., Steuber, T., Özer, S. 2004. First record of Upper Turonian rudists (Mollusca, Hippuritoidea) in
594
the Bey Dağları carbonate platform, Western Taurides (Turkey): taxonomy and strontium isotope
595
stratigraphy of Vaccinites praegiganteus (Toucas, 1904). Cretaceous Research 25, 235−248.
596
Sarı, B., Taslı, K., Özer, S., 2009. Benthonic foraminiferal biostratigraphy of the Upper Cretaceous
597
(middle Cenomanian–Coniacian) sequences of the Bey Dağları carbonate platform, Western Taurides,
598
Turkey. Turkish Journal of Earth Sciences 18, 393–425.
599
Sartoni, M., Crescenti, U. 1962. Ricerche biostratigrafiche nel Mesozoico dell'Appennino meridionale.
600
Giorn. Geologica 29/2, 161–302.
601
Schlanger, S.O., Jenkyns, H.C. 1976. Cretaceous oceanic anoxic events: causes and consequences.
602
Geologie en Mijnbouw 55, 179–184.
22
603
Schlager, W., Philip, J., 1990. Cretaceous carbonate platforms in Ginsburg, N., and Beaudoin, B.
604
(Eds.), Cretaceous Resources, Events and Rhythms: Kluwer, Dordrecht, 173–195.
605
Schlagintweit, F., Kolodziej, B., Qorri, A., 2015. Foraminiferan-calcimicrobial benthic communities from
606
Upper Cretaceous shallow-water carbonates of Albania (Kruja Zone). Cretaceous Research 56, 432–
607
446.
608
Schroeder, R., Neumann, N., 1985. Les grands Foraminifères du Crétace moyen de la région
609
méditerranénne: Geobios, Mémoire Special 7, 161.
610
Solak, C., Taslı, K., Koç, H., 2017. Biostratigraphy and facies analysis of the Upper Cretaceous–
611
Danian? platform carbonate succession in the Kuyucak area, western Central Taurides, S Turkey.
612
Cretaceous Research 79, 43–63.
613
Solak, C., Taslı, K., Özer, S., Koç, H., 2019. The Madenli (Central Taurides) Upper Cretaceous
614
platform carbonate succession: Benthic foraminiferal biostratigraphy and platform evolution. Geobios
615
52, 67–83.
616
Solak, C., 2019. Anamas-Akseki ve Bey Dağları Karbonat Platformları ile Bornova Fliş Zonu’nun
617
Güneybatı Kesimindeki Üst Kretase İstiflerinin Stratigrafisi, Paleo-Ortamsal Analizi ve Bentik
618
Foraminifer Mikropaleontolojisi (Stratigraphy, Paleoenvironmental Analysis and Benthic Foraminiferal
619
Micropaleontology of the Upper Cretaceous Successions in the Anamas-Akseki and Bey Dağları
620
Carbonate Platforms and SW Part of the Bornova Flysch Zone), Ph.D. Thesis, 305 p (in Turkish).
621
Unpublished.
622
Şenel, M., Kengil, R., Ünverdi, M., Gözler, M.Z., Serdaroğlu, M., 1981. Teke Torosları
623
güneydoğusunun jeolojisi. Bulletin of Mineral Resources Exploration of Turkey 95–96,13–43.
624
Taslı, K., Solak, C. 2019. New findings on an Orbitolinid foraminifer Coskinolinella bariensis (Luperto–
625
Sinni & Reina, 1992) from the Albian shallow-water carbonate sequence of the Bey Dağları (S
626
Turkey). Journal of Foraminiferal Research 49/2, 191–205.
627
Velić, I., Vlahović, I., 1994. Foraminiferal assemblages in the Cenomanian of the Buzet–Savudrija
628
Area (Northwestern Istria, Croatia). Geologia Croatica 47, 25–43.
23
629
Velić, I., 2007. Stratigraphy and palaeobiogeography of Mesozoic benthic foraminifera of the Karst
630
Dinarides (SE Europe). Geologica Croatica 60, 1–113.
631
Vicedo, V., Calonge, A., Caus, E. 2011. Cenomanian Rhapydioninids (Foraminiferida): Architecture of
632
the Shell and stratigraphy. Journal of Foraminiferal Research 41/1, 41–52.
633
Vlahović, I., Tišljar, J., Velić, I., Matičec, D., 2005. Evolution of the Adriatic Carbonate Platform:
634
Palaeogeography, main events and depositional dynamics. Palaeogeography, Palaeoclimatology,
635
Palaeoecology 220, 333–360.
