Powder
Technology,
63 (1990)
23
23-34
annotated bibliography of fluidized bed combustion modeling information
An
V. P. Mauno* and S. H. Reitsma Department (Received
of Mechanical
August
1, 1989;
Engineering, in revised
[email protected]
University,
form April 30,
Me@brd,
MA 02155 (U.S.A.)
1990)
Abstract The development of accurate and versatile performance models of fluidized bed combustion systems has become a critical aspect of the successful implementation of this technology. Information which is relevant to the development of such models is scattered throughout the technical literature in a variety of forms. This annotated bibliography attempts to provide a unified view of this literature and to synthesize a substantial fraction of the relevant citations within a model development framework.
Abbreviation directory ACS -American
Chemical Society
AFBC -Atmospheric Fluidized Bed Combustors AICbE -American Institute of Chemical En-
gineers ANL -Argonne National Laboratory ASME -American Society of Mechanical Engineers CFB - Circulating Fluidized Bed DOE -Department of Energy EPRI - Electric Power Research Institute FBC - Fluidized Bed CombustorsKombustion IEA - International Energy Association IECEC - Intersociety Energy Conversion Engineering Conference ME(R)TC - Morgantown Energy (Research) Technology Center MIT - Massachusetts Institute of Technology ORNL- Oak Ridge National Laboratory PFBC - Pressurized Fluidized Bed Combustors
Introduction The desire to utilize plentiful coal and lower quality feedstocks for electric power produc*To whom correspondence
0032-5910/90/$3.50
should be addressed.
tion in efficient, yet environmentally acceptable, ways has fostered an intense research and development effort for Fluidized Bed Combustors (FBC) as an alternative to conventional pulverized coal and stoker-fired power plants. The staged combustion and lower temperatures of FBC result in lower NO, production. More importantly, the utilization of in-bed reactive sorbents such as limestone and dolomite provides in situ sulfur removal from the combustion products, thus eliminating the need for expensive flue gas scrubbers and allowing the utilization of higher sulfur content fuels. The solid sulfur-based byproducts of the process offer the potential for materials recycling, since the products are amenable to applications such as road construction. FBC may be categorized by their design and operating features. The most general delineation is based upon the operating pressure of the combustor. The pressurized FBC (PFBC) operate above atmospheric pressure and offer the potential for smaller economic modular sizes and higher overall plant efficiency. The atmospheric FBC (AFBC) are the more developed technology. AFBC can be categorized further by the characteristic fluid dynamic regimes which are obtained in the combustors during steady state operation. 0 Elsevier Sequoia/Printed
in The Netherlands
24
FBC technology has moved to the utilityscale plant demonstration phase. The subsequent adoption of FBC as a conventional production technology introduces a new, and as yet unaddressed, set of engineering issues. Primary amongst these is the ability to predict integrated system performance both accurately and efficiently. Detailed component or phenomena level models which were developed for the design of individual components are inappropriate to the task of dynamic performance modeling, since they are usually overly complex, static and ignore system interactions. Plant- and laboratory-scale testing are useful but limited to a small number of potential operating conditions. Yet, the plant designer and operator need to anticipate all conditions, including off-normal operations. Further, control engineers must develop effective algorithms and strategies. This may include operator training, simulators and other dynamic analysis tools. A typical performance model consists of a number of component, subcomponent and phenomenological models which are linked via the modeled process causation. A schematic illustration of this concept as it is applied to FBC technology is provided in the Figure. The development of a dynamic model involves identification, modification and incorporation of numerous submodels. The input and output variables establish compatibility with other system modeling modules such as pumps and heat exchangers. Each block may involve many components and conversely a single component could be associated with more than one block. Mathematically, the models are coupled, nonlinear, (usually) first-order ordinary differential equations and ancillary algebraic constraints.
Figure. FBC performance model conceptual framework.
Examples of the former are conservation of energy within the bed or the chemical reaction steps of the combustion process, while the latter are exemplified by steam properties or heat transfer correlations. The independent variables are time and space. The motivation for this contribution is that the information which is relevant to FBC performance modeling is not contained in a unified literature. Relevant information appears in many different forms and presentations. The goal of this work is to provide a reasonable synthesis of the knowledge base. It is important to emphasize that this is not a review of the literature relevant to fluidized beds but is a compilation of literature which is relevant to specialized field of performance modeling of fluidized beds. This bibliographic review emphasizes the modeling of phenomena as per the Figure. A separate comparative review of existing comprehensive FBC performance models is included in Ref. 124.
Information
sources
No work of this type can claim any reasonable degree of completeness. Nevertheless, the cited work represents the majority of the relevant information as of mid-1989 and should help limit the amount of information gathering which new researchers must perform. Information was acquired through three approaches - computerized literature surveys, selective manual searches and personal contact with primary organizations. The manual searches were performed at several technical libraries. The organizations which contributed information to this compilation included Chalmers University of Technology, Combustion Engineering, Delft Technical University, Electric Power Research Institute, Illinois Institute of Technology, Lehigh University, Louisiana State University, Massachusetts Institute of Technology, Netherlands Organization for Applied Scientific Research, Oak Ridge National Laboratory, Pennsylvania State University, Philadelphia Electric Company, Riley Stoker Corporation, Technical University of Nova Scotia, University of Calgary, University of Siegen, University of Tulsa and Westinghouse Corporation. There are five principal types of information sources -texts and monographs, conference proceedings, journal articles, reports and per-
25
sonal contact. The first three types were addressed in a comprehensive manner. Personal contacts were initiated on a subjective basis, while the acquisition of reports was limited partially by proprietary material restraints. The three appendices summarize the first three information sources. Appendix A is a list of the relevant texts and monographs. Appendix B is a list of relevant conferences. In some cases, the citation includes specific conferences, even if they are part of a periodic series, and a notation as to time and place. Computerized literature searches are not sufficient to unearth relevant conference information, since many of the conference proceedings are not indexed on a large number of engineering and science citation data bases. Over the course of this work, approximately 20% of the conference proceedings listed were reviewed manually. The most important journals are listed in Appendix C. Even though all of these journals have included relevant citations in the past, a subset of them are of significantly greater utility. These are marked in the listing.
