An Albian–Turonian shallow-marine carbonate succession of the Bey Dağları (Western Taurides, Turkey): biostratigraphy and a new benthic foraminifera Fleuryana gediki sp. nov.

An Albian–Turonian shallow-marine carbonate succession of the Bey Dağları (Western Taurides, Turkey): biostratigraphy and a new benthic foraminifera Fleuryana gediki sp. nov.

Journal Pre-proof An Albian–Turonian shallow-marine carbonate succession of the Bey Dağları (Western Taurides, Turkey): biostratigraphy and a new bent...

59MB Sizes 0 Downloads 33 Views

Journal Pre-proof An Albian–Turonian shallow-marine carbonate succession of the Bey Dağları (Western Taurides, Turkey): biostratigraphy and a new benthic foraminifera Fleuryana gediki sp. nov Cemile Solak, Kemal Tasli, Hayati Koç PII:

S0195-6671(19)30297-6

DOI:

https://doi.org/10.1016/j.cretres.2019.104321

Reference:

YCRES 104321

To appear in:

Cretaceous Research

Received Date: 21 July 2019 Revised Date:

13 November 2019

Accepted Date: 16 November 2019

Please cite this article as: Solak, C., Tasli, K., Koç, H., An Albian–Turonian shallow-marine carbonate succession of the Bey Dağları (Western Taurides, Turkey): biostratigraphy and a new benthic foraminifera Fleuryana gediki sp. nov, Cretaceous Research, https://doi.org/10.1016/ j.cretres.2019.104321. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Elsevier Ltd. All rights reserved.

1

An Albian–Turonian shallow-marine carbonate succession of the Bey Dağları (Western

2

Taurides, Turkey): biostratigraphy and a new benthic foraminifera Fleuryana gediki sp. nov.

3

Cemile SOLAK *, Kemal TASLI , Hayati KOÇ

4

1

5

MERSİN

6

* Corresponding author.

7

E–mail address: [email protected]

8

Abstract

9

The studied Cretaceous succession is exposed at the Toçak Mountain in the southeastern part of the

10

Bey Dağları Carbonate Platform (BDCP). The Alakır outcrop section presents seemingly continuous

11

shallow-marine carbonate sedimentation during the Albian–Turonian times which is known from very

12

few parts of the peri-Mediterranean platforms. Approximately 550 meters thick platform carbonate

13

succession is unconformably overlain by carbonate breccia/conglomerate and pelagic limestones of

14

Campanian age. A benthic foraminiferal biostratigraphic zonation scheme is presented. The biozones

15

are tentatively placed into the stages, without chronostratigraphic calibration, based on stratigraphic

16

distribution of common benthic foraminifera in the peri-Mediterranean platforms. Protochrysalidina

17

elongata–Cuneolina pavonia assemblage zone and Coskinolinella bariensis taxon range subzone are

18

assigned to the upper Albian. In the conformably overlying limestones, Sellialveolina gr. viallii taxon

19

range zone (lower–middle Cenomanian), Pseudorhipidionina casertana assemblage zone (upper

20

Cenomanian), Pseudorhapydionina dubia–Pseudolituonella reicheli assemblage zone (uppermost

21

Cenomanian) and Pseudocyclammina sphaeroidea assemblage zone (Turonian) have been

22

distinguished. Two-step pattern of extinction of benthic foraminifera across the Cenomanian–Turonian

23

boundary interval, which was first recorded from the Apennine Carbonate Platform, has been

24

documented also from the BDCP. The tentative Cenomanian–Turonian Boundary is constrained into

25

an interval of one meter between the last occurrence of the Cenomanian larger foraminifera and the

26

first occurrence of the Turonian benthic foraminiferal assemblage comprising morphologically-simple

27

and less-known taxa and other taxa left in open nomenclature. Fleuryana gediki sp. nov. is described

28

from the Turonian.

1,

1

1

Mersin University, Department of Geological Engineering, Çiftlikköy Campus, 33343, Yenişehir,

1

29

Keywords: Benthic Foraminiferal Biozones; Albian–Turonian; Carbonate Platform; Bey Dağları

30

Autochthon; S Turkey.

31

1. Introduction

32

The Cenomanian–Turonian transition with shallow-marine carbonate facies has been recorded from

33

very few localities in the peri-Mediterranean carbonate platforms, because most of the platforms were

34

either drowned (Adriatic Carbonate Platform, e.g., Gušić and Jelaska, 1993; Vlahović et al., 2005;

35

Korbar et al., 2012) or subaerially exposed (e.g., Southern Apennines, Abruzzi, and Western

36

Campania, Chiocchini et al., 1989). The Cenomanian–Turonian boundary (CTB) interval was a major

37

episode of carbonate-platform crisis (e.g., Schlager and Philip, 1990) and also the time of Oceanic

38

Anoxic Event 2 (OAE2) (Schlanger and Jenkyns, 1976). After the platform crisis, the restart of shallow-

39

marine carbonate sedimentation occurred at least after a few million years (Arriaga et al., 2016). In

40

many platform parts, the platform crisis lasted much longer until the Coniacian (Chiocchini et al., 1989)

41

and even the late Campanian (Solak et al., 2017, 2019). Very few platform parts recorded a

42

continuous carbonate platform accretion across the CTB interval (e.g., Parente et al., 2007, 2008;

43

Taslı and Solak, 2019). Such continuous shallow-marine carbonate successions are an important key

44

to reveal biotic changes across the CTB interval previously documented from the peri-Mediterranean

45

carbonate platforms (Grosheny and Tronchetti, 1993; Calonge et al., 2002; Parente et al., 2008). The

46

studied succession of the Bey Dağları Carbonate Platform (BDCP) is one of these exceptional

47

successions which presents a continuous shallow-marine carbonate sedimentation during the Albian–

48

Turonian times and therefore permits to document the vertical distribution of benthic foraminiferal

49

assemblages.

50

With respect to the Upper Cretaceous stratigraphy of the BDCP, Bignot and Poisson (1974)

51

distinguished two levels including Pseudedomia viallii below and Pseudorhapydionina laurinensis at

52

the top of the Cenomanian section of the Katran Dağ (Bey Dağları). Farinacci and Yeniay (1986) gave

53

an overall list of the rich Cenomanian benthic foraminifera assemblage the Bey Dağları sequences.

54

Sarı et al. (2009) defined the Pseudolituonella reicheli– Pseudorhapydionina dubia zone comprising

55

Cisalveolina lehneri and Coxites zubairensis subzones from the middle–upper Cenomanian of the

56

BDCP. Although there are many studies asserted the existence of the Turonian stage in the Bey

57

Dağları (Farinacci and Yeniay, 1986; Sarı et al., 2009; Sarı and Özer, 2002), the upper Turonian

2

58

rudistid limestones were first documented by Sarı et al. (2004) based on strontium isotope

59

stratigraphy.

60

This study aims (1) to illustrate benthic foraminiferal taxa, (2) to define main bioevents (appearance

61

and disappearance of benthic foraminiferal taxa) during the Albian–Turonian in the Bey Dağları

62

Carbonate Platform and to correlate them with those in the peri-Mediterranean platforms, (3) to

63

describe a new benthic foraminifera Fleuryana gediki sp. nov. from the Turonian.

64

2. Geological setting

65

The Bey Dağları Autochthon is situated at the Western Taurides (Fig. 1A) and composed of shallow-

66

marine carbonates from the Triassic to the Eocene in the south and from the Triassic to the

67

Cenomanian in the north, surrounded by mainly deep-marine settings from Turonian to Oligocene

68

(e.g., Günay et al., 1982; Poisson et al., 1984; Poisson et al., 2003). It is bounded to the east by the

69

Antalya nappes (=Antalya Complex) and to the west by the Lycian nappes (Poisson, 1977) (Fig. 1B).

70

The BDCP term s.str. is used here for a paleogeographic entity which existed from the Triassic to the

71

Campanian when it was finally drowned.

72

The oldest exposed rocks are dolomites of Triassic age (Kuyubaşı dolomite). They are conformably

73

overlain by the Bey Dağları formation (Günay et al., 1982) which is composed of Lower Jurassic–

74

Upper Cretaceous (lower Santonian) peritidal carbonates and the middle–upper Santonian

75

hemipelagic limestones. The upper Campanian–upper Maastrichtian pelagic cherty limestones (Akdağ

76

formation) overlie the Bey Dağları Formation along a nondepositional and/or an erosional surface

77

(e.g., Sarı and Özer, 2001; Sarı and Özer 2002; Sarı et al., 2004). The remaining successions of the

78

autochthon are represented by the upper Paleocene–lower Eocene Sobute Formation (limestone,

79

marl and claystone), upper Lutetian–Oligocene Kücükköy Formation (marl, claystone and limestone),

80

Aquitanian Karabayir Formation (algal limestone), Burdigalian Karakuçtepe Formation (alternation of

81

sandy

82

(conglomerate, sandstone and claystone) (Poisson, 1977).