24
1
Table 1. Dimensions of Fleuryana gediki sp. nov.
2
Table 2. Comparative summary of Fleuryana gediki sp. nov. with F. adriatica and M. apenninica.
1
Fig. 1. A) The main tectonic units of west part of Turkey (after Görür and Tüysüz, 2001), B) Structural
2
map of the Western Taurides (after Poisson et al., 1984) showing the location of the measured
3
stratigraphic sections; 1) Alakır section, 2) Alacadağ section, C) Detailed geological map of the Toçak
4
Mountain showing the Alakır stratigraphic section line (after Şenel et al., 1981).
5
Fig. 2. Field photos of the Albian–Turonian limestones in the Alakır and Alacadağ sections. Alakır
6
section: A) Breccia with black pebbles in the upper Albian; B) Limestone with shell fragments in the
7
Cenomanian; C) Apparently massive limestones, Interval II; D) White Turonian limestones. Alacadağ
8
section: E) Rudist specimens collected from the Turonian limestones; F) Rudist buildup in the
9
Turonian massive limestones.
10
Fig. 3. The Alakır section showing the stratigraphic distribution of selected benthic foraminifera,
11
biozones and paleoenvironments.
12
Fig. 4. The Alacadağ section showing the stratigraphic distribution of selected foraminifera, biozone
13
and paleoenvironments.
14
Fig. 5. Benthic foraminifera of the Sellialveolina gr. viallii taxon range zone (BFZ–2) (lower–middle
15
Cenomanian). A–C. Ovalveolina maccognoae, sample F55; D. Praealveolina cf. P. iberica, sample
16
F113; E–I. Sellialveolina gr. viallii, samples F114, F114, F85, F102, F114. Scale bar: 0.25 mm.
17
Fig. 6. Other benthic foraminifera of the Sellialveolina gr. viallii taxon range zone (BFZ–2) (lower–
18
middle Cenomanian). A. Pseudonummoloculina heimi, sample F76; B. Pseudonummoloculina
19
regularis, sample F111; C, G. Spiroloculina cretacea, samples F76, F84; D, E. Nezzazatinella picardi,
20
sample F84; H. Pseudolituonella reicheli, sample F96; F, I. Nezzazata sp., samples F84, F81; J, K.
21
Scandonea phoenissa, sample F76; L. Nezzazata simplex, sample F71; M. Peneroplis turonicus,
22
sample F81; N. Biconcava bentori, sample F98; O, S. Orbitolinidae indet., sample F62; P, Q. Biplanata
23
peneropliformis, samples F71, F96; R. Canaliculate walled Textulariidae?, sample F71; T. Cuneolina
24
pavonia, sample F85. Scale bar: 0.25 mm.
25
Fig. 7. Schematic stratigraphic distribution of the selected benthic foraminifera in the Alakır section.
26
Fig. 8. Stratigraphic distribution of selected benthic foraminifera identified from the Cenomanian–
27
Turonian succession in the Bey Dağları. References: 1) Velić and Vlahović, 1994; 2) Velić, 2007; 3)
28
Aguilera–Franco, 2003; 4) Chiocchini and Mancinelli, 2001; 5) Chiocchini and Pichezz, 2016; 6)
29
Chiocchini, 2008; 7) Solak et al., 2017; 8) Chiocchini et al., 2008; 9) Sarı et al., 2009; 10) Frijia et al.,
30
2015; 11) Chiocchini et al., 1984; 12) Cvetko Tešović et al., 2001; 13) Chiocchini et al., 2012; 14)
31
Schroeder and Neumann, 1985; 15) Consorti et al., 2016; 16) Fleury, 2014; 17) Fleury, 2016; 18)
32
Sanders et al., 2004; 19) Moro et al., 2018.
33
Fig. 9. Biocorrelation scheme of the Albian–Turonian benthic foraminiferal biozones in the BDCP with
34
those in the other peri–Mediterranean carbonate platforms.
35
Fig. 10. Benthic foraminifera of the Pseudorhipidionina casertana assemblage zone (BFZ–3) (upper
36
Cenomanian). A–C. Pseudorhipidionina casertana, sample F180; D–F. Pseudorhapydionina dubia,
37
sample F180; G. Pseudorhapydionina laurinensis, sample F164; H. Vidalina sp., sample F119; I, N.