Compilation and synthesis reference citations
of specific
The final and most labor-intensive aspect of the assembly of this bibliography was a review of approximately 330 specific references in sufficient detail to judge their relevancy and catalogue their applicability. Those references which were found to be important from an FBC performance modeling perspective are listed in the reference section of this bibliography. In establishing this list, if common information was available in the forms ofjournal articles, conference proceedings and/or reports, preference of citation was given to journal articles followed by conference proceedings due to the better availability and quality of these resources. The Table is a categorization and synthesis of the approximately 2 15 references which were deemed to be of the greatest utility for model development. Each entry consists of the author’s or authors’ names and year of publication for entry identification and reference number. The entry also includes identification as to fluidized bed type (Bubbling, Circulating modeling area(s) General) and or
TABLE Catalogue of specific references with respect performance modeling topic areas Reference
111 121 131 141 151 161 [71 [31 PI 1101 1111 1121 1131 1141 1151 [I61 [I71 I181 1191 1201 I211 [=I 1231 [241 1251 [261 [271 [=I P91 1301 1311 [321 [331 1341 1351 1361 1371 1381 1391 1401 1411 1421 1431 1441 1451 1461 [471 [481 1491 1501 1511 1521 1531 1541 [551 I561 1571
FB type B G B C B C C G G B C B B G C C C C C C B B B B B B C G G G B C C C B B C B B B B B B C B B B G B B G G G C B
CB
EM
FD
HT
to FBC
MC
NM
X
X X X
X
X X X X X X X
X
X
X
X
x
x
X
X
X X X X X
X
X X X X X X
X
X X
X X
X X X X X X
X X
x
X X X X
x
X X
X X X
X
X X X X
X
X X
x
x
X X X X X X (continued)
26
TABLE (continued) [581 Reference
B FB type
1591
B B C B B C C B B B B B C C B B B B B B B B B B C B B B B B C C B G B C B B B B B B B C C G C B B C B B B B C B B C C
1601 1611 [621
1631 1641 [651 1661 1671 1631 [=‘I 1701 1711 1721 I731 [741 [751 1761 [771 1781 (791 I801 [Sll WI R331 1341 1851 [=I [871 [331 1891 WI [911 1921 w31 [941 [951 1961 1971 P81 P91 I1001 I1011 [lo21 I1031 I1041 [IO51 I1061 (1071 [lo31 [lo91 I1101 11111 I1121 [I131 [I141 [I151 Ill61 I1171
TABLE (continued)
CB
EM
x FD
x HT
MC
X NM
x
x X X X
X X
X
x
x
x
X X X
X
X
X X X X X X
X X
X
X X X
X
X
X
X
X X
X X
X X
X X
X
X X X X
X X X X X X
X X X X X
X X
X
X X
X
x X
C FB type
11191
B C B B G G B B B B C B C G B B C G B B B B B B G B B B B B G B B B G C C C B G B B G G B B B B B B G B B B B B B B C
I1201 I1211 I1221 ~1231
11241 11251
X
X
X
[118] Reference
x
x X
X X X X (continued)
I1261 11271 I1281 [1291 I1301 [I311 11321 I1331 I1341 I1351 I1361 I1371 I1381 I1391 I1401 [I411 11421 I1431 11441 I1451 I1461 I1471 I1481 [I491 I1501 I1511 11521 I1531 I1541 [I551 I1561 I1571 I1581 [I591 I1601 I1611 I1621 I1631 I1641 [I651 I1661 I1671 [I@31 I1691 I1701 I1711 11721 I1731 I1741 I1751 I1761 (1771
CB
EM
X FD
HT
MC
NM X
X
X X X
X X
x
x
X
x
x
X
X X
X
x
x
x
X
X X
x X
X
X X X
X X X
X X X
X X X X
X X
X X X
X X X
x
x X
X
X X X
X
x
x
x
x
X
X
X
X X
X X X X X X X X X
X X X X X
X
X
X
X
x
x
x
x X
X X X X
X
x
x
x x
x x
x
x
X X X
X X
X
X X
(continued
27 TABLE
(1781 Reference
B FB type
11791
B B B B B B B B B B B G B C C C C C C C B B B B G G B C C C C C C B
ilsul I1811 11821 11831 11841 11851 11871 11881 11891 11901 11911 [I921 [I931 11941 [I951 11961 11971 [I981 [I991 12001 12011 12021 12031 12041 12051 12061 12071 [2081 12091 12101 [2111 12121
errors of omission, commission or inclusion are reported to them.
(continued)
if xxxxxx CB
EM
FD
HT
x
x
MC
Acknowledgements
X X X
x
NM
X
x
X
X X
X
X X
x x
X
X
x x
X
X
X X X
X X X
Numerous people assisted the authors in collecting information. The contributions of Dr. R. Breault (Tecogen, Inc.), Mr. D. Dimenstein (Philadelphia Electric Company) and Mr. S. Tavoulareas (Praxis Engineers, Inc.) are especially appreciated. The organizational cooperation of Philadelphia Electric Company and Riley Stoker Corporation is also acknowledged. Finally, the financial support of the Electric Power Research Institute is gratefully acknowledged.
X X
X
X
References
X X X X
x x x
x x
X
x
X X X
X X X
X
X X
X X X X
Emissions -EM, Fluid (Combustion - CB, Dynamics - FD, Heat Transfer - HT, Miscellaneous Components -MC, and Numerical Modeling-NM). This categorization scheme is in accord with the modeling methodology described in the introduction and summarized in the Figure.
Conclusions In addition to the aforementioned caveat as to completeness, the bibliography is also characterized by an unavoidable degree of subjectivity. Nevertheless, it is hoped that it represents a heretofore unavailable organized compilation of information in a field in which it is not currently available. The authors would be most grateful to the technical community
1 R. L. Adams, in N. P. Cheremisinoff (ed.), Handbook of Heat and Mass Tranqfw, Vol. 1, Gulf, Houston, 1986, pp. 581-607. on FZuidized 2 M. G. AlIiston, Proc. 10th Int. Cm Bed Combustion, ASME, 1989, pp. 31-36. 3 B. R. Andeen and L. R. GIicksman, Heat Transfer to Horizontal Tubes in ShaUow Fluidized Beds, paper presented at the 1976 ASME/AIChE National Heat Transfer Conference, ASME, 1976. H. Arastopour and D. Gidaspow, Powder TechnoL, 22 (1979) 77. U. Arena, M. D’Amore and L. Massimiha, AlChE J., 29 (1983) 40. U. Arena, L. MassimilIa and D. Pirozzi, Proc. 9th Int. Corlf. on Fluidized Bed Combustion, ASME, 1987, pp. 762-769. 7 U. Arena, A. Cammarota, L. MassimiUa and D. Pirozzi, Proc. 2nd Int. C& on Circulating Fluidtied Beds, Pergamon Press, Toronto, 1988, pp. 223-230. 8 A. Avidan, H. Weinstein and R. A. Graff, Solids Backmixing in High-Velocity Beds, U.S. Department of Energy Report (DOE/MC/14875-1373), 1981. 9 S. P. Babu, B. Shah and A. TaIwaIkar, AIChE Sym. Ser., 74, No. 176 (1978) 176. 10 A. Bar-Cohen, L. GIicksman and R. Hughes, Proc. 5th Int. Conf: on Fluidized Bed Combustion, 1977, pp. 458-473. 11 H. E. Barrier, H. Beisswenger and K. E. Barner, Proc. 9th Int. CoqJ on Fluidized Bed Combustion, ASME, 1987, pp. 743-749. 12 R. E. Baron, J. L. Hodges and A. F. Saroihn, Proc. 5th Int. Co@ on Fluidtied Bed Combustion, Vol. III, 1977, pp. 437-453. 13 R. E. Baron, J. M. Beer, G. Borghi, J. L. Hodges and A. F. Saroihn, A Model of Coal Combustion in FZuidized Bed Combustors, AIChE, 1978. 14 R. E. Baron, J. M. Beer, G. Borghi, J. L. Hodges and A. F. Saroihn, AIChE Sym Ser., 74, No. 176 (1978) 120.
