An auxiliary equation technique and exact solutions for a nonlinear Klein–Gordon equation

An auxiliary equation technique and exact solutions for a nonlinear Klein–Gordon equation

Available online at www.sciencedirect.com Chaos, Solitons and Fractals 41 (2009) 82–90 www.elsevier.com/locate/chaos An auxiliary equation technique...

167KB Sizes 0 Downloads 38 Views

Available online at www.sciencedirect.com

Chaos, Solitons and Fractals 41 (2009) 82–90 www.elsevier.com/locate/chaos

An auxiliary equation technique and exact solutions for a nonlinear Klein–Gordon equation q Xiumei Lv a, Shaoyong Lai a,*, YongHong Wu b a

Department of Applied Mathematics, Southwestern University of Finance and Economics, 610074 Chengdu, China b Department of Mathematics and Statistics, Curtin University of Technology, Perth, WA 6845, Australia Accepted 9 November 2007

Communicated by Prof. L. Marek-Crnjac

Abstract A mathematical technique based on an auxiliary equation and the symbolic computation system Matlab is developed to construct the exact travelling wave solutions to a nonlinear Klein–Gordon equation. Some new solutions including the Jacobi elliptic function solutions, the degenerated soliton-like solutions and the triangle function solutions to the equation are obtained. Ó 2007 Elsevier Ltd. All rights reserved.

1. Introduction Exact solutions of nonlinear partial differential equations are of fundamental and significant importance in applied science because they are widely employed to explain some of the nonlinear phenomena and dynamical processes existed in nature world. In order to obtain the exact solutions for some partial differential equations, scientists have established many mathematical approaches such as the trace method [1–3], the perturbation method [4], the inverse scattering method [5], the Ba¨cklund transformations [6], the Adomian decomposition method [7], the Lie group method [8] and so on. With the development of the symbolic computation system, the direct methods for constructing travelling wave solutions to differential equations become feasible. Sirendaoreji [9–12] used the auxiliary equation method to investigate KdV and mKdV equations, Boussinesq equations, sine-Gordon equations and the nonlinear Klein–Gordon equations, respectively. The tanh method and the extended tanh method are reliable techniques and have been utilized by many authors to seek exact solutions of nonlinear equations (see [13–15,21–23]). The Jacobi elliptic function expansion method is confirmed as a powerful technique to solve some nonlinear differential equations (see [16–19]). For other methods relating to use symbolic computation system to investigate nonlinear dispersive equations, the reader is referred to [24,25] and the references therein. q *

This work is supported by the SWUFE’s third period construction item funds of the 211 project. Corresponding author. E-mail address: [email protected] (S. Lai).

0960-0779/$ - see front matter Ó 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.chaos.2007.11.013

X. Lv et al. / Chaos, Solitons and Fractals 41 (2009) 82–90

83

We write a nonlinear Klein–Gordon equation in the form utt  a2 uxx þ au  bun ¼ 0;

n > 1;

ð1Þ

where a, a, b are real constants. Sirendaoreji [12] took advantage of an auxiliary differential equation method and obtained solitons, kinks and anti-kinks, bell and anti-bell solitary wave solutions, periodic solutions, singular solutions and exponential solutions for Eq. (1). Based on Jacobian elliptic function expansion and the modified tanhfunction method, Li and Pan [18] developed a new algebraic method to investigate Eq. (1) in the case n = 3 and obtained its travelling wave solutions. When n = 3, Zheng and Yue [19] used the modified mapping method to acquire the Jacobian elliptic function solutions for Eq. (1). Using the tanh method and the sine–cosine method, Wazwaz [20] found compactons, solitons, solitary patterns and periodic solutions to Eq. (1) with arbitrary exponent n. Motivated by the desire to extend the works made in [12,18–20], we will further investigate Eq. (1). The auxiliary equation technique which differs from that used in [12] is employed to derive the exact travelling wave solutions of Eq. (1), including Jacobi elliptic function solutions, degenerated soliton-like solutions and triangular function solutions. Many of the solutions obtained are different from those presented in previous works [12,18–20].