38
Pseudonummoloculina regularis, sample F121; J, O. Pseudolituonella reicheli, samples F166, F157;
39
K, L. Pseudonummoloculina heimi, sample F128; M, R. Cornuspiridae, samples F157, F128; P.
40
Chrysalidina gradata, sample F157; Q. Nubeculariidae, sample F128; S, T. Peneroplis turonicus,
41
samples F158, F152; U. Dicyclina sampoi, sample F166. Scale bars: 0.25 mm.
42
Fig. 11. Other benthic foraminifera of the Pseudorhipidionina casertana assemblage zone (BFZ–3)
43
(upper Cenomanian). A, B. Nezzazata simplex, samples F166, F157; C. Nezzazata concava, sample
44
F166; D. Nezzazata sp., sample F136; E–H, L. Nezzazatinella picardi, samples F166, F156, F166,
45
F182, F157; I. Pseudocyclammina aff. P. sphaeroidea, sample F136; J, K. Biconcava bentori, samples
46
F157, F180; M. Biplanata peneropliformis, sample F166; N, O. Cuneolina pavonia, sample F182,
47
F148; P–X. Pseudotextulariella sp., samples F157, F157, F166, F157, F157, F157, F157, F166. Scale
48
bar: 0.25 mm.
49
Fig. 12. Biocorrelation between benthic foraminiferal zones defined across the CTB interval in the
50
BDCP and ACP.
51
Fig. 13. Benthic foraminifera of the Pseudorhapydionina dubia–Pseudolituonella reicheli assemblage
52
zone (BFZ–4) (uppermost Cenomanian). A, B. Chrysalidina gradata, sample F229; C–E.
53
Pseudorhapydionina dubia, samples F200, F229, F200; F–H, J, O. Nezzazatinella picardi, samples
54
F197, F229, F229, F229, F229; I. Peneroplis turonicus, sample F193; K. Pseudolituonella reicheli,
55
sample F193; L. Cornuspiridae, sample F198; M, N. Moncharmontia? sp., samples F229, F200; P.
56
Nezzazata simplex, sample F229; Q, T. Bolivinopsis sp., samples F229, F228; R. Spiroloculina sp.,
57
sample F228; S. Discorbidae, sample F198. Scale bars: 0.25 mm.
58
Fig. 14. Benthic foraminifera of the Pseudocyclammina sphaeroidea assemblage zone (BFZ–5)
59
(Turonian). A–E. Fleuryana gediki sp. nov. (arrows show basal aperture), samples F247, F247, Ad21,
60
Ad12, Ad21; F, G. Moncharmontia apenninica, sample F247; H–K. Fleuryana adriatica, samples F223,
61
B172, F247, F247 (arrow shows aperture); L. Fleuryana sp., sample Ad21; M, N. Foram. Indet.,
62
sample F216; O–Q. Pseudocyclammina sphaeroidea, samples F223, F223, F247; R1–R3.
63
Nezzazatinella picardi, samples F247, F230, Ad21;
64
Nezzazata simplex, sample F247; U. Reticulinella fleuryi, sample Ad21; V. Pseudonummoloculina
65
sp., sample F206; W1–W3. Arenobulimina sp., sample F247; X. Discorbidae, sample F211; Y, Z.
66
Spiroloculina sp., sample F247. Scale bar: 0.25 mm.
67
Fig. 15. Fleuryana gediki sp. nov. A–J. Specimens from the Pseudocyclammina sphaeroidea
68
assemblage zone (Turonian) of the Alakır section (Bey Dağları, Western Taurides), sample F247; K–
69
Y. Specimens from the Turonian–Coniacian limestones of the Belkahve section (southwestern part of
70
the Bornova Flysch Zone). K, L, P. sample B52, M. sample B70, N. B71; O, Q, R, T. sample B75; S,
71
V, W, X. sample B88; U, Y. sample B92. Canaliculate structure of the wall is evident in A, C, I
72
(arrows). Basal aperture is evident in B, C, D, G, H, K, L, R, X (arrows). p: proloculus, d:
73
deuteroloculus. Scale bar: 0.2 mm.