28 15 A. P. Baskakov, V. N. Dolgov and Yu. M. Goldobin, Proc. 2nd Int. Co& on Circulating Fluidized Beds, Pergamon Press, Toronto, 1988, pp. 233-244. 16 P. Basu, Proc. 37th Canadian Society of Chemical Engineers Conference, 1987, pp. 71-74. 17 P. Basu, Proc. of the 1988 Annual AIChE Meeting. 18 P. Basu, A survey of Research and Publications on Circulating Fluidized Beds, Secretariat of the International Conference on Circulating Fluidized Beds, 1988. 19 P. Basu, Chum. Eng. Sci., 45 (1990) 3123. 20 P. Basu, C. Ritchie and P. K. Halder, in P. Basu (ed.), Circulating Fluidized Bed Technology, Pergamon Press, Toronto, 1986, pp. 229-238. 21 P. Basu, A. Sett and E. A. M. Gbordzoe, Proc. 9th Znt. Cmf on Fluidized Bed Combustion, ASME, 1987, pp. 738-742. 22 P. Basu, J. Greenblatt, S. Wu and D. Briggs, Proc. 10th Int. Conf. onFluidi.zed Bed Combustion, ASME, 1989, pp. 701-707. 23 D. E. Beaseley and L. P. Golan, Dynamic Response of Fluidized Beds, A8ME Paper No. 87-HT-41,1987. 24 D. Beligardt, F. Heinbach, M. Schoessler and J. Werther, Proc. 9th Int. Cmf on Fluidized Bed Combustion, ASME, 1987, pp. 713-722. Bed Combustion 25 D. A. Berkowitz, Proc. Fluidized Technology Exchange Workshqp, Vol. 1, CONF770447, 1977, pp. 267-281. 26 D. A. Berkowitz, A. Ray and V. Sumaria, Proc. 12th IECEC, 1977, pp. 765-771. 27 D. A. Berkowitz, A. Ray, V. Sumaria and M. Wilson, Proc. 5th Int. Cor$ on Fluidtied Bed Combustion, 1977, pp. 488-500. 28 F. V. Bethel, D. W. Giii and B. B. Morgan, Fuel, 52 (1973) 121. 29 L. W. Bolton and J. F. Davidson, Proc. 2nd Znt. Cc@ on Circulating Fluidized Beds, Pergamon Press, Toronto, 1988, pp. 139-146. 30 G. Borghi, A. F. Saroflm and J. M. Beer, Combust. Flame, 61 (1985) 1. 31 R. H. Borgwardt, Environ. Sci. Technol., 4 (1970) 59. 32 R. H. Borgwardt and K. R. Bruce, AlCk.E J., 32 (1986) 239. 33 V. A. Boroduiya, V. I. Dikalenko and T. P. Eremenko, Proc. Int. Fluidized Combustion Cmf, London, 1984, pp, DISC/35/313-322. 34 R. W. Breauit, Proc. 9th Znt. Cmf on Fluidized Bed Combustion, ASME, 1987, pp. 770-775. 35 R. W. Breauit, Proc. 1987 AIChE Spring Meeting, Technical Paper 78C, 1987. 36 R. W. Breauit and V. K. Mathur, Proc. 1987 AIChE Annual Winter Meeting, Paper 95A, 1985. 37 G. Brem, A Mathematical Model as a Tool for Simulation and Optimization of Coal Combustion in an Atmospheric FBC, Netherlands Organization for Applied Scientific Research, TN0 CB/270, December 1988. 38 G. Brem and J. J. H. Brouwers, Proc. 10th Int. Conf on Fluidized Bed Combustion, ASME, 1989, pp. 37-47. 39 C. M. H. Brereton, J. R. Grace and J. Yu, Proc. 2nd Int. Cmf on Circulating Fluidized Beds, Pergamon Press, Toronto, 1988, pp. 307-314.
40 R. J. Bywater, AIChE Symp. Ser., 74, No. 176 (1978) 126. 41 N. M. Catipovic, G. N. Jovanovic and T. J. Fitzgerald in J. R. Grace and J. M. Matsen (eds.), Fluidization, Plenum Press, New York, NY, 1980, pp. 225. 42 I. H. Chan and T. M. Knowlton, in D. Kunii and R. Toe (eds.), 4th Engineering Foundation Car@-ence on Fluidization, 1983, pp. 283-290. 43 R. R. Chandran, J. N. Duqum and E. M. Petri& Proc. 9th Int. Conf on Fluidized Bed Combustion, ASME, 1987, pp. 300-306. 44 Chaung Tsa-zen, Sc.D. Thesis, MIT (1982). 45 J. C. Chen, Heat Tranqfw to Tubes in Fluidized Beds, paper presented at the 1976 ASME/AIChE National Heat Transfer Conference, ASME, 1976. 46 J. C. Chen, R. J. Cimini and S.-S. Dou, Proc. 2nd Int. Cmf on Circulating Fluidized Beds, Pergamon Press, Toronto, 1988, pp. 255-263. 47 T. P. Chen and S. C. Saxena, Fuel, 56 (1977) 401. 48 T. P. Chen and S. C. Saxena, AIChE Symp. Ser., 74, No. 276 (1978) 149. 49 T. P. Chen, C. I. Sisthla, D. V. Punuvani and H. Arastopour, in J. R. Grace and J. M. Matsen (eds.), Fluidizatian, Plenum Press, New York, NY, 1980, pp. 445-452. 50 Y. 0. Chong, D. P. O’Dea, L. S. Leung, D. J. Nicklln and J. Lottes, Proc. 2nd Int. Cor& cm Circulating Fluidized Beds, Pergamon Press, Toronto, 1988, pp. 493-500. 51 Cold Modeling ofFluidized-Bed Combustors, Oregon State University, EPRI Report CS-1476, Project 3151, August 1980. 52 K. DamJohansen and K. Ostergaard, Proc. 5th Engineering Foundation Fluidization Conference, 1986, pp. 571-578. 53 P. T. Danieli and H. 0. Kono, Proc. 9th Int. Con,f: on Fluidized Bed Combustion, ASME, 1987, pp. 467-473. 54 J. S. Dennis and A. N. Hayhurst, Proc. 5th Engineering Foundation Fluidkation Co& 1986, pp. 563-570. 55 J. S. Dennis and A. N. Hayhurst, J. Inst. Energy, 61 (1988) 98. 56 D. M. Dimenstein, D. S. Weber, S. Tavoulareas and R. H. Melvin, Proc. Society for Computer Simulation Simulators Conf, Simulation Series, Vol. 17, No. 2, 1986, pp. 197-202. 57 V. B. Dixit, M. L. Holmes and W. R. Carson, Proc. 9th Int. Cmf on Fluidized Bed Combustion, ASME, 1987, pp. 604-612. 58 H. M. Domanus, R. C. Schmitt, W. T. Sha, E. M. Petri& W. C. Howe and J. W. Bass, Proc. 1986 EPR.I SeminaronAtmosphericFluidized-Bed Combustion Technology for Utility Applications, 1986, pp. 28-l to 28-17. 59 R. J. Dry and M. R. Judd, Powder Technol., 43 (1985) 41. 60 L. T. Fan, K. Tojo and C. C. Cahng, Ind. Eng. Chem. Proc., Des. Dev., 18 (1979) 333. 61 I. H. Farag, R. W. Breault, R. K. Mongeon and A. W. Hail, Proc. 10th Znt. Co@ on Fluidized Bed Combustion, ASME, 1989, pp. 987-993. 62 D. C. Fee, K. M. Myles, G. Marroquin and L.-S. Fan, Chxm. Eng. Sci., 39 (1984) 731.