83

3. Materials and methods

84

This study is based on two outcrop sections from the southeastern part of the BDCP. The Alakır

85

section

86

36°24'42.87"N) is located just to the west of the A lakır Dam in the eastern of the Toçak Mountain

limestone,

claystone

and

limestone)

(F–30°13'28.14"E–36°25'17.09"N,

and

Burdigalian–Langian

Fa–30°13'53 .66"E–36°26'27.63"N,

Kasabu

Formation

Fb–30°14'24.67"E–

3

87

(approximately 15 km northeast of Finike) (Fig. 1C). The Alakır section includes the Albian–Turonian

88

interval and was sampled starting from about 550 meters below the first pelagic cover sediments as a

89

reference

90

approximately 15 km northwest of the Alakır section, was logged from a Limyra limestone quarry, 3,5

91

km from Alacadağ village. It starts within the rudistid limestones 70 meters below the first Campanian

92

pelagic limestones. Sampling is at average spacing of 2 meters. The studied material contains two

93

hundred ninety-two (292) limestone samples and three hundred ten (310) thin sections labelled F1–

94

251, Fa1–6, Fb1–5 and Ad1–30 that are stored at the thin section archive of the General Geology

95

Laboratory, Department of Geological Engineering, Mersin University, Turkey. The illustrations and the

96

stratigraphic distribution of benthic foraminifera in the lower 165 meters of the Alakır section, which

97

includes the upper Albian, are provided in Taslı and Solak (2019). In this study, additional seven thin

98

sections (52, 70, 71, 75, 88, 92, 172) labelled B from the Turonian of the Belkahve section in the

99

Bornova Flysch Zone (Solak, 2019), are used for description of Fleuryana gediki sp. nov. But,

level.

The

Alacadağ

section

(Ad–30°4'2.15"E–36°25'21.68"N),

which

is

s ituated

100

micropaleontological results of the Belkahve section are not published yet.

101

4. Results

102

4.1. Lithostratigraphy and facies

103

4.1.1. Alakır Section

104

The Alakır section presents a continuous shallow-marine sedimentation during the Albian–Turonian

105

times, although there are discontinuities indicating short-term platform emersion (Fig. 2A). A 550

106

meters thick section can be subdivided into two intervals on the basis of lithofacies. The lower 390

107

meters of the section (interval I) is composed of beige and cream-colored, medium to thick (mostly 30–

108

40 cm, up to 1 m) and well-bedded, thinly laminated limestones and dolomitized limestones with thick-

109

bedded dolomite intercalations. Laminations are visible on rain-etched surface, not on a fresh

110

fractured surface. Mottled-dolomitized limestone beds are common. Small gastropods are the most

111

frequent macrofossils. Bivalve (Fig. 2B) and rudistid shells are recorded only at 122. m from the base.

112

There is a 30 cm thick polymictic breccia at 115. m from the base (sample F41), which may be

113

evidence

114

wackestone/packstone, intraclastic/peloidal packstone/grainstone and laminated peloidal packstone

115

alternating with frequently ostracod wackestone, bioclastic wackestone/floatstone and rarely

116

mudstone.

of

subaerial

exposure.

Interval

I

consists

of

mainly

benthic

foraminiferal

4

117

The upper 160 meters of the section (interval II) is represented by beige and white-colored, thick to

118

very thick and weakly bedded, apparently massive limestones (Fig. 2C) with lesser dolomite

119

intercalations. Rudist shell fragments occur in the upper part of the Interval II. Laminations occur less

120

frequently than interval I. Interval II is composed of mainly benthic foraminiferal wackestone/packstone

121

and

122

packstone/grainstone and bioclastic floatstone. An incertae sedis Thaumatoporella (e.g., Schlagintweit

123

et al., 2015) and also a cyanobacterian Decastronema (e.g., Golubic et al., 2006) become frequent in

124

lower half of this interval. Dasycladalean algal wackestone occurs only at one level in the upper

125

Cenomanian. CTB interval is represented by similar facies which make up of this interval and it does

126

not present a facies change throughout the Cenomanian–Turonian transition. Wackestone with

127

Decastronema has been observed at one level in the Turonian limestones (Fig. 2D). Sedimentologic

128

and micropaleontologic analysis suggest that the Albian–Turonian platform carbonates were deposited

129

in peritidal environments of restricted platform settings. The Alakır Albian–Turonian section is

130

unconformably overlain by carbonate breccia/conglomerates and pelagic limestones of the

131

Campanian–Maastrichtian age of the Akdağ Formation.

132

4.1.2. Alacadağ section

133

The Alacadağ section is composed of mainly white-colored, massive limestones including abundant

134

rudist/rudist buildups (Fig. 2E, F) and thick to medium bedded bioclastic limestones. Bioclastic and

135

rudistid limestones possess a benthic foraminiferal assemblage similar to that of the Turonian

136

limestones of the Alakır section. The Turonian limestones which present lateral changes in facies

137

include abundant rudist and rudist buildups, while the Alakır section which is located approximately 15

138

km southeastern of the Alacadağ, only contains a few whole rudist specimens. The lack of whole

139

rudist specimens in the Alakır section (it contains bioclastic levels with rudist shell fragments), may be

140

caused by variations in water temperature or the amount of nutrients. The Alacadağ Turonian

141

limestones

142

packstone/floatstone alternating with benthic foraminiferal wackestone, indicate the presence of local

143

high energy rudist and bioclastic sand shoals in the restricted platform. The platform carbonate section

144

is unconformably overlain by the Campanian pelagic limestones of the Akdağ Formation.

145

4.2. Biostratigraphy and chronostratigraphic interpretation

peloidal

packstone

which

are

alternating

composed

of

with

ostracod

dominantly

wackestone,

microbioclastic

rarely

intraclastic-peloidal

packstone

and

bioclastic

5

146

The micropaleontologic analysis of the two stratigraphic sections has provided a detailed biozonation

147

based on the stratigraphic distribution of benthic foraminiferal taxa (Figs. 3 and 4). For designating the

148

biozones, a numbered zonation with Benthic Foraminiferal Zone (BFZ) prefix is used in addition to

149

names of index taxa. In the 165 m thick lower part of the Alakır section, Protochrysalidina elongata–

150

Cuneolina pavonia assemblage zone (BFZ–1) and Coskinolinella bariensis taxon range subzone

151

(BFZ–1b) in the middle part of the BFZ–1, which are assigned to the upper Albian, were defined by

152

Taslı and Solak (2019). For more detail, see Taslı and Solak (2019).

153

In the conformably overlying limestones, Sellialveolina gr. viallii taxon range zone (BFZ–2, lower–

154

middle Cenomanian), Pseudorhipidionina casertana assemblage zone (BFZ–3, upper Cenomanian),

155

Pseudorhapydionina

156

Cenomanian) and Pseudocyclammina sphaeroidea assemblage zone (BFZ–5, Turonian) are defined.

157

The chronostratigraphic range of each biozone and some important species was discussed and given

158

to enable correlation of the studied succession in the following sections.

159

4.2.1. BFZ–2: Sellialveolina gr. viallii taxon range zone (lower–middle Cenomanian) (Figs. 5 and

160

6)

161

Description: The lower boundary is marked by the last occurrence (LO) of Protochrysalidina elongata

162

and the first occurrence (FO) of Ovalveolina maccagnoae/Sellialveolina viallii. The 160 m thick

163

biozone is defined by the stratigraphic range of Sellialveolina gr. viallii. This biozone is distinguished

164

from the previous biozone by the absence of Protochrysalidina elongata, Coskinolinella bariensis and

165

by the occurrence of many Cenomanian index taxa (Fig. 5) in addition to pre-existing long-range

166

species including Pseudonummoloculina heimi (Fig. 6A), Pseudonummoloculina regularis (Fig. 6B),

167

Spiroloculina cretacea (Fig. 6C, G), Nezzazatinella picardi (Fig. 6D, E), Nezzazata sp. (Fig. 6F, I),

168

Nezzazata simplex (Fig. 6L), Nezzazata gyra, Cuneolina pavonia (Fig. 6T). The appearance of

169

Ovalveolina maccagnoae (Fig. 5A–C), Sellialveolina gr. viallii (Fig. 5E–I), Scandonea phoenissa (Fig.

170

6J, K), Peneroplis turonicus (Fig. 6M), Orbitolinidae indet. (Fig. 6O, S), Biplanata peneropliformis (Fig.

171

6P, Q), Canaliculate walled Textulariidae? (Fig. 6R), Sabaudia minuta are in the lower part of biozone,

172

while Praealveolina cf. P. iberica (Fig. 5D), Biconcava bentori (Fig. 6N), Chrysalidina gradata,

173

Merlingina cretacea, Cisalveolina lehneri and Pseudolituonella reicheli (Fig. 6H) first appear in the

174

upper part of biozone (Fig. 3).

dubia–Pseudolituonella

reicheli

assemblage

zone

(BFZ–4,

uppermost

6

175

Micropaleontological remarks: Although the intervening unfavourable facies such as dolomites and

176

laminated peloidal packstones occur, Sellialveolina gr. viallii is almost continuous throughout the

177

biozone and a gradual increase in test diameter is upwardly evident. Most of the specimens in lower

178

part of the biozone correspond to those of type-species which is widespread in peri-Mediterranean

179

carbonate platforms (e.g., Colalongo, 1963, Pl. I; De Castro, 1985, Pl. 66; Vicedo et al., 2011, Fig. 5,

180

Fig.6/1–9). More compressed and larger specimens with peneropliform growth, reaching up to an

181

equatorial diameter of 1.7 mm (Fig. 5F), appear in the upper part of the biozone. Comparable

182

specimens illustrated by Bignot and Poisson (1974) from the Katran Dağ (Antalya, Turkey) have been

183

tentatively synonymized with S. gutzwilleri (Vicedo et al., 2011). The wall in all specimens of

184

Peneroplis turonicus which is found in the Cenomanian biozones is entirely recrystallized.