2. Brief description of the approach The transformation uðx; tÞ ¼ uðnÞðn ¼ lðx  ctÞÞ turns a given nonlinear equation P ðu; ut ; ux ; uxx ; uxt ; utt ; . . .Þ ¼ 0

ð2Þ

into the following nonlinear ordinary different equation Qðu; un ; unn ; unnn ; . . .Þ ¼ 0:

ð3Þ

We seek for the solutions of Eq. (3) in the form uðnÞ ¼

N X

gi zi ðnÞ;

ð4Þ

i¼0

where gi ði ¼ 0; 1; 2; . . . ; N Þ are constants which will be determined later. The parameter N is a positive integer and can be determined by balancing the highest order derivative terms and the highest power nonlinear terms in Eq. (3). The op u highest degree of on p can be calculated by 8 h i op u > < O on ¼ N þ p; p ¼ 0; 1; 2; . . . ; p h pi : ð5Þ > o u : O uq on ¼ qN þ p; q; p ¼ 0; 1; 2; . . . p We assume that zðnÞ represents the solutions of the following auxiliary differential equation  2 dz c3 ¼ c1 þ c2 z2 þ z4 ; 2 dn

ð6Þ

where ci ði ¼ 1; 2; 3Þ are real constants. Substituting Eqs. (4) and (6) into Eq. (3) and equating the coefficients of all powers of zðnÞ and pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi zj ðnÞ c1 þ c2 z2 þ c23 z4 ðj ¼ 0; 1; 2; . . .Þ to zero in the resulting equation, several algebraic equations will be obtained. Then solving these algebraic equations by the symbolic computation system Matlab, and combining Eq. (4) and the auxiliary equation Eq. (6), we can get the exact solutions for Eq. (2).

3. Exact travelling wave solutions To find the traveling solutions for Eq. (1), we use the wave variable n ¼ lðx  ctÞ, where c–0 and l–0. The wave variable n carries Eq. (1) into the ordinary differential equation l2 ðc2  a2 Þu00 þ au  bun ¼ 0: n1

Setting u

ðnÞ ¼ vðnÞ yields

ð7Þ

84

X. Lv et al. / Chaos, Solitons and Fractals 41 (2009) 82–90

(

1

1 u0 ¼ n1 vn11 v0 ;  1  1 1 1 1  1 vn12 ðv0 Þ2 þ n1 vn11 v00 ; u00 ¼ n1 n1

ð8Þ

which turns Eq. (7) into l2 ðc2  a2 Þ½ð2  nÞðv0 Þ2 þ ðn  1Þvv00  þ ðn  1Þ2 ðav2  bv3 Þ ¼ 0:

ð9Þ

From (5), we have N ¼ 2. Therefore, we choose the ansatz vðnÞ ¼ g0 þ g1 z þ g2 z2 ;

ð10Þ

where zðnÞ may be determined by  2 dz c3 ¼ c1 þ c2 z2 þ z4 ; 2 dn

ð11Þ

which possesses several types of solutions listed in Table 1 (see [26]). In Table 1, functions snðnÞ ¼ snðn; rÞ; cnðnÞ ¼ cnðn; rÞ and dnðnÞ ¼ dnðn; rÞ are Jacobian elliptic functions with modulus r ð0 < r < 1Þ, which have the properties snðnÞ ¼ snðnÞ; cnðnÞ ¼ cnðnÞ; dnðnÞ ¼ dnðnÞ; sn2 ðnÞ þ cn2 ðnÞ ¼ 1; dn2 ðnÞ þ r2 sn2 ðnÞ ¼ 1; ðsnðnÞÞ0 ¼ cnðnÞdnðnÞ; ðcnðnÞÞ0 ¼ snðnÞdnðnÞ; ðdnðnÞÞ0 ¼ r2 snðnÞcnðnÞ. Setting r ! 0 yields snðnÞ ! sinðnÞ; cnðnÞ ! cosðnÞ and dnðnÞ ! 1. When r ! 1, it derives that snðnÞ ! tanhðnÞ; cnðnÞ ! sechðnÞ and dnðnÞ ! sechðnÞ.