29 63 D. C. Fee, W. Ira W&on, K. M. Myles, I. Johnson and L.-S. Fan, Chem. Eng. Sci., 38 (1983) 1917. 64 F. N. Fett, J. Scholer and V. Weiss, Proc. 2nd Int. Conf. on Circulating Fluidized Beds, 1988, pp. 289-298. 65 A. Feugier, C. Gaulier and G. Martin, Proc. 9th Int. Meeting onFtuidi.zedBed Combustion, ASME, 1987, pp. 613-618. 66 A. B. Fuertas, J. J. Pis, A. Suarez, V. Artos and F. Rubiera, Proc. 10th Int. Co?++ on Ftuidized Bed Combustion, ASME, 1989, pp. 1225-1230. 67 B. M. Gibbs, Inst. Fuel Symp. Ser. Combustion, Appl. 1 (1975) A5.1.
87
88 89
I: F’luidized
68 D. Gidaspow, Appl. Mech. Rev., 31 (1986) 69 D. Gidaspow, R. Hughes and G. AIChE Meeting, 70 D. Gidaspow, B. Symp. Ser., 80,
86
90
E.-U. Hartage, Y. Li and J. Werther, in K. Ostergaard and A. Sorensen (eds.), FZuidization V, Engineering Foundation, New York, 1986, pp. 345-352.
91
B. Hartleben, G. Wozny and F. N. Fett, Ger. Chem. Eng., 8 (1985) 16. M. Hartman and R. W. Coughlin, AICh.E J., 22
1.
W. Lyczkowski, C. W. Solbrig, E. D. A. Mortensen, Proc. 74th Annual 1981, pp. 249-250. E. Hehadieh and J. Bouillard, AICXE No. 241 (1984) 57.
N. S. Grewal, J. Menart, D. R. Hajicek and B. J. Zobeck, Heat Transfer to Horizontal Tubes Im mersed in a Fluidized-Bed Combustor, ASME Paper 86-WA/FACT-5, 1986. N. S. Grewal, B. J. Zobeck, M. D. Mann and D. R. Hajicek, Proc. 9th Int. Ccn+f on Fluidized Bed Combustion, ASME, 1987, pp. 1153-1158. R. Gutiinger and N. Abuef, Advances in Heat Transfer, 14 (1978) 149. E.-U. Hartage et al., in P. Basu (ed.), Circulating Fluzdized Bed Technology, Pergamon Press, Toronto, 1985, pp. 153-160.
92
71 D. Gidaspow, Y. P. Tsuo and K. M. Luo, Computed and Experimental Cluster Formation and Velocity ProBIes in Circulating Fluidtied Beds, Banf Fhddization Conference preprint, 1989.
93
(1976) 490. M. Hasatani, N. Arai and M. Yuzawa, Proc. 4th EngineeringFoundationFluidizationC~ 1983,
94
72 L. R. Glicksman, Proc. 2nd Int. Con. on Circulating Ftuidized Beds, Pergamon Press, Toronto, 1988, pp. 13-29.
pp. 483-490. M. A. Haataoglu, F. Berruti and M. S. Hassam, Proc. 2nd Int. Cor& cm Circulating Fluidized Beds,
95
73 L. R. Glicksman, Comparisons of Resultsfrom TVA 20 MW with MIT Cold Scale Model, 1988 EPRI Seminar on FIuidized Bed Technology for Utiiity Applications. 74 L. R. Glicksman and N. R. Decker, Proc. 6th Int. Coqf on Fluidized Bed Combustion, 1980, pp. 1152-1158. 75 L. R. Glicksman and W. K. Lord, in J. R. Grace and J. M. Matsen (eds.), Ftuidization, Plenum Press, New
96 97 98
99
York, NY, 1980, pp. 125-134. 76 L. R. Glicksman and G. MacAndrews,Powder Technol., 42 (1985) 159. 77 L. R. Glicksman and T. Yule, Proc. Engineering Foundation Conf Fluidization V, 1986, pp. 103-l 10. 78 L. R. Glicksman, W. Lord, J. VaIenzuela, A. Bar-Cohen and R. Hughes, AIChE Symp. Ser., 77, No. 205 (198 1) 139. 79 L. R. Glicksman, T. Yule, A. Dymess and R. Carson, Proc. 9th Int. Cor& on Fluidized Bed Combustion, ASME, 1987, pp. 511614. 80 L. R. Glicksman, W. K. Lord and M. Sakagami, Chem. Eng. Sci., 42 (1987) 479.
100
101
102
103 104
81 J. F. P. Gomes, Int. J. Heat Fluid Flow, 9 (1988) 339. 82 J. R. Grace, in G. Hetsroni (ed.), Handbook of Muttiphase Systems, Hemisphere, New York, NY, 1982, pp. 8.65-8.75. 83 J. R. Grace, in P. Basu (ed.), Circulating Ftuidized Bed Technology, Pergamon Press, Toronto, 1985, pp. 63-81. 84 N. S. Grewai, Evaluation of Generalized Heat Transfer Coejicients in Pilot AFBC Units, DOE/FC/10120Tl, 1981. 85 N. S. Grewal, in N. P. Cheresiminoff (ed.), Handbook of Heat and Mass Transfw, Vol. 1, Gulf, Houston, 1986, pp. 609-644.