185

Discussion and correlation: This biozone may be subdivided into two parts based on; (1) the

186

presence of only small-sized (equatorial diameter ˂800 µm) specimens of the nominate species in its

187

lower part, (2) the appearance of larger size (up to 1.7 mm) specimens with peneropline growth (cf. S.

188

gutzwilleri) and the first occurrences of Biconcava bentori, Chrysalidina gradata and Pseudolituonella

189

reicheli in its upper part (Fig. 7). However, it is not possible to determine a precise boundary between

190

the lower and upper parts of the biozone due to the scattering of the benthic foraminiferal range data

191

(Fig. 3). Chiocchini et al. (1994) asserted that the FO of Sellialveolina viallii is in the lower

192

Cenomanian, although its range was given as the uppermost Albian–middle Cenomanian by De

193

Castro (1985) in Schroeder and Neumann (1985) (Fig. 8). It has been also used as an index taxon for

194

the lower Cenomanian in the peri-Mediterranean carbonate platforms (Fig. 8) (e.g., Velić, 2007;

195

Husinec et al., 2009; Vicedo et al., 2011). Bignot and Poisson (1974) stated that Pseudedomia viallii

196

was considered as an indicator of the middle Cenomanian in Italy (Sartoni and Crescenti, 1962;

197

Colalongo, 1963; De Castro, 1966), Greece (Fleury, 1972) and Lebanon (Saint–Marc, 1969). Another

198

controversy is that the stratigraphic range of Biconcava bentori, that first appears in the upper part of

199

the biozone (middle Cenomanian), is constrained to the upper Cenomanian based on the SIS data

200

(Frijia et al., 2015).

201

This biozone can be attributed to the lower–middle Cenomanian based on the FO of Pseudolituonella

202

reicheli that is in the middle Cenomanian in age (Velić and Vlahović, 1994; Velić, 2007) (Fig. 8) and on

203

the absence of important discontinuities throughout the transition to the upper biozone which is

204

assigned to the upper Cenomanian. This zone corresponds to four biozones from CEN–1 to CEN–4 in

7

205

the lower–middle Cenomanian limestones of the NW Istria (Croatia) determined by Velić and Vlahović

206

(1994) (Fig. 9). CsB1 (including Sellialveolina gr. viallii) defined by Fleury (1980) from Gavrovo–

207

Tripolitza is equivalent to this biozone (Fig. 9).

208

4.2.2. BFZ–3: Pseudorhipidionina casertana assemblage zone (upper Cenomanian) (Figs. 10

209

and 11)

210

Description: This biozone differs from the previous biozone by the absence of Sellialveolina gr. viallii,

211

Ovalveolina maccagnoae, Praealveolina cf. P. iberica and by the presence of Pseudorhipidionina

212

casertana (Fig. 10A–C), Pseudorhapydionina dubia (Fig. 10D–F), Pseudorhapydionina laurinensis

213

(Fig. 10G), Vidalina radoicicae, Vidalina sp. (Fig. 10H). The following benthic foraminiferal species

214

continue from the previous biozone: Pseudonummoloculina regularis (Fig. 10I, N), Chrysalidina

215

gradata (Fig. 10P), Peneroplis turonicus (Fig. 10S, T), Pseudonummoloculina heimi (Fig. 10K, L),

216

Dicyclina sampoi (Fig. 10U), Cornuspiridae (Fig. 10M, R), Nubeculariidae (Fig. 10Q), Pseudolituonella

217

reicheli (Fig. 10J, O), Bolivinopsis sp., Quasispiroplectammina sp., Nezzazata simplex (Fig. 11A, B),

218

Nezzazata concava (Fig. 11C), Nezzazata sp. (Fig. 11D), Nezzazatinella picardi (Fig. 11E–H, L),

219

Biconcava bentori (Fig. 11J, K), Biplanata peneropliformis (Fig. 11M), Cuneolina pavonia (Fig. 11N,

220

O). Pseudocyclammina aff. P. sphaeroidea (Fig. 11I), Pseudotextulariella sp. (Fig. 11P–X) and

221

Charentia cuvillieri rarely accompany this foraminiferal assemblage.

222

Micropaleontological remarks: Alveolinids (cf. Cisalveolina lehneri) are represented by very scarce

223

and poorly preserved specimens. Pseudotextulariella sp. is found in two samples and comparable with

224

the type-species P. cretosa described from the Cenomanian of Europe (Loeblich and Tappan, 1988).

225

Discussion and correlation: Pseudorhipidionina casertana and Vidalina radoicicae are known as

226

upper Cenomanian index species in the peri-Mediterranean carbonate platforms (Fig. 8) (e.g., Velić

227

and Vlahović, 1994; Velić, 2007; Consorti et al., 2016). Also, Strontium Isotope Stratigraphy (SIS)

228

calibrated ranges of these two species were given by Frijia et al. (2015) as upper Cenomanian (Fig. 8).

229

Bignot and Poisson (1974) indicated that Pseudorhapydionina laurinensis marks the upper

230

Cenomanian in the Katran Dağı (Antalya). Pseudorhapydionina dubia has been recorded in the late

231

Ceonomanian benthic foraminiferal association of the Chenarch Gorge section, Iran (Consorti et al.,

232

2015).

8

233

According to these data, the biozone is assigned to the upper Cenomanian. CsB2 defined from the

234

Gavrovo–Tripolitza Platform by Fleury (1980) and CEN–5 defined from the Adriatic Carbonate

235

Platform (AdCP) (NW Istria, Croatia) by Velić and Vlahović (1994), which contain common index

236

species such as Vidalina radoicicae, Pseudorhapydionina dubia, and Pseudorhapydionina laurinensis,

237

are equivalent to this biozone (Fig. 9). Vidalina radoicicae–Chrysalidina gradata concurrent–range

238

zone defined by Velić (2007) from the Karst Dinarides that correlated with CEN–5 corresponds to

239

BFZ–3. Interval A and B defined from the Monte Coccovello section (Apennine Carbonate Platform

240

(ACP)) by Parente et al. (2007) are equivalent to this biozone (Fig. 12).

241

4.2.3.

242

(uppermost Cenomanian) (Fig. 13)

243

Description: It is represented by 33 m thick, very thick-bedded–massive, white-grey, micritic

244

limestones without macrofossil. Although Chrysalidina gradata (Fig. 13A, B), Pseudorhapydionina

245

dubia (Fig. 13C–E), Pseudolituonella reicheli (Fig. 13K) and Nezzazatinella picardi (Fig. 13F–H, J, O)

246

are species that continue from the previous biozone, they come into prominence following the

247

disappearance of the characterizing taxa of the previous biozone. Cornuspiridae (Fig. 13L), Peneroplis

248

turonicus, (Fig. 13I), Bolivinopsis sp. (Fig. 13Q, T) and Discorbidae (Fig. 13S) are the other taxa which

249

continue in this biozone from the previous biozone.

250

Micropaleontological remarks: Nezzazata simplex (Fig. 13P) continues into this biozone with a

251

population composed of small-sized and a small number of specimens. Smaller-sized specimens of

252

Spiroloculina sp. (Fig. 13R) represented by smaller number instead of Spiroloculina cretacea, occurs

253

in this biozone.

254

Discussion and correlation: Parente et al. (2007) studied carbon isotope stratigraphy of

255

Cenomanian–Turonian platform carbonates in the southern Apennines (Italy). In their study, Interval C

256

defined from the Monte Coccovello section and the late Cenomanian benthic foraminiferal assemblage

257

of Interval C defined from the Monte Cerreto section, correspond to this biozone (Fig. 12). The

258

conformably overlying levels that correspond to Interval D in the Monte Coccovello section have a very

259

poor microfossil content. The Cenomanian–Turonian boundary was placed by Parente et al. (2007) at

260

the LO of Pseudorhapydionina dubia, Pseudolituonella reicheli, and Chrysalidina gradata, i.e. at the

261

upper boundary of Interval B (in the Monteforte Cilento section) and Interval C in the Monte Coccovello

BFZ–4:

Pseudorhapydionina

dubia–Pseudolituonella

reicheli

assemblage

zone

9

262

section according to the biostratigraphic schemes of De Castro (1991) and Chiocchini et al. (1994).

263

Based on this, Pseudorhapydionina dubia–Pseudolituonella reicheli assemblage zone is placed at the

264

uppermost Cenomanian.

265

Chrysalidina gradata–Pseudolituonella reicheli zone (from the ACP) which is assigned to the

266

uppermost Cenomanian by Chiocchini et al. (2008) corresponds to the Pseudorhipidionina casertana

267

assemblage zone (BFZ–3, upper Cenomanian) according to benthic foraminiferal taxa including

268

Biconcava bentori, Vidalina radoicicae.