Table 1 Solutions of auxiliary equation (11) Number

zðnÞ

c3

c2

c1

1

cnðnÞ snðnÞ; cdðnÞ ¼ dnðnÞ

2r2

ðr2 þ 1Þ

1

2

cnðnÞ

2r2

2r2  1

1  r2

2

r2  1

3

dnðnÞ

2

2r

4

1 ncðnÞ ¼ cnðnÞ

2ð1  r2 Þ

2r2  1

r2

5

1 nsðnÞ ¼ snðnÞ ; dcðnÞ ¼ dnðnÞ cnðnÞ

2

ðr2 þ 1Þ

r2

6

1 ndðnÞ ¼ dnðnÞ

2ðr2  1Þ

2  r2

1

7

csðnÞ ¼

8 9 10 11 12

cnðnÞ snðnÞ

2

2

2r

snðnÞ scðnÞ ¼ cnðnÞ

2ð1  r2 Þ

2  r2

snðnÞ sdðnÞ ¼ dnðnÞ

2r2 ðr2  1Þ

2r2  1

dsðnÞ ¼

dnðnÞ snðnÞ

rcnðnÞ  dnðnÞ 1 snðnÞ



cnðnÞ snðnÞ snðnÞ cnðnÞ

2

2r  1

2

1  r2

1 r4  r2

 12

r þ1 2

 ð1r4

1 2

2r2 þ1

1 4

2

2 r þ1 2

1r2 4

1 2

r2 2 2

r4 4

snðnÞ  icnðnÞ;

r2 2

r2 2 2

r2 4

16

rsnðnÞ 

1 2

12r2 2

1 4

17

snðnÞ 1dnðnÞ

r2 2

r2 2 2

1 4

18

dnðnÞ 1rsnðnÞ

r2 1 2

r2 þ1 2

r2 1 4

19

cnðnÞ 1snðnÞ

1r2 2

r2 þ1 2

r2 þ1 4

13

1 cnðnÞ



14

1 snðnÞ

 dnðnÞ snðnÞ

15

20 21

pffiffiffiffiffiffiffiffidnðnÞ 1r2 snðnÞcnðnÞ snðnÞ idnðnÞ; 1cnðnÞ

snðnÞ dnðnÞcnðnÞ cnðnÞ pffiffiffiffiffiffiffiffi 1r2 dnðnÞ

1r 2

2

2

2 2

ð1r Þ 2 4

r 2

2

1 4

2

1 4

r þ1 2 r 2 2

2 2

Þ

X. Lv et al. / Chaos, Solitons and Fractals 41 (2009) 82–90

Substituting Eqs. (10) and (11) into (9) and letting each coefficient of zi obtain   l2 ðc2  a2 Þ 2ð2  nÞg22 c3 þ 3ðn  1Þg22 c3  ðn  1Þ2 bg32 ¼ 0; 2

2

2

2

2nl ðc  a Þg1 g2 c3  3ðn  1Þ l2 ðc2  a2 Þ

bg1 g22

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi c1 þ c2 z2 þ c23 z4 ð0 6 i 6 6Þ to be zero, we

¼ 0;



    1 2 ¼ 0; ng1 c3 þ 4g22 c2 þ 3ðn  1Þg0 g2 c3 þ ðn  1Þ2 ag22  b g0 g22 þ 2g21 g2 þ g2 2g0 g2 þ g21 2

ð12Þ ð13Þ ð14Þ

l2 ðc2  a2 Þ½ðn  1Þg0 g1 c3 þ 5ðn  1Þg1 g2 c2 þ 4ð2  nÞg1 g2 c2  þ ðn  1Þ2 ðbð4g0 g1 g2    þg1 2g0 g2 þ g21 þ 2ag1 g2 ¼ 0;