105
106 107
108
Pergamon Press, Toronto, 1988, pp. 281-288. T. C. Ho, H.-T. Lee and J. R. Hooper, AIChE J. 32 (1986) 1754. T. C. Ho, M. Kirkpatrick and J. R. Hooper, Proc. 1987 AICh..!? Annual Meeting, 1987. T. C. Ho, K. N. Ko, C. C. Chang and L. T. Fan, Powder Technol., 53 (1987) 247. J. L. Hodges, G. D. Jukkola and P. P. Kanteseria, Proc. 9th Int. Collf: onFlui.dized Bed Combustion ASME, 1987, pp. 494-500. M. Horio and C. Y. Wen, AIChE Symp. Ser., 74, No. I76 (1978) 101. M. Horio, A. Taki, Y. S. Hsieh and T. Muchi, in J. R. Grace and J. M. Matsen (eds.), Fluidization, Plenum Press, New York, 1980, pp. 509-518. M. Horio, M. Hoshiba and T. Oyama, Proc. 8th Int. Conf on Fluidized Bed Combustion, DOEDIETC85/6021, 1985, pp. 130-139. M. Horio, K. Morisita, 0. Tachibara and N. Murata, in P. Basu and J. F. Large (eds.), Circulating Fluidized Bed Technology II, Pergamon Press, Toronto, 1988. Q. Jian and C. Kefa, Proc. 9thInt. Corlf onFluidi.zed Bed Combustion, ASME, 1987, pp. 523-528. S. H. Johnson, B.-A. Andersson and B. Leckner, F’roc. 1980 Joint Automatic Control Co& Vol. 1, 1980, Paper No. WA5-C. C. Kefa, F. Jiamen, L. Zhongyang, Y. Jianhua and N. Mingyang, Co& on Circulating Fluidized Beds, Pergamon Press, Toronto, 1988, pp. 213-221. V.A. KoIibabchukandV. N. OrIik,FluidMech. -Sov. Res., 14 (1985) 136. R. J. M. Kool, Proc. 5th Power Plant Dynamics, Control and Testing Symp., I, 1983, pp. 22.01-22.18. R. J. M. Kool, Dynamic Modeling and Identify cation of a CoalFired Pressurized Ftuidized Bed Combustor, DeIft University Report WTHD-175, September 1985.
30 109
110 111 112 113
114 115 116
117
118
119 120 121
122
123
124
R. P. Krishnan, C. S. Daw, J. Byrd and J. W. Wells, Proc. Int. Forum on Mathemalical Modelling of Processes in Energy Systems, 1989. R. D. La Nauze, Chum. Eng. Res. Des., 63 (1985) 3. D. C. Lee and C. Georgakis, AZChE J., 27 (1981) 472. D. C. Lee, J. L. Hodges and C. Georgakis, Chem. Eng. Sci., 35 (1980) 302. Y. Y. Lee and T. Hyppanen, Proc. 10th Int. Carlf: on Fluidtied Bed Combustws, ASME, 1989, pp. 753-764. 0. Levenspiel, D. Kunii and T. Fitzgerald, Powder Technol., 2 (1968/69) 87. E. K. Levy, H. K. Chen, R. Radcliand H. S. Caram, Powder Technol., 54 (1988) 45. J. Li, Y. Tung and M. Kwauk, in P. Basu and J. F. Large (eds.), Circulating Fluidtied Bed Techrwlogy II, Pergamon Press, Toronto, 1988, pp. 75-88. Y. Li and M. Kwauk, in J. R. Grace and J. M. Matsen (eds.),FZuidization, Plenum Press, New York, 1980, pp. 537-544. Y. Li, B. Chen, F. Wang and Y. Wang, in M. Kwauk and D. Kunii (eds.), Fluidization-Science and Technology, Science Press, 1982, pp. 124-134. Y. Liu and D. Gidaspow, Chem. Eng. Sci., 36 (1981) 539. M. Y. Louge, Proc. 9th Int. Corlf: on Fluidized Bed Combustion, ASME, 1987, pp. 1193-1197. J. Louis, S. E. Tung and D. Park, Modeling of F’luidized Bed Combustion of Coal, Final Reports -Volumes I to X, M.I.T. Energy Laboratory to U.S.D.O.E., 1982, I and IV. J. F. Louis and S. E. Tung, Mo&ling of Fluidized Bed Combustion of Coal, M.I.T. Industrial Liaison Program Report, 9-17-83, 1983. R. W. Lyczkowski, D. Gidaspow and C. W. Solbrig, in A. S. Mujudmar and R. A. Maahelkar (eds.), Advances In Transport Processes, Vol. II, Wiley, New York, NY, 1977, pp. 199-351. V. P. Manno and S. H. Reitsma, Assessment of the Knowledge Base for the Fwmulation of Dynamic Circulating Fluidized Bed PeQ&rmance Mookk, Final Report of EPRI Contract RP2303-28, 1989.
132
133 134
135
in K. Ostergaard and A. Sorensen (eds.), FZuidization V, Engineering Foundation, New York, 1986, pp. 337-344. 136 137
126 127
128
129 130
131
V. P. Manno and G. Ruocco, Powder Techrwl., 59 (1989) 261-274. Q. M. Mao and 0. E. Potter, AZChE Symp. Ser., 80., No. 241 (1980) 65. S. Ma.+, M. Miccio, P. Salatino and L. Massimilla, Proc. IOth Int. ConJ: onFluidizedBed Combustion, ASME, 1989, pp. 775-782. L. MassimilIa, R. Chirone, M. D’Amore and P. Salatino, Carbon Attrition during the fluidized Combustion and Gasi&ation of Coal, Final Report-DOE Grant No. DE-FG22-81PC40796, Univ. of Naples, GUEN 1985. J. M. Matsen, Mechanisms of Choking and Entrainment, Powder Techrwl., 32 (1982) 21. M. J. Mayfield, A. M. Manaker, J. E. Simmons and H. W. Withers, Proc. Symp. on Advances in Coal Utilization IV, Denver, 1981, pp. 599-623. D. D. McCoy and T. J. Hanratty, Int. J. Mu&phase Flow, 3 (1977) 319.