269

4.2.4. BFZ–5: Pseudocyclammina sphaeroidea assemblage zone (Turonian) (Fig. 14)

270

Description: Following the LOs of Pseudorhapydionina dubia, Pseudolituonella reicheli, and

271

Chrysalidina gradata, foraminiferal assemblage is characterized by the presence of Fleuryana gediki

272

sp. nov. (Fig. 14A–E), small-sized specimens of Moncharmontia apenninica (Fig. 14F, G), Fleuryana

273

adriatica (Fig. 14H–K), Pseudocyclammina sphaeroidea (Fig. 14O–Q), and Fleuryana sp. (Fig. 14L),

274

Reticulinella fleuryi (Fig. 14U), Spiroloculina sp. (Fig. 14Y, Z). Arenobulimina sp. (Fig. 14W1–W3) has

275

a high trochospire test and first appears in this biozone. Discorbids (Fig. 14X) become more abundant

276

and diversified than those in the previous zone. Nezzazatinella picardi (Fig. 14R1–R3), Cuneolina

277

pavonia (Fig. 14S), Nezzazata simplex (Fig. 14T) are the species that continue in this biozone from

278

the previous biozones.

279

Micropaleontological remarks: Small and morphologically simple forms dominate in the renewed

280

assemblage. It is difficult to distinguish planispiral forms such as Moncharmontia and Fleuryana.

281

Specimens close to Moncharmantia (Fig. 13M, N) first appear in the underlying biozone (BFZ–4,

282

uppermost Cenomanian) and precursors of Pseudocyclammina sphaeroidea (Fig. 11I) are found in the

283

Pseudorhipidionina casertana zone (BFZ–3, upper Cenomanian), but they are very scarce. Our

284

Turonian specimens of Nezzatinella are comparable with Nezzazatinella cf. aegyptiaca (Chiocchini et

285

al., 2012) and Nezzazatinella sp. (Arriaga et al., 2016) described from the Turonian of the Apennine

286

Carbonate Platform. We illustrated stratigraphically different populations of Nezzatinella through the

287

Cenomanian–Turonian biozones (Figs. 6D, E; 11E–H, L; 13F–H, J, O; 14R1–R3) under the tentative

288

name N. picardi s.l., due to lack of detailed morphometric analysis. Pseudonummoloculina sp. (Fig.

289

14V) is represented by a small number of specimens and similar to Nummoloculina cf. irregularis of

10

290

Chiocchini et al. (2012). The species survived from the extinctions in late Cenomanian, Cuneolina

291

pavonia and Nezzazatinella picardi are locally abundant.

292

Discussion and correlation: The Cenomanian–Turonian Boundary (CTB) interval is sampled in the

293

Alakır section from two different localities 225 meters away from each other. In the first sampling, the

294

change in the benthic foraminiferal assemblages occurs within a nine meters due to unfavourable

295

facies (Thaumatoporella-Decastronema bindstones-mudstones with fenestral fabric) between the

296

samples F200 and F206, while in the second one within one meter between the samples F229 and

297

F230 (Fig. 3). Some of the common species in the underlying biozones such as Cuneolina pavonia,

298

Nezzazatinella picardi cross the CTB interval without a significant morphological change, while

299

Nezzazata simplex and Spiroloculina cretacea are represented by smaller specimens. Although F.

300

adriatica, P. sphaeroidea, M. apenninica are represented by small-sized specimens, their first

301

appearance datum is in beginning of the Turonian (Figs. 3 and 7). So, the FOs of the latter species

302

can be used for determination of the Cenomanian–Turonian boundary.

303

Nezzazatinella cf. aegyptiaca–Nummoloculina cf. irregularis zone defined from the ACP by Chiocchini

304

et al. (2008) corresponds to Pseudocyclammina sphaeroidea assemblage zone (BFZ–5, Turonian)

305

(Fig. 9).

306

4.3. Cenomanian–Turonian Boundary Interval

307

Benthic foraminiferal records from the upper Albian–Turonian shallow-marine carbonate succession of

308

the BDCP are negatively affected by the intervening of unfavourable facies such as ostracod

309

wackestones, laminated peloidal packstones, mudstones and dolomites. Even so, the following

310

bioevents across the CTB interval could be documented:

311

(1) Alveolinid taxa Ovalveolina, Sellialveolina, Praealveolina and Cisalveolina disappeared

312

approximately end of the middle Cenomanian, that is coupled with the FOs of Pseudorhipidionina

313

casertana, Pseudorhapydionina dubia, Pseudorhapydionina laurinensis, Vidalina radoicicae. Their

314

absence is interpreted herein as local extinction or pseudoextinction, because many alveolinid taxa

315

exist in the upper Cenomanian of the peri-Mediterranean platforms (e.g., Schroeder and Neumann,

316

1985; Parente et al., 2007).

11

317

(2) Most of the Cenomanian index taxa disappear before the end of the Cenomanian (Fig. 7). Their

318

last occurrence level was placed, by carbon isotope stratigraphy in the middle part of the Metoicoceras

319

geslinianum ammonite zone at 93.78 Ma (Parente et al., 2008). This level represents the first step of

320

benthic foraminiferal extinction. The survived species C. gradata, P. reicheli, P. dubia, and Peneroplis

321

turonicus disappeared at a 33 m higher level which corresponds to the second step of the extinction

322

(Fig. 7). Causes of the extinctions are explained as a major carbonate platform crisis and a major

323

perturbation of global carbon cycle in the late Cenomanian, known as Oceanic Anoxic Event 2

324

(Parente et al., 2008).

325

(3) The Cenomanian common species N. picardi and C. pavonia survived both extinction events

326

without a significant morphological change.

327

(4) A renewed benthic foraminiferal assemblage, dominated by small size (mostly ˂300 µm) and

328

morphologically simple imperforate forms, appears one meter (sampling interval) above this level. In

329

the Apennine Carbonate Platform, the second step extinction was correlated with the lower part of the

330

Neocardioceras juddii ammonite zone at ~93.63 Ma, below the Cenomanian–Turonian boundary

331

(Parente et al., 2008). In the CTB interval of the Alakır section there are no rudist shells commonly

332

used for SIS. Carbon isotope stratigraphy may contribute to solving a higher resolution dating and

333

correlation problems.

334

4.4. Systematic palaeontology

335

For the low-rank foraminiferal classification, we follow Loeblich and Tappan (1988) by considering

336

opinion of De Castro et al. (1994, p. 139) that the genus Fleuryana should be placed into the same

337

family together with the genus Moncharmontia. For the terminology used in the description, see

338

Hottinger (2006).

339

Superfamily Biokovinacea Gušić, 1977

340

Family Charentiidae Neumann, 1965

341

Genus Fleuryana De Castro, Drobne and Gušić, 1994

342

Type species Fleuryana adriatica De Castro, Drobne and Gušić , 1994

343

Fleuryana gediki sp. nov.

344

Figs. 14A–E, 15

12

345

Origin of the name. The new species is attributed to Prof. Dr. İsmet GEDİK (Karadeniz Technical

346

University, Turkey) for his contributions to the geology of the Taurus Mountains.

347

Holotype. Equatorial section in Fig. 14A, thin section F247.

348

Paratypes. Various oriented sections in Figs. 14B–E, 15 (thin sections F247, Ad12, Ad21, B52, B70,

349

B75, B88, B92).

350

Type material. Approximately 150 specimens in 40 thin section from 25 samples (B138, 154, 155, 92,

351

91, 90, 76, 75, 154, 181, 179, 92, 88, 70, 68, 66, 57, 56, 52, 49 and F211, 214, 223, 247).

352

Type location. Spillway side of Alakır Dam axis, approximately 15 km northeastern of Finike district of

353

Antalya, coordinates: 36°25'39.23"N, 30°14'9.17"E.

354

Type level. Turonian, Bey Dağları formation.

355

Diagnosis. Hemispherical shell with rounded periphery is planispirally coiled, involute, consisting of

356

1.0–2.5 whorls. The wall is thin, microgranular and canaliculate. Aperture single, basal and a wide

357

tunnel-shaped slit rimmed by a lip or neck (peristomal rim) extended toward the chamber interior.

358

Description. Test hemispherical, planispirally coiled with involute arrangement, consisting of maximum

359

2,5 whorls. The number of chambers in the first whorl is 6–7, in the second whorl mostly 8, rarely 9.

360

Chambers appear rectangular shaped in equatorial section (Fig. 15L, Q, R) and slowly increase in size

361

during ontogeny. The wall and septa thickness are equal. The septa are smooth in equatorial sections

362

and do not show any curvature. The canaliculate (or pseudokeriothecal) wall microstructure appears

363

as very narrow and outwardly opening spaces arranged perpendicular to the wall (Fig. 15A, C, I). The

364

embryo is formed by an ovoid (or spherical) proloculus and a hemispherical deuteroloculus. As a result

365

of the melting of the thin wall between the proloculus and deuteroloculus separated by a simple

366

opening, proloculus appears as ovoid shape (Fig. 15E, G, W). Dimorphism is no evident. The aperture

367

is in the form of a single arched-slit at the base of the septa. The apertural margin of each septa

368

includes a lip or neck (peristomal rim) extending the chamber interior (Figs. 14A, C; 15C, K).

369

Dimensions. See Table 1.

370

Comparison. The new species is very closely similar to Moncharmontia apenninica (De Castro, 1967)

371

in overall test shape, wall composition and structure. But it differs in having a single and basal

372

aperture, thinner wall (8 µm against 17 µm in adult stage), and less number of chambers in the last

373

whorl (8, rarely 9 against 9–10.5). The maximum equatorial diameter of the new species does not

374

reach up to 0.40 mm (see Table 1), while that of M. apenninica is more than 0.40 mm (De Castro,

13

375

1966) (see Table 2). The other coexisting species Fleuryana adriatica has a lenticular shell with more

376

number of chambers in the last whorl and an aperture composed of arched slit in the central position

377

(De Castro et al., 1994), instead of basal. While chambers of the new species appear distinctly

378

rectangular in equatorial section, those of F. adriatica are square-like (Fig. 14K).