ð15Þ

    2 l2 ðc2  a2 Þ g21 c2 þ 4ð2  nÞg22 c1 þ ð4n  4Þg0 g2 c2 þ þ2ðn  1Þg22 c1 þ ðn  1Þ bg0 2g0 g2 þ g21    þ2g21 g0 þ g2 g20 þ a 2g0 g2 þ g21 ¼ 0;

ð16Þ

  l2 ðc2  a2 Þ½4ð2  nÞg1 g2 c1 þ ðn  1Þg0 g1 c2 þ 2ðn  1Þg1 g2 c1  þ ðn  1Þ2 3bg20 g1 þ 2ag0 g1 ¼ 0;

ð17Þ

    l2 ðc2  a2 Þ ð2  nÞg21 c1 þ 2ðn  1Þg0 g2 c1 þ ðn  1Þ2 ag20  bg30 ¼ 0:

ð18Þ

Solving (12)–(18) by the use of Matlab, we find 8 ac < g0 ¼ 0; g1 ¼ 0; g2 ¼  bc32 ; qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi : l ¼   ða2 ca 2 Þc ; n ¼ 3; 2 and

85

8 < g0 ¼ aðnþ1Þ ; 2b :

g1 ¼ 0; 2

l2 ¼  2caðn1Þ 2 2 ; 2 ða c Þ

g2 ¼ aðnþ1Þ 2b

c22 ¼ 2c1 c3 ;

ð19Þ

qffiffiffiffiffi

c3 ; 2c1

ð20Þ

n > 1 is a constant;

where  ¼ 1; c1 ; c2 ; c3 and c are constants. 3.1. The Jacobi elliptic function solutions to Eq. (1) in the case n = 3 In order to ensure that the wave number l is a real-valued number, we have to choose constants a; a; c and modulus r (c2 depends on r) to satisfy some restrictions. However, in this section, we allow l to take values in complex number domain. From the expressions of g2 and l in (19) and the solutions listed in Table 1, we derive the following Jacobi elliptic function solutions for Eq. (1): rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2ar2 a 2 ; ð21Þ sn ðx  ctÞ u1:1 ðx; tÞ ¼ bðr2 þ 1Þ ðc2  a2 Þðr2 þ 1Þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2ar2 a 2 ; ð22Þ u1:2 ðx; tÞ ¼ cd ðx  ctÞ ðc2  a2 Þðr2 þ 1Þ bðr2 þ 1Þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2ar2 a 2 cn ðx  ctÞ  ; ð23Þ u1:3 ðx; tÞ ¼ bð2r2  1Þ ðc2  a2 Þð2r2  1Þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2a a 2 u1:4 ðx; tÞ ¼ ; ð24Þ dn ðx  ctÞ  bð2  r2 Þ ðc2  a2 Þð2  r2 Þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2að1  r2 Þ 2 a ; ð25Þ u1:5 ðx; tÞ ¼  nc ðx  ctÞ  bð2r2  1Þ ðc2  a2 Þð2r2  1Þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2a a 2 u1:6 ðx; tÞ ¼ ; ð26Þ ns ðx  ctÞ bðr2 þ 1Þ ðc2  a2 Þðr2 þ 1Þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2a a 2 u1:7 ðx; tÞ ¼ ; ð27Þ dc ðx  ctÞ bðr2 þ 1Þ ðc2  a2 Þðr2 þ 1Þ

86

X. Lv et al. / Chaos, Solitons and Fractals 41 (2009) 82–90



rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2aðr2  1Þ 2 a nd ðx  ctÞ  2 u1:8 ðx; tÞ ¼  ; bð2  r2 Þ ðc  a2 Þð2  r2 Þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2a a 2 cs ðx  ctÞ  u1:9 ðx; tÞ ¼  ; bð2  r2 Þ ðc2  a2 Þð2  r2 Þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2að1  r2 Þ 2