G. Moss, Inst. Fuel Symp. Combustion (1975) D2/1.
Ser. No. I: Fluidised
R. A. Newby, N. H. UIerich and D. L. Keaims, Proc.
6th Int. Corlf. onFluidized Bed Combustion, 1980, pp. 803-814. 138
R. A. Newby, W. G. Vaux and D. L. Keairns, Proc. Foundation Fkidization C& , 1983, pp. 233-239.
4th Engineering 139
M. T. Nicastro, Development and Testing ofscaling LawsforFluidized Beds, M. S. Thesis, MIT (1982). 140 B. W. Overturf and F. Kayihan, Powder Techrwl., 23 (1979) 143. 141
D. Park, 0. Levenspiel
6th Int. C&
and T. J. Fitzgerald, Proc. Bed Combustion, Vol.
on Fluidized
III, 1980, pp. 791-802. 142 143
D. Park, 0. Levenspiel and T. J. Fitzgerald, -1, 60 (1981) 295. R. P. Pecanha and B. M. Gibbs, Proc. 3rd ht.
F’luidised Bed Combustion Conference - Zf7uidised Combustion: Is It Achieving Its Promise?, 1984, DISC/9/65-71. 144
R. B. Perez, One-Dimensional
Bed 145 146
Existing
125
P. A. J. Mees, E. H. P. Wolff, P. J. T. Verheijen and C. M. van den Bleek, Proc. Int. Symp. on Mathematical Modeling of Processes in Energy Systems, 1989. M. Miccio and P. SaIatino, Powder Technol., 43 (1985) 163. Z. Mingyao, J. Boasheng and F. Congzhen, Proc. 9th Int. Corlf on Fluidized Bed Combustion, ASME, 1987, pp. 730-737. L. Monceaux, M. Azzi, Y. Molodtsof and J. F. Large,
C&u&or
Dynamics,
Model of F%idized Oak Ridge National
Laboratory Report No. ORNL-TM-7141, 1980. J. W. Pritchett, T. R. Blake and S. K. Garg, AZChE Sym. Ser., 74, No. I76 (1978) 134. J. Ragharaman and 0. E. Potter, ACS Symp. Ser., 65 (1978) 400.
147
R. R. Rajan and C. Y. Wen, AICh.E J., 26 (1980) 642.
148
R. Rsjan, R. Krishnan and C. Y. Wen, AZChE Symp. Ser., 74, No. 176 (1978) 112.
149
S. Rajan and B. Dey, Proc.
dized 150
151
152 153 154
Bed
Combustion,
6th Znt. Corlf: on F’luiVol.
III,
1980,
pp.
1070-1079. A. Ray, D. A. Berkowitz
and V. H. Sumaria, Mathematical Moo!eling and Digital Simulation of the MERC Component Test and Integration Unit,
MITRE Corporation, Report No. MTR-3447, May 1977. A. Ray, D. A. Berkowitz and V. H. Sumaria, Proc. Joint Automatic Control Cm, Vol. 4, 1978, pp. 109-126. Also in J. Ewgy, 2 (1978) 269. A. Ray, D. A. Berkowitz and V. H. Sumaria, ASME J. Eng. for Power, 102 (1980) 202. M. J. Rhodes, A Practical Flour Regime Diagram for Vertical Gas-Solids Systems, in print. M. J. Rhodes and D. Geldart, in P. Basu (ed.), Circulating Fluidized Bed Technology, Pergamon Press, Toronto, 1985, pp. 193-199.
31 155 156 157 158 159
160
M. J. Rhodes and D. Geldart, Proc. 5th Eng. Foundation Con. on Fluidization, 1986, pp. 281-288. M. J. Rhodes and D. Geldart, Powder Techrwl., 53 (1987) 155. S. X. Rong, Proc. 1982AZChEMeetiw, Los Angeles, 1982, Paper No. 116a. P. N. Rowe Ipmns. IChE, 39 (1961) 175. G. Ruocco, Hydrodynamic Pe?@munce Model of a Bubbling FZuidized Bed, M. S. Thesis, Tufta Univ. (1987). T. F. Salam, Y. Ren and B. M. Gibbs, Proc. 9th Int. Coq$ on Fluidized Bed Combustion, 1987, pp.
161
541-545. T. F. Salam, X. L. Shen and B. M. Gibbs, Fuel, 67
162
(1988) 414. P. Salatino, Proc.
Computers 163 164 165
166
in
18th Cress on the Use of Chemical Engineering, EFCE
(Italy), 1987, pp. 249-253. S. C. Saxena, IEwgy, IEwgy, 13 (1988) 557. S. C. Saxena and A. Mathur, Proc. 1st Annual Pittsburgh Coal Coq$, 1984, pp. 411-426. S. C. Saxena and A. Rehmart, Proc.
6th Int. Co@
on Fluidized
Vol.
Bed
Combustion,
III,
pp.
1138-l 149. S. C. Saxena and D. G. Turek, Develqpmat
of a Simple Fluidized-Bed Coal Combustion Mod& for Fluidized-Bed the Asse ssment of a Pressurized Combustion System for Electrical Power Generation, DOE/METC/SP-80/15, 1980. 167 S. C. Saxena, N. S. Grewal and J. D. Gabor, Adv. Heat Tmnqf~, 10 (1974) 149. 168 J. C. Schouten and C. M. van der Bleek, Proc. 9th Int. Con. on Fluidized Bed Combustion, ASME, 169 170
1987, pp. 749-761. J. C. Schouten and C. M. van der Bleek, Chem. Eng. Sci., 43 (1988) 2051. B. Scruton, D. C. Rowe and B. Chojnowski, Pmt. 9th Int. Coqj onFluidi.zed Bed Combustion, ASME, 1987, pp, 1165-1170.
171
N. Selcuk and A. Pekyilmas, Proc. Int. Fluidized Bed Combustion Coqj, London, 1984, pp. DISC/ 28/241-254.
172
W. T. Sha and S. L. Soo, Numerical
Modeling
179
M. Syamlal and D. Gidaspow,AZCmJ., 31 (1985) 127. 180 K. Tojo, C. C. Chang and L. T. Fan, Znd. Eng. Chem.-Proc. Des. Dev., 20 (1981) 411. 181 S. E. Tung, J. Goldman and J. F. Louis, Proc. In-t. Coqf 012 Fluidtied Bed Combustion, 1977, pp. 406-432. 182 S. E. Tung, J. L. Hodges and J. F. Louis, AZ&E Spp. Ser., 74, No. 176 (1978) 127. 183 J. Valuenzuela and L. R. Glicksman, Powok Tech nol., (1985) 103. 184 C. M. van den Bleek, P. J. M. Valkenburg and J. C. Schouten, Proc. 10th Int. Co@ on Fluidized Bed Combustion, ASME, 1989, pp. 1289-1294. 185 R. A. van der Laken and A. J. Renkema, Bed Combustar Design, Construction and Operation, Report No. EUR-11246, London, Elsevier Applied Science, 1988, pp. 8-17. 186 H. M. P. van der Looig, Proc. 9th Int. Carlf: on Fluidized Bed Combustion, ASME, 1987, pp. 776-783. 187 H. M. P. van der Looig, Dynamic Modeling and Control of Coal-Fired Fluidized Bed Boilers, Ph.D. Thesis, Delft University (1987). 188 A. J. van der Post, Proc. Int. Corlf on Fluidized Combustti Systems andApplications, 1980, pp. lV3.1-IV3.10. 189 E. P. Volkov, M. N. Eghi and R. Yu. Shakaryan, J. Eng. Phys., 52 (1987) 688. 190 A. B. Walters, Proc. 3rd Annual Pittsburg Coal Cm, CONF-860948, 1986, pp. 855-866. 191 J. C. P. Wang, F. R. Groves and D. P. Harrison, Chem, Eng. Sci., 45 (1990) 1693. 192 D. S. Weber and D. M. Dimiitein, Proc. EPRI
Fluidized 193
194
195
of
Combustors, Argonne National Laboratory, Report ANL-CT-78-4, 1978. Y. T. Shih, D. Gidaspow and D. Wasan, AIChE J., 33 (1987) 1322. L. P. Smith, W. C. Howe and J. Byrd, Proc. American Control Cor$, Vol. 3, San Diego, 1984, pp. 1534-1540. 0. L. Smith, Dynumic Behavior and Control Re-
Fluidized-Bed 173 174
175
quirements of an Atmospheric Fluidized/Bed Coal Combustion Power Plant: A Conceptual Study, Oak Ridge National Laboratory, ORNI./l’M-
196
197 198
199
9821, 1987. 176
177 178
L. D. Stem,
Fran.sieni Modeling of Combustion in Atmospheric Fluidized Bed Coal Combustors,
M. S. Thesis, MIT (1981). D. Subbarao and P. Basu, Int. J. Heat Mass Tranqfkr, 29 (1986) 487. V. Sumaria, D. Berkowitz and A. Ray, Proc. Symp. on Instrumentation and Control for Fossil Energy Processes, Houston, 1982, pp. 338-347.