379

Stratigraphic and geographic distribution. Fleuryana gediki sp. nov. is reported from the levels

380

following the extinction of Cenomanian benthic foraminifera assemblages both in the Bornova Flysch

381

Zone and Bey Dağları. It has been observed in Pseudocyclammina sphaeroidea assemblage zone

382

(Turonian) truncated by a disconformity, in the Alakır section (Bey Dağları). In the Bornova Flysch

383

Zone (B labelled thin sections), it has been found in the Turonian-Coniacian shallow-marine

384

limestones which are conformably overlain by the Santonian pelagic limestones (Dicarinella

385

asymetrica zone) (Solak, 2019).

386

5. Conclusions

387

The Albian–Turonian succession exposed in the southeastern part of the BDCP consists entirely of

388

peritidal carbonates within an inner platform setting and does not include any evidence of a major

389

unconformity.

390

chronostratigraphic calibration could not be made. With respect to previous benthic foraminiferal

391

biozonations of the Albian to Turonian shallow-marine carbonate deposits of the peri-Mediterranean

392

platforms, a more detailed biostratigraphic subdivision is proposed. The following biozones are

393

defined: the upper Albian Protochrysalidina elongata–Cuneolina pavonia assemblage zone and

394

Coskinolinella bariensis taxon range subzone, the lower–middle Cenomanian Sellialveolina gr. viallii

395

taxon range zone, the upper Cenomanian Pseudorhipidionina casertana assemblage zone, the

396

uppermost Cenomanian Pseudorhapydionina dubia–Pseudolituonella reicheli assemblage zone, and

397

Turonian Pseudocyclammina sphaeroidea assemblage zone.

398

Ranges of some benthic foraminiferal taxa are revised and/or confirmed based on spatial relationships

399

between them (Fig. 7). Nezzazata gyra and N. conica appear in the upper Albian, before the first

400

occurences of Sellialveolina viallii, Ovalveolina maccagnoae and Biplanata peneropliformis. FOs of

401

Chrysalidina gradata, Pseudolituonella reicheli, and Biconcava bentori may correspond to the lower–

402

middle Cenomanian boundary interval. The middle and upper Cenomanian boundary interval is

403

characterized by the disappearance of the taxa characterizing the previous zone and by the

404

appearance of Pseudorhipidionina casertana, Pseudorhapydionina laurinensis, P. dubia, Vidalina

Thus

the

benthic

foraminiferal

bioevents

are

well

documented,

but

their

14

405

radoicicae (Fig. 7). Many Cenomanian index taxa, excluding Chrysalidina gradata, Pseudolituonella

406

reicheli, P. dubia and Peneroplis turonicus, disappear before the end of the Cenomanian. LOs of the

407

latter ones are immediately followed by FOs of Pseudocyclammina sphaeroidea, Moncharmontia

408

apenninica, Fleuryana adriatica, and Fleuryana gediki sp. nov. This major benthic foraminiferal

409

bioevent may correspond to the tentative Cenomanian–Turonian boundary. Thus, the two-step major

410

extinction event across the CTB interval, first recorded in the Apennine Carbonate Platform (Parente

411

et al., 2007, 2008), has been also documented from the BDCP.

412

Fleuryana adriatica, which was first described from the upper Maastrichtian (De Castro et al., 1994)

413

and afterwards discovered also in the Campanian (Solak et al., 2017, 2019, Moro et al., 2018), is

414

represented by small-sized (equatorial diameter <0.45 mm) specimens with less number of whorl (up

415

to 2.5) in the Turonian.

416

A new benthic foraminifera Fleuryana gediki sp. nov. is described from the Turonian limestones of the

417

Bey Dağları and from the Turonian–Coniacian limestones in the Bornova Flysch Zone (West Turkey).

418

Acknowledgements

419

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK)

420

with Project Number 115Y130. We are grateful to Dr. Eduardo Koutsoukos, Dr. Felix Schlagintweit, Dr.

421

Lorenzo Consorti and one "anonymous reviewer" for valuable recommendations which improved the

422

manuscript. We thank Samet SALAR (Mersin University) for the preparation of thin sections.

423

Appendix

424

Author and date of species mentioned in the text in alphabetical order.

425

Biconcava bentori Hamaoui, 1965

426

Biplanata peneropliformis Hamaoui and Saint–Marc, 1970

427

Charentia cuvillieri Neumann, 1965

428

Chrysalidina gradata, d’Orbigny, 1839

429

Cisalveolina lehneri Reichel, 1941

15

430

Coskinolinella bariensis (Luperto–Sinni and Reina, 1992)

431

Coxites zubairensis Smout, 1956

432

Cuneolina pavonia d'Orbigny, 1846

433

Dicyclina schlumbergeri Munier–Chalmas, 1887

434

Dicyclina sampoi Cherchi and Schroeder, 1990

435

Fleuryana adriatica De Castro, Drobne and Gušić , 1994

436

Merlingina cretacea Hamaoui, 1965

437

Moncharmontia apenninica (De Castro, 1968)

438

Murgeina apula (Luperto–Sinni, 1968)

439

Nezzazata concava (Smout, 1956)

440

Nezzazata conica (Smout, 1956)

441

Nezzazata gyra (Smout, 1956)

442

Nezzazata simplex Omara, 1956

443

Nezzazatinella aegyptiaca (Said and Kenawy, 1957)

444

Nezzazatinella picardi (Henson, 1948)

445

Nummoloculina irregularis (d'Orbigny, 1839)

446

Ovalveolina maccagnoae De Castro, 1966

447

Peneroplis turonicus Said and Kenawy, 1957

448

Praealveolina iberica Reichel, 1936

449

Protochrysalidina elongata Luperto–Sinni, 1999

450

Pseudocyclammina sphaeroidea Gendrot, 1968

16

451

Pseudolituonella reicheli Marie, 1955

452

Pseudonummoloculina heimi (Bonet, 1956)

453

Pseudonummoloculina regularis (Philippson, 1887)

454

Pseudorhapydionina dubia (De Castro, 1965)

455

Pseudorhapydionina laurinensis (De Castro, 1965)

456

Pseudorhipidionina casertana (De Castro, 1965)

457

Pseudotextulariella cretosa (Cushman, 1932)

458

Reticulinella fleuryi Cvetko, Gušić and Schroeder, 1997

459

Sabaudia minuta (Hofker, 1965)

460

Scandonea phoenissa Saint–Marc, 1974

461

Sellialveolina gutzwilleri Vicedo, Calonge and Caus, 2011

462

Sellialveolina viallii Colalongo, 1963

463

Spiroloculina cretacea Reuss, 1854

464

Vidalina radoicicae Cherchi and Schroeder, 1986

465

Ammonites:

466

Metoicoceras geslinianum (d'Orbigny, 1841)

467

Neocardioceras juddii (Barrois and Guerne, 1898)

468

References

469

Aguilera–Franco, N., 2003. Cenomanian–Coniacian zonation (foraminifers and calcareous algae) in

470

the Guerrero–Morelos basin, southern Mexico. Revista Mexicana de Ciencias Geológicas 20, 202–

471

222.

17

472

Arriaga, M.E., Frijia, G., Parente, M., Caus, E., 2016. Benthic foraminifera in the aftermath of the

473

Cenomanian–Turonian boundary extinction event in the carbonate platform facies of the southern

474

Apennines (Italy). Journal of Foraminiferal Research 46/1, 9–24.

475

Bignot, G., Poisson, A., 1974. Le Cénomanien du flanc oriental du Katran Dağ (Sam dağ) pres

476

d’Antalya (Turquie). Bulletin of Mineral Resources Exploration of Turkey 82, 71–77.

477

Calonge, A., Caus, E., Bernaus, J.M., Aguilar, M., 2002. Praealveolina (Foraminifera) species: A tool

478

to date Cenomanian platform sediments. Micropaleontology 48, 53–66.

479

Chiocchini, M., Mancinella, A., Romano, A., 1984. Stratigraphic distribution of Benthic Foraminifera in

480

the Aptian, Albian and Cenomanian carbonate sequences of the Aurunci and Ausoni Mountains

481

(Southern Lazio, Italy). Benthos '83; 2nd Int. Symp. Benthic Foraminifera, Pau and Bordeaux, March

482

1984. ISSN 0181–0901. ISBN 2–901026–14–1, 161–181.

483

Chiocchini, M., Mancinelli, A., Romano, A., 1989. The gaps in the Middle–Upper Cretaceous

484

carbonate series of the southern Apennines (Abruzzi and Campania regions). Geobios, Mémoire

485

Spécial 11, 133–149.

486

Chiocchini M., Farinacci A., Mancinelli A., Molinari V., Potetti M., 1994. Biostratigrafia a foraminiferi,

487

dasicladali e ealpionelle delle successioni carbonatiche mesozoiche dell'Appennino centrale (Italia). A.

488

Mancinelli, (Ed.), Biostratigrafia dell'Italia centrale. Studi Geologici Camertl, Camerino, 9–129.

489

Chiocchini, M., Mancinelli, A., 2001. Sivasella monolateralis Sirel and Gunduz, 1978 (Foraminiferida)

490

in the Maastrichtian of Latium (Italy). Revue de Micropaleóntologie 44, 267–277.