S. Cuneolina pavonia, sample F230; T.
Table 1. sample and illustration number
number of chambers (C)
equatorial diameter (D) (mm)
C1
C2
C(last)
D1
D2
D2.5
width of whorls (W) (mm) W1 W2
2.5
7
8.5
9
0.16
0.26
0.32
-
-
0.006
2
-
-
-
0.15
0.24
-
0.09
0.14
Ad21/Fig. 14E
0.005/0.006
2
-
-
-
0.14
0.21
-
0.09
0.13
F247
0.005/0.007
2
7
8
-
0.14
0.22
-
-
-
F247
0.007
1
6
-
-
0.20
-
-
-
-
F233
0.005/0.006
2
7
9
-
0.13
0.22
-
-
-
F247/Fig. 15A
0.005/0.007
2
?
8
-
0.15
0.30
-
-
-
F247/Fig. 15B
0.006/0.010
2.5
7
8
8.5
0.16
0.27
0.32
-
-
F247/Fig. 15D
0.005/0.006
2.5
6
8
8
0.15
0.25
0.28
-
-
F247/Fig. 15E
0.006/0.007
1
7
-
-
0.16
-
-
-
-
F247/Fig. 15G
0.006/0.008
2
-
-
-
0.15
0.23
-
0.12
0.17
B52/Fig. 15K
0.005
1.5
6.5
8
-
0.13
0.18
-
-
-
B52/Fig. 15L
0.005
2.5
6
7?
8?
0.13
0.19
0.24
-
-
B52/Fig. 15P
0.005/0.006
1.5
-
-
-
0.13
0.19
-
0.08
0.15
B75/Fig. 15Q
0.007
2.5
6?
8
8
0.17
0.26
0.31
-
-
B75/Fig. 15R
0.006/0.008
2.2
6
6.5
7
0.16
0.27
0.33
-
-
B88
0.006/0.008
1.5
-
-
-
0.13
0.25
-
0.11
0.17
B88/Fig. 15S
0.008/0.009
2
-
-
-
0.20
0.34
-
0.15
0.24
B92/Fig. 15U
0.007
1.5
-
-
-
0.15
0.19
-
0.12
0.17
B92/Fig. 15Y
0.006
2.5
-
-
-
0.13
0.21
0.26
0.08
0.21
F247/Fig. 14A holotype Ad12/Fig. 14D
inner diameter of proloculus (mm) 0.006/0.009
number of whorls
Table 2. M. apenninica De Castro, 1966 areal, cribrate
F. adriatica (Maastrichtian) De Castro et al., 1994 areal, arched slit
0.083-0.150
0.030-0.090 (avarage 0.050-0.070)
0.040-0.060 (avarage 0.050)
up to 2.5
up to 3.5
up to 2.5
C1
7-8
10.5-11
7-9
6-7
C2
9-10.5
13
11-12
8-9
last
13 (rare)
14-16
11.5-13
-
0.008-0.017
0.007-0.012
0.005-0.012
0.005-0.008
0.23-0.33
0.11-0.22
0.14-0.18
0.13-0.20
0.43-058
0.24-0.41
0.25-0.36
0.21-0.34
last
-
0.40-0.65
0.32-0.44
0.24-0.33
W1
0.17-0.25
0.07-0.13
0.09-0.12
0.08-0.15
W2
0.28-0.36
0.12-0.24
0.15-0.17
0.13-0.24
W3
-
0.20-0.33
-
-
aperture diameter of proloculus (mm) number of whorls number of chambers (C) per whorl
wall thickness (mm) equatorial D1 diameter (D) D2 (mm)
width of whorls (W) (mm)
F. adriatica (Turonian) this study areal, arched slit
Fleuryana gediki sp. nov. basal, arched slit 0.040-0.100 (avarage 0.060) up to 2.5
1
1- A benthic foraminiferal biozonation scheme is proposed for the upper Albian to Turonian shallow-
2
marine carbonate succession of the Bey Dağları Carbonate Platform (BDCP).
3
2- Two-step pattern of extinction of benthic foraminifera across the Cenomanian–Turonian boundary
4
interval is recorded also in the BDCP.
5
3- A tentative Cenomanian–Turonian Boundary is determined based on the major change in benthic
6
foraminiferal assemblages.
7
4- A new benthic foraminifera Fleuryana gediki sp. nov. is described from the Turonian.
This study was designed, directed and coordinated by Cemile SOLAK, Kemal TASLI and Hayati KOÇ.
CRediT author statement Cemile SOLAK: Conceptualization, Methodology, Investigation, Resources, Writing - Original Draft, Writing - Review & Editing Kemal TASLI: Project administration, Methodology, Investigation, Writing - Original Draft, Writing Review & Editing Hayati KOÇ: Resources