200
Bed Combustion Seminar
Series,
1986,
pp. 30-l-30-19. D. S. Weber, D. M. Diminstein, W. Howe and S. Tavoulraeas, hoc. 9th Int. Corlf: on Fluidtied Bed Comb-u&ion, ASME, 1987, pp. 26-32. H. Weinstein, R. A. Gra!T, M. Miller and M. J. Shao, Z+-oc. 4th Engineering Foundation Fluidization Cor& 1983, pp. 299306. H. Weinstein, M. Shao, M. Schnitzlein and R. A. Graff, in K. Ostergaard and A. Sorensen (eds.), Fluidizatiun V, Engineering Foundation, New York, 1986, pp. 329-336. V. Weiss and F. N. Fett, in P. Basu (ed.), Circulating Fluidized Bed Technology, Pergamon Press, Toronto, 1985, pp. 167-172. V. Weiss, F. N. Fett, H. Helmrich and K. Janssen, Chem. Eng. Proc., 22 (1987) 79. V. Weiss, J. Scholer and F. N. Fett, Pnx. 2nd Cqf olt Circulating Fluidized Beds, Pergamon Press, Toronto, 1988, pp. 289-298. J. W. Wells, R. P. Krishnan and C. E. Ball, Proc. 6th Znt. Cm on Fluidized Bed Combustion, Vol. III, CONF-800428, 1980, pp. 773-783. J. W. Wells, J. R. Byrd and R. P. Krishnan, TVA
Atmospheric Fluidtied-Bed Combustor Simulation, Final Report, Oak Ridge National Laboratory, 201
1982. J. W. Wells, J. R. Byrd and R. P. Krishnan, Proc. 7th Iti. Corlf on F’luidized Bed Combustion, Vol. I, DOE/METC/83-48, 1982, pp. 284-294.
32 202 203 204
205
206 207 208 209
210 211
212
C.-Y. Wen and E. N. Miller, Ind. Eng. Chem., 53 (1961) 51. C.-Y. Wen and L. H. Chen, Proc. 6th Int. CoqJ 072 F’luidized Bed Combustion, 1980, pp. 1115-l 130. C.-Y. Wen and Y. H. Hu, Chem. Eng. Prog. Symp. Ser. (Fluid Particle Technology), 62, No. 62 (1966) 100. J. Werther, D. Bellgardt, H. Groenwald and K. Hilligardt, Proc. 9th Int. Coq$ on F’luidized Bed Combustion, 1987, pp. 515-522. W.-C. Yang, Ind. Eng. Chem. -find., I2 (1973) 349. W.-C. Yang, J. Powder Bulk Solids Techrwl., I (1977) 89. W.-C. Yang, Powder Technol., 35 (1983) 143. W.-C. Yang et al., Proc. 2nd Int. Corlf: on CirculatingFluidi.zed Beds, Pergamon Press, Toronto, 1988, pp. 181-191. J. Yerushalmi, D. H. Turner and A. M. Squires, Ind. Eng. Chem-Proc. Des. Dev., 15 (1976) 47. L. Youchou and M. Kwauk, in J. R. Grace and J. M. Matsen (eds.), F’luidization, Plenum Press, New York, NY, 1980, pp. 537-544. J. Zheng, J. G. Yates and P. N. Rowe, Chem. Eng. Sci., 37 (1982) 167.
Appendix A Texts and Monographs P. Basu, Circulating F’luidized Bed Technology, Pergamon Press, Toronto, 1986. P. Basu, nuidized Bed Boilers: Design and Application Pergamon Press, Toronto, 1984. J. Bear, Dynamics of Ruids in Porrxs Media, Elsevier, Amsterdam, 1972. J. S. M. Botterill, Fluid-Bed Heat Tramfer: Gas-Fluidized Bed Behavior and Its In&_ence an Bed Thermal Properties, Academic Press, San Diego, CA, 1975.
J. A. Buckbam, Fluidized Bed Technology, AIChE, New York, NY, 1966. N. P. Cheremisinoff, Hydrodynamics of Gas/Solid F’luidtiation, Gulf, Houston, TX, 1984. R. Clift, J. R. Grace and M. E. Weber, Bubbles, mops and Particles, Academic Press, San Diego, 1978. J. F. Davidson and D. Harrison, FZuidised Particles, University Press, 1963. J. F. Davidson, F’luidization, Academic Press, San Diego, CA, 1985. L. K. Doraiswam y and A. S. Mujumdar, nansport in Fluidized Particle Systems, Elsevier, Amsterdam, 1989. M. A . Elliot, Chemistry of Coal Utilization, Wiley, New York, NY, 1981. D. Geldart, Gas F’luidization Technology, Wiley, New York, NY, 1983. G. H&&i, Handbook of Multiphase Systems, Applied Science, New York, NY, 1983. J. R. Howard, F’luidized Beds: Combustian and Applications, Applied Science, New York, NY, 1983. D. Kunii and 0. Levenspiel, Fluidizatiolz Engineering, Wiley, New York, NY, 1977. B. S. Lee, F&id Particle Technology, 1966. M. Leva, Fluidization, McGraw Hill, New York, NY, 1959. J. McLeod, Computer Modeling and Simulation: Principles of Good Practice, Society for Computer Simulation, La Jolla, CA, 1982. J. Olofsson, Mathematical Modeling of FZuidized Bed Combustors, IFX Coal Research, London, 1980. W. F. Podolski, et al., Pressurized F’luidized Bed Combustion Technology, Noyes Data Corp., Park Ridge, NJ, 1983. S.-E. Tung and G. C. Williams, Atmospheric FluidizedBed Combustion: A Technical Sourcebook, U.S. Department of Energy, Washington, DC, 1987. J. G. Yates, Fundamentals of Fluidized-Bed Chemical Processes, Buttenvorths, Stoneham, MA, 1985. S. S. Zabrodoski, Hydrodynamics and. Heat Transfer in FZuidized Beds, MIT Press, Cambridge, MA, 1966. F. Zenz and D. R. Othmer, Ruidization and Fluid-Particle Systems, Reinhold, New York, NY, 1960.