491

Chiocchini, M., 2008. The new genus Palaeocornuloculina (Foraminiferida, Cornuspiracea) and its

492

species from Cenomanian limestones of Southern Latium (Central Italy). Memorie Descrittive della

493

Carta Geologica d’Italia 84, 203–224.

494

Chiocchini, M., Chiocchini, R.A., Didaskalou, P., Potetti, M., 2008. Microbiostratigrafia del Triassico

495

superiore, Giurassico e Cretacico in facies di piattaforma carbonatica del Lazio centro–meridionale e

496

abruzzo: revisone finale. Chiocchini, M. (Ed.), Memorie Descrittive della carta Geologica d’Italia,

497

Torino 84, 5–170.

18

498

Chiocchini, M., Pampaloni, M. L., Pichezzi, R. M., 2012. Microfacies e microfossili delle successioni

499

carbonatiche mesozoiche del Lazio et dell’Abruzzo (Italia centrale) Cretacico: Memorie per Servire alla

500

Descrizione della Carta Geologica d’Italia, ISPRA, Servizio Geologico d’Italia–Dipartimento Difesa del

501

Suolo–Roma 17, 269 p.

502

Chiocchini, M., Pichezzi, R.M., 2016. Cairoella tricamerata n. gen., n. sp. (Foraminiferida, Milioloidea)

503

from the lower Cenomanian of Monte Cairo (Southern Latium, Central Italy). Rivista Italiana di

504

Paleontologia e Stratigrafia 122, 77–84.

505

Colalongo, M.L., 1963. Sellialveolina viallii n. gen. n. sp. di Alveolinidae cenomaniano dell’Appennino

506

meridionale. Giornale di Geologia 30, 361–373.

507

Consorti, L., Caus, E., Frijia, G., Yazdı-Moghadam, M.,

508

Species: Taberina bingistani Henson, 1948): A Stratigraphic Marker For The Late Cenomanian.

509

Journal of Foraminiferal Research 45/4, 378–389.

510

Consorti, L., Calonge, A., Caus, E., 2016. Pseudorhapydionininae of the Iberian Ranges

511

(Cenomanian, Iberian Peninsula). Spanish Journal of Paleontology 31/2, 271–282.

512

Cvetko Tešović, B.C., Gušić, I., Jeleska, V., Bucković, D., 2001. Stratigraphy and microfacies of the

513

Upper Cretaceous Pučišća Formation, Island of Brač, Croatia. Cretaceous Research 22, 591–613.

514

De Castro, P., 1966. Contributo alla conoscenza delle alveoline albiano–cenomaniane della

515

Campania. Bollettino della Società dei naturalisti in Napoli 75, 219–275.

516

De Castro, P., 1985. Sellialveolina viallii Colalongo, 1963. Schroeder, R., Neumann, N. (Ed.), Les

517

grands Foraminifères du Crétace moyen de la région méditerranénne. Geobios, Mémoire Special 7,

518

133–138.

519

De Castro, P. 1991. Mesozoic. In: Barattolo, F., De Castro, P., Parente, M. (Eds.) 5th International

520

Symposium on Fossil Algae. Field Trip Guide–Book. Giannini, Napoli, 21–38.

521

De Castro, P., Drobne, K., Gušić, I., 1994. Fleuryana adriatica n.gen. n.sp. (Foraminiferida) from the

522

uppermost Maastrichtian of the Brač Island (Croatia) and some other localities on the Adriatic

523

carbonate platform. Razprave IV. Razreda, SAZU 35/8, 129–149.

2015. Praetaberina New Genus (Type

19

524

Farinacci, A., Yeniay, G., 1986. Biostratigraphy and event-analysis of the Cenomanian–Maastrichtian

525

carbonates of the Bey Dağları (Western Taurus, Turkey). Geologica Romana 25, 257–284.

526

Fleury, J.J., 1972. Le Cénomanien à Foraminifères benthoniques du massif de Vrassova (zone du

527

Gavrovo, Akarnania). Revue de Micropaléontologie 14/3, 181–194.

528

Fleury, J.J., 1980. Les zones de Gavrovo–Tripolitza et du Pinde–Olonos (Grèce continentale et

529

Péloponnèse du Nord): évolution d’une plate–-forme et d’un bassin dans leur cadre alpin. Société

530

Géologique du Nord 4, 1–651.

531

Fleury, J.–J., 2014. Données nouvelles sur Rhapydionina Stache, 1913 et Fanrhapydionina n.gen., un

532

groupe de Rhapydioninidae (Alveolinacea, Foraminifera) foisonnant en région périadriatique au

533

Campanien–Maastrichtien (New data about Rhapydionina Stache, 1913 and Fanrhapydionina n.gen.,

534

a bunch of Rhapydioninidae (Alveolinacea, Foraminifera) expanded in periadriatic area by

535

Campanian–Maastrichtian time). Geodiversitas 36/2, 173–208.

536

Fleury, J.J., 2016. Cuvillierinella salentina (Foraminifera, Rhapydioninidae) and its kindship in the

537

Western Mediterranean area during the Campanian–Maastrichtian. Revue de micropaléontologie 59/2,

538

200–224.

539

Frijia, G., Parente, M., Di Lucia, M., Mutti, M., 2015. Carbon and strontium isotope stratigraphy of the

540

Upper

541

Chronostratigraphic calibration of larger foraminifera biostratigraphy. Cretaceous Research 53, 110–

542

139.

543

Golubic, S., Radoičić, R., Seong–Joo, L., 2006. Decastronema kotori gen. nov., comb. nov.; a mat-

544

forming cyanobacterium on Cretaceous carbonate platforms and its modern counterparts. Carnets de

545

Géologie 127/2, Brest, Article 2006/2 (CG 2006_A02).

546

Görür, N., Tüysüz, O., 2001. Cretaceous to Miocene palaeogeographic evolution of Turkey

547

implications for hydrocarbon potential. Journal of Petroleum Geology 24, 119–146.

548

Grosheny, D., Tronchetti, G., 1993. La crise Cenomanien–Turonien: Réponse comparée des

549

assemblages de foraminifères benthiques de plate-forme carbonatée et de bassin dans le Sud–Est de

550

la France. Cretaceous Research 14, 397–408.

Cretaceous

(Cenomanian–Campanian)

shallow-water

carbonates

of

southern

Italy:

20

551

Gušić, I., Jelaska, V., 1993. Upper Cenomanian–Lower Turonian sea-level rise and consequences on

552

the Adriatic–Dinaric carbonate platform. Geologische Rundschau 82/4, 676– 686.

553

Günay, Y., Bölükbaşı, S., Yoldemir, O. 1982. Beydağlarının stratigrafisi ve yapısı. Abstracts of the 6th

554

Petroleum Congress of Turkey, 91–101.

555

Hottinger, L., 2006. Illustrated glossary of terms used in foraminiferal research. Carnets de

556

Géologie/Notebooks on Geology Memoir (2006/02), 1–125.

557

Husinec, A., Velić, I., Sokač, B., 2009. Diversity patterns in mid–Cretaceous benthic foraminifers and

558

Dasycladalean algae of the southern part of the Mesozoic Adriatic platform, Croatia. SEPM (Society

559

for Sedimentary Geology), ISBN 978–1–56576–137–7, 153–170.

560

Korbar, T., Glumac, B., Cvetko Tešović, Cadieux, S.B., 2012. Response of a carbonate platform to the

561

Cenomanian–Turonian drowning and OAE 2: a case study from the Adriatic Platform (Dalmatia,

562

Croatia). Journal of Sedimentary Research 82, 163–176.

563

Loeblich Jr., A.R., Tappan, H., 1988. Foraminiferal General and Their Classification Van Nostrand

564

Reinhold Company, New Yourk, 2 Volumes, 970 p.

565

Moro, A., Velić, I., Mikuz, V., Horvat, A., 2018. Microfacies characteristics of carbonate cobble from

566

Campanian of Slovenj Gradec (Slovenia): implications for determining the Fleuryana adriatica De

567

Castro, Drobne and Gušić paleoniche and extending the biostratigraphic range in the Tethyan realm.

568

The Mining-Geology-Petroleum Engineering Bulletin 33/4, 1–13.

569

Parente, M., Frijia, G., Di Lucia, M., 2007. Carbon-isotope stratigraphy of Cenomanian–Turonian

570

platform carbonates from southern Apennines (Italy): a chemostratigraphic approach to the problem of

571

correlation between shallow-water and deep-water successions. Journal of the Geological Society of

572

London 164, 609–620.

573

Parente, M., Frijia, G., Di Lucia, M., Jenkyns, H.C., Woodfine, R.G., Baroncini, F., 2008. Stepwise

574

extinction of larger foraminifera at the Cenomanian–Turonian boundary: a shallow-water perspective

575

on nutrient fluctuations during Oceanic Anoxic Event 2 (Bonarelli Event). Geology 36, 715–718.

576

Poisson, A. 1977. Recherches géologiques dans les Taurides occidentales. Ph.D. Thesis, Université

577

de Paris–Sud, Orsay, 795 p.

21

578

Poisson, A., Akay, E., Dumont, J.F., Uysal, Ş., 1984. The Isparta Angle: A Mesozoic paleorift in the

579

Western Taurides, in Tekeli, O. and Göncüoğlu, M.C. (Eds.), Proceedings of the International

580

Symposium on the Geology of the Taurus Belt 1983, Ankara, 11–26.

581

Poisson, A., Yağmurlu, F., Bozcu, M., Şentürk, M., 2003. New insights on the tectonic setting and

582

evolution around the apex of the Isparta Angle (SW Turkey). Geological Journal 38, 257–282.

583

Saint–Marc, P., 1969. Etude geologique de la region d'Hermel (Liban septentrional). Bulletin de la

584

Société Géologique de France 7, 379–387.

585

Sanders, D., Pons, J.M., Caus, E., 2004. Shallow-water limestone clasts in a Campanian deep-water

586

debrite (Krappfeld, Central Alps, Austria): implications for carbonate platform history. Annalen des

587

Naturhistorischen Museums in Wien 106 A, 139–165.

588

Sarı, B., Özer, S. 2001. Facies characteristics of the Cenomanian−Maastrichtian sequence of the

589

Beydağları carbonate platform in the Korkuteli area (western Taurides). International Geology Review

590

43, 830−839.

591

Sarı, B., Özer, S., 2002. Upper Cretaceous stratigraphy of the Beydağları carbonate platform,

592

Korkuteli area (Western Taurides, Turkey). Turkish Journal of Earth Sciences 11, 39–59.

593

Sarı, B., Steuber, T., Özer, S. 2004. First record of Upper Turonian rudists (Mollusca, Hippuritoidea) in

594

the Bey Dağları carbonate platform, Western Taurides (Turkey): taxonomy and strontium isotope

595

stratigraphy of Vaccinites praegiganteus (Toucas, 1904). Cretaceous Research 25, 235−248.

596

Sarı, B., Taslı, K., Özer, S., 2009. Benthonic foraminiferal biostratigraphy of the Upper Cretaceous

597

(middle Cenomanian–Coniacian) sequences of the Bey Dağları carbonate platform, Western Taurides,

598

Turkey. Turkish Journal of Earth Sciences 18, 393–425.

599

Sartoni, M., Crescenti, U. 1962. Ricerche biostratigrafiche nel Mesozoico dell'Appennino meridionale.

600

Giorn. Geologica 29/2, 161–302.

601

Schlanger, S.O., Jenkyns, H.C. 1976. Cretaceous oceanic anoxic events: causes and consequences.

602

Geologie en Mijnbouw 55, 179–184.

22

603

Schlager, W., Philip, J., 1990. Cretaceous carbonate platforms in Ginsburg, N., and Beaudoin, B.

604

(Eds.), Cretaceous Resources, Events and Rhythms: Kluwer, Dordrecht, 173–195.

605

Schlagintweit, F., Kolodziej, B., Qorri, A., 2015. Foraminiferan-calcimicrobial benthic communities from

606

Upper Cretaceous shallow-water carbonates of Albania (Kruja Zone). Cretaceous Research 56, 432–

607

446.

608

Schroeder, R., Neumann, N., 1985. Les grands Foraminifères du Crétace moyen de la région

609

méditerranénne: Geobios, Mémoire Special 7, 161.

610

Solak, C., Taslı, K., Koç, H., 2017. Biostratigraphy and facies analysis of the Upper Cretaceous–

611

Danian? platform carbonate succession in the Kuyucak area, western Central Taurides, S Turkey.

612

Cretaceous Research 79, 43–63.

613

Solak, C., Taslı, K., Özer, S., Koç, H., 2019. The Madenli (Central Taurides) Upper Cretaceous

614

platform carbonate succession: Benthic foraminiferal biostratigraphy and platform evolution. Geobios

615

52, 67–83.

616

Solak, C., 2019. Anamas-Akseki ve Bey Dağları Karbonat Platformları ile Bornova Fliş Zonu’nun

617

Güneybatı Kesimindeki Üst Kretase İstiflerinin Stratigrafisi, Paleo-Ortamsal Analizi ve Bentik

618

Foraminifer Mikropaleontolojisi (Stratigraphy, Paleoenvironmental Analysis and Benthic Foraminiferal

619

Micropaleontology of the Upper Cretaceous Successions in the Anamas-Akseki and Bey Dağları

620

Carbonate Platforms and SW Part of the Bornova Flysch Zone), Ph.D. Thesis, 305 p (in Turkish).

621

Unpublished.

622

Şenel, M., Kengil, R., Ünverdi, M., Gözler, M.Z., Serdaroğlu, M., 1981. Teke Torosları

623

güneydoğusunun jeolojisi. Bulletin of Mineral Resources Exploration of Turkey 95–96,13–43.

624

Taslı, K., Solak, C. 2019. New findings on an Orbitolinid foraminifer Coskinolinella bariensis (Luperto–

625

Sinni & Reina, 1992) from the Albian shallow-water carbonate sequence of the Bey Dağları (S

626

Turkey). Journal of Foraminiferal Research 49/2, 191–205.

627

Velić, I., Vlahović, I., 1994. Foraminiferal assemblages in the Cenomanian of the Buzet–Savudrija

628

Area (Northwestern Istria, Croatia). Geologia Croatica 47, 25–43.

23

629

Velić, I., 2007. Stratigraphy and palaeobiogeography of Mesozoic benthic foraminifera of the Karst

630

Dinarides (SE Europe). Geologica Croatica 60, 1–113.

631

Vicedo, V., Calonge, A., Caus, E. 2011. Cenomanian Rhapydioninids (Foraminiferida): Architecture of

632

the Shell and stratigraphy. Journal of Foraminiferal Research 41/1, 41–52.

633

Vlahović, I., Tišljar, J., Velić, I., Matičec, D., 2005. Evolution of the Adriatic Carbonate Platform:

634

Palaeogeography, main events and depositional dynamics. Palaeogeography, Palaeoclimatology,

635

Palaeoecology 220, 333–360.

24

1

Table 1. Dimensions of Fleuryana gediki sp. nov.

2

Table 2. Comparative summary of Fleuryana gediki sp. nov. with F. adriatica and M. apenninica.

1

Fig. 1. A) The main tectonic units of west part of Turkey (after Görür and Tüysüz, 2001), B) Structural

2

map of the Western Taurides (after Poisson et al., 1984) showing the location of the measured

3

stratigraphic sections; 1) Alakır section, 2) Alacadağ section, C) Detailed geological map of the Toçak

4

Mountain showing the Alakır stratigraphic section line (after Şenel et al., 1981).

5

Fig. 2. Field photos of the Albian–Turonian limestones in the Alakır and Alacadağ sections. Alakır

6

section: A) Breccia with black pebbles in the upper Albian; B) Limestone with shell fragments in the

7

Cenomanian; C) Apparently massive limestones, Interval II; D) White Turonian limestones. Alacadağ

8

section: E) Rudist specimens collected from the Turonian limestones; F) Rudist buildup in the

9

Turonian massive limestones.

10

Fig. 3. The Alakır section showing the stratigraphic distribution of selected benthic foraminifera,

11

biozones and paleoenvironments.

12

Fig. 4. The Alacadağ section showing the stratigraphic distribution of selected foraminifera, biozone

13

and paleoenvironments.

14

Fig. 5. Benthic foraminifera of the Sellialveolina gr. viallii taxon range zone (BFZ–2) (lower–middle

15

Cenomanian). A–C. Ovalveolina maccognoae, sample F55; D. Praealveolina cf. P. iberica, sample

16

F113; E–I. Sellialveolina gr. viallii, samples F114, F114, F85, F102, F114. Scale bar: 0.25 mm.

17

Fig. 6. Other benthic foraminifera of the Sellialveolina gr. viallii taxon range zone (BFZ–2) (lower–

18

middle Cenomanian). A. Pseudonummoloculina heimi, sample F76; B. Pseudonummoloculina

19

regularis, sample F111; C, G. Spiroloculina cretacea, samples F76, F84; D, E. Nezzazatinella picardi,

20

sample F84; H. Pseudolituonella reicheli, sample F96; F, I. Nezzazata sp., samples F84, F81; J, K.

21

Scandonea phoenissa, sample F76; L. Nezzazata simplex, sample F71; M. Peneroplis turonicus,

22

sample F81; N. Biconcava bentori, sample F98; O, S. Orbitolinidae indet., sample F62; P, Q. Biplanata

23

peneropliformis, samples F71, F96; R. Canaliculate walled Textulariidae?, sample F71; T. Cuneolina

24

pavonia, sample F85. Scale bar: 0.25 mm.

25

Fig. 7. Schematic stratigraphic distribution of the selected benthic foraminifera in the Alakır section.

26

Fig. 8. Stratigraphic distribution of selected benthic foraminifera identified from the Cenomanian–

27

Turonian succession in the Bey Dağları. References: 1) Velić and Vlahović, 1994; 2) Velić, 2007; 3)

28

Aguilera–Franco, 2003; 4) Chiocchini and Mancinelli, 2001; 5) Chiocchini and Pichezz, 2016; 6)

29

Chiocchini, 2008; 7) Solak et al., 2017; 8) Chiocchini et al., 2008; 9) Sarı et al., 2009; 10) Frijia et al.,

30

2015; 11) Chiocchini et al., 1984; 12) Cvetko Tešović et al., 2001; 13) Chiocchini et al., 2012; 14)

31

Schroeder and Neumann, 1985; 15) Consorti et al., 2016; 16) Fleury, 2014; 17) Fleury, 2016; 18)

32

Sanders et al., 2004; 19) Moro et al., 2018.