Appendix B Conferences and Symposia ThisAppendix provides a listing of various conferences has been presented. AIChE
Symposium
and symposia at which work relevant to dynamic FBC modeling
on Fluidization
1962 1966-Fluid Particle Technology (Vol. 62, No. 62) 19681970 - Fundamentals Processes in Fluidized Beds (Vol. 66, No. 101) 1971 -Fundamentals Studies 1973 -Fundamentals and Applications (No. 128) 1974-and Fluid Particle Systems (Vol.. 70, No.- 141) 1977-Theories and ADDtiCa~iOnS Nol. 73. No. 161) 1978 -Application to &al Conver&on Prdcesses (vol. 74, No. 176) 1981 -and Fluid Particle Systems (No. 205) 1983-and Fluid Particle Systems (Vol. 79, No. 222) 1984-and Fluid Particle Systems (Vol. 80, No. 241 and No. 234) 1985-and Fluid Particle Systems 1987-and Fluid Particle Systems (No. 225) 1988-Fundamentals and Applications (Vol. 84, No. 262) ASME/lEEE
Joint Power
Conference
*
China-Japan Symposium on Fluidization 1st - Hangzou, PRC -April 1982 - Fluidization, Science and Technology 2nd - Kunming, PRC -April 1985 - Fltidization’85
33 Combustion
Institute Colloquium
Commission
of the European
Communities
Contractors’
Meeting
1982 -Brussels -On Fiuidized Bed Systems 1987 - Brussels - On Fluidized Bed Combustor Design, Operation and Construction Conference
on Fluldised
Combustion
of Fuel Symposium Series, I
1975 -London-Institute Engineering
Foundation
Conference
on Fluidlzation
1st - Paciiic Grove, CA- 1975 - Fluidization Technology 2nd- Cambridge, England -April 1978 - Fluidiiation -3rd -Hanover. NH. 1980 - Fluidization 4th - Kashikojima, Japan-June 1983 - Fiuidlzation 5th - Denmark-May 1986 - Fiuidization V 6th -Alberta, Canada - May 1989 European
Coal Utilization
1st 2nd 3rd-AmsterdamFlnidization
Conference
1983
and Its Applications:
International
Symposium
October 1974 -Toulouse International
Conference
on Circulating
Fluidized
Beds
1st -Halifax, Canada- November 1985 -Circulating Fluidized Bed Technology 2nd - Compiegne, France-March 1988 - Circulating Fluidized Bed Technology ll International
Conference
on Fluldized
Bed Combustion
1st
2nd- 1970 3rd- 1972 4th- 1974 5th-Washington, D.C.- 1977 6th-Atlanta- 1980 7th -Philadelphia- 1982 8th -Houston - 1985 9th-Boston1987 10th -San Francisco - 1989 International
Fluidised
Combustion
Conference
1st -London - 1975 2nd - London-November 1980 - Fiuidised Combustion: Systems and Applications (Sym. Ser., 4 3rd - London - October 1984 - Fiuidiied Combustion - Is It Achieving Its Promise? 4th -London - 1988 International
Forum
on Mathematical
Modelling
of Processes
in Energy
Systems
Yugoslavia- 1989 International
Symposium
on Chemical
Reaction
Engineering
on Fluidized
Bed Combustion
Edinburgh - 1985 International
Symposium
1st - Bejing, PRC -August Modelling
and Simulation
Technology
1984 for Applied
5th Control Conference -London-
Proceedings
and Applied
of a Conference
Control
System - U.K. Automation
Council
1973
on Mathematical
Modeling
of Coal Conversion
Processes
Washington, D.C. - 1977 Proceedings Proceedings Proceedings Proceedings
October 1980
of of of of
the the the the
American Control Conference American Petroleum Institute Combustion Institute DOE/WVU Conference on Fluidized
Bed Combustion
System Design
and Operation
34 Proceedings Proceedings
of the Electric Power Research Institute Fluidized Bed Combustion of the Fltidized Bed Combustion Technology Exchange Workshop
Seminar
Series
Springfield, VA- 1977 Pressurized
FBC Technology
Seacaucus, NJ-June Proceedings Proceedings
Exchange
Workshop
1979
of the Annual Pittsburgh Coal Conference of the International Centre for Heat and Mass Transfer
16th ICHMT Symposium - Dubrovnik, Yugoslavia-September 1984 - Fhridized Bed Combustion 16th ICHMT Symposium-Dubrovnik, Yugoslavia- September 1984 -Heat and Mass Transfer in Fixed and Fluidized Beds Proceedings Proceedings Proceedings Proceedings Proceedings
of of of of of
Kyoto-August Proceedings
the the the the the
Intersociety Energy Conversion Engineering Conferences Joint Automatic Control Conference Power Plant Dynamics, Control and Testing Symposium Society for Computer Simulation Conferences Symposium on Instrumentation and Control for Fossil Demonstration
Plants
1981 of the Symposium
on Instrumentation
and Control
for Fossil Energy
Processes
Houston- 1982 Proceedings
of the Workshop
on Utility/Industrial
Implementation
of Fltidized
Bed Combustion
Systems
Atlanta, GA- 1976
Appendix C Relevant Journals This Appendix contains a listing of the journals which are most likely to feature contributions relevant to fluidized bed combustor modeling. Those of greatest utility are marked with an asterisk (*) after the listing.
ACS Symposium Series AIChE Journal and Symposium Series* ASME Jouvna.! of Fldds Engineering ASME Journal of Heat l’%-amfm ASME Journal of Power Chemical Engineering Communications Chemical Engineering Processes* Chemical Engineering Research and Design Chemical Engineering Science Chemical Engineering Technology (fbrmer ly German Chemical Engineering)* Combustion and Flame Combustion Science and Technology EPRI Jomnal Energy Engineering Ewgy Progress Fluid Mechunics -Soviet Research Fuel* Industrial and Engineering Chemistry-Process, Design and Development+ In4fustrial Chemical Science International Journal of Computers & Fluids In&rnational Journal of Multiphase Flow International Journal of Heat and Mass Transfm Journal of Energy* Journal of Energy Engineering Journal of Engineering Physics Journal of Fluid Mechanics Journal of Powder and Bulk Solids Technology Journal of the Institute of Energy* Powder Technology* Power Power Engineering Progress in Ewm and Cdtion Sciences Simulation Series’