33

Fig. 9. Biocorrelation scheme of the Albian–Turonian benthic foraminiferal biozones in the BDCP with

34

those in the other peri–Mediterranean carbonate platforms.

35

Fig. 10. Benthic foraminifera of the Pseudorhipidionina casertana assemblage zone (BFZ–3) (upper

36

Cenomanian). A–C. Pseudorhipidionina casertana, sample F180; D–F. Pseudorhapydionina dubia,

37

sample F180; G. Pseudorhapydionina laurinensis, sample F164; H. Vidalina sp., sample F119; I, N.

38

Pseudonummoloculina regularis, sample F121; J, O. Pseudolituonella reicheli, samples F166, F157;

39

K, L. Pseudonummoloculina heimi, sample F128; M, R. Cornuspiridae, samples F157, F128; P.

40

Chrysalidina gradata, sample F157; Q. Nubeculariidae, sample F128; S, T. Peneroplis turonicus,

41

samples F158, F152; U. Dicyclina sampoi, sample F166. Scale bars: 0.25 mm.

42

Fig. 11. Other benthic foraminifera of the Pseudorhipidionina casertana assemblage zone (BFZ–3)

43

(upper Cenomanian). A, B. Nezzazata simplex, samples F166, F157; C. Nezzazata concava, sample

44

F166; D. Nezzazata sp., sample F136; E–H, L. Nezzazatinella picardi, samples F166, F156, F166,

45

F182, F157; I. Pseudocyclammina aff. P. sphaeroidea, sample F136; J, K. Biconcava bentori, samples

46

F157, F180; M. Biplanata peneropliformis, sample F166; N, O. Cuneolina pavonia, sample F182,

47

F148; P–X. Pseudotextulariella sp., samples F157, F157, F166, F157, F157, F157, F157, F166. Scale

48

bar: 0.25 mm.

49

Fig. 12. Biocorrelation between benthic foraminiferal zones defined across the CTB interval in the

50

BDCP and ACP.

51

Fig. 13. Benthic foraminifera of the Pseudorhapydionina dubia–Pseudolituonella reicheli assemblage

52

zone (BFZ–4) (uppermost Cenomanian). A, B. Chrysalidina gradata, sample F229; C–E.

53

Pseudorhapydionina dubia, samples F200, F229, F200; F–H, J, O. Nezzazatinella picardi, samples

54

F197, F229, F229, F229, F229; I. Peneroplis turonicus, sample F193; K. Pseudolituonella reicheli,

55

sample F193; L. Cornuspiridae, sample F198; M, N. Moncharmontia? sp., samples F229, F200; P.

56

Nezzazata simplex, sample F229; Q, T. Bolivinopsis sp., samples F229, F228; R. Spiroloculina sp.,

57

sample F228; S. Discorbidae, sample F198. Scale bars: 0.25 mm.

58

Fig. 14. Benthic foraminifera of the Pseudocyclammina sphaeroidea assemblage zone (BFZ–5)

59

(Turonian). A–E. Fleuryana gediki sp. nov. (arrows show basal aperture), samples F247, F247, Ad21,

60

Ad12, Ad21; F, G. Moncharmontia apenninica, sample F247; H–K. Fleuryana adriatica, samples F223,

61

B172, F247, F247 (arrow shows aperture); L. Fleuryana sp., sample Ad21; M, N. Foram. Indet.,

62

sample F216; O–Q. Pseudocyclammina sphaeroidea, samples F223, F223, F247; R1–R3.

63

Nezzazatinella picardi, samples F247, F230, Ad21;

64

Nezzazata simplex, sample F247; U. Reticulinella fleuryi, sample Ad21; V. Pseudonummoloculina

65

sp., sample F206; W1–W3. Arenobulimina sp., sample F247; X. Discorbidae, sample F211; Y, Z.

66

Spiroloculina sp., sample F247. Scale bar: 0.25 mm.

67

Fig. 15. Fleuryana gediki sp. nov. A–J. Specimens from the Pseudocyclammina sphaeroidea

68

assemblage zone (Turonian) of the Alakır section (Bey Dağları, Western Taurides), sample F247; K–

69

Y. Specimens from the Turonian–Coniacian limestones of the Belkahve section (southwestern part of

70

the Bornova Flysch Zone). K, L, P. sample B52, M. sample B70, N. B71; O, Q, R, T. sample B75; S,

71

V, W, X. sample B88; U, Y. sample B92. Canaliculate structure of the wall is evident in A, C, I

72

(arrows). Basal aperture is evident in B, C, D, G, H, K, L, R, X (arrows). p: proloculus, d:

73

deuteroloculus. Scale bar: 0.2 mm.

S. Cuneolina pavonia, sample F230; T.

Table 1. sample and illustration number

number of chambers (C)

equatorial diameter (D) (mm)

C1

C2

C(last)

D1

D2

D2.5

width of whorls (W) (mm) W1 W2

2.5

7

8.5

9

0.16

0.26

0.32

-

-

0.006

2

-

-

-

0.15

0.24

-

0.09

0.14

Ad21/Fig. 14E

0.005/0.006

2

-

-

-

0.14

0.21

-

0.09

0.13

F247

0.005/0.007

2

7

8

-

0.14

0.22

-

-

-

F247

0.007

1

6

-

-

0.20

-

-

-

-

F233

0.005/0.006

2

7

9

-

0.13

0.22

-

-

-

F247/Fig. 15A

0.005/0.007

2

?

8

-

0.15

0.30

-

-

-

F247/Fig. 15B

0.006/0.010

2.5

7

8

8.5

0.16

0.27

0.32

-

-

F247/Fig. 15D

0.005/0.006

2.5

6

8

8

0.15

0.25

0.28

-

-

F247/Fig. 15E

0.006/0.007

1

7

-

-

0.16

-

-

-

-

F247/Fig. 15G

0.006/0.008

2

-

-

-

0.15

0.23

-

0.12

0.17

B52/Fig. 15K

0.005

1.5

6.5

8

-

0.13

0.18

-

-

-

B52/Fig. 15L

0.005

2.5

6

7?

8?

0.13

0.19

0.24

-

-

B52/Fig. 15P

0.005/0.006

1.5

-

-

-

0.13

0.19

-

0.08

0.15

B75/Fig. 15Q

0.007

2.5

6?

8

8

0.17

0.26

0.31

-

-

B75/Fig. 15R

0.006/0.008

2.2

6

6.5

7

0.16

0.27

0.33

-

-

B88

0.006/0.008

1.5

-

-

-

0.13

0.25

-

0.11

0.17

B88/Fig. 15S

0.008/0.009

2

-

-

-

0.20

0.34

-

0.15

0.24

B92/Fig. 15U

0.007

1.5

-

-

-

0.15

0.19

-

0.12

0.17

B92/Fig. 15Y

0.006

2.5

-

-

-

0.13

0.21

0.26

0.08

0.21

F247/Fig. 14A holotype Ad12/Fig. 14D

inner diameter of proloculus (mm) 0.006/0.009

number of whorls

Table 2. M. apenninica De Castro, 1966 areal, cribrate

F. adriatica (Maastrichtian) De Castro et al., 1994 areal, arched slit

0.083-0.150

0.030-0.090 (avarage 0.050-0.070)

0.040-0.060 (avarage 0.050)

up to 2.5

up to 3.5

up to 2.5

C1

7-8

10.5-11

7-9

6-7

C2

9-10.5

13

11-12

8-9

last

13 (rare)

14-16

11.5-13

-

0.008-0.017

0.007-0.012

0.005-0.012

0.005-0.008

0.23-0.33

0.11-0.22

0.14-0.18

0.13-0.20

0.43-058

0.24-0.41

0.25-0.36

0.21-0.34

last

-

0.40-0.65

0.32-0.44

0.24-0.33

W1

0.17-0.25

0.07-0.13

0.09-0.12

0.08-0.15

W2

0.28-0.36

0.12-0.24

0.15-0.17

0.13-0.24

W3

-

0.20-0.33

-

-

aperture diameter of proloculus (mm) number of whorls number of chambers (C) per whorl

wall thickness (mm) equatorial D1 diameter (D) D2 (mm)

width of whorls (W) (mm)

F. adriatica (Turonian) this study areal, arched slit

Fleuryana gediki sp. nov. basal, arched slit 0.040-0.100 (avarage 0.060) up to 2.5

1

1- A benthic foraminiferal biozonation scheme is proposed for the upper Albian to Turonian shallow-

2

marine carbonate succession of the Bey Dağları Carbonate Platform (BDCP).

3

2- Two-step pattern of extinction of benthic foraminifera across the Cenomanian–Turonian boundary

4

interval is recorded also in the BDCP.

5

3- A tentative Cenomanian–Turonian Boundary is determined based on the major change in benthic

6

foraminiferal assemblages.

7

4- A new benthic foraminifera Fleuryana gediki sp. nov. is described from the Turonian.

This study was designed, directed and coordinated by Cemile SOLAK, Kemal TASLI and Hayati KOÇ.

CRediT author statement Cemile SOLAK: Conceptualization, Methodology, Investigation, Resources, Writing - Original Draft, Writing - Review & Editing Kemal TASLI: Project administration, Methodology, Investigation, Writing - Original Draft, Writing Review & Editing Hayati KOÇ: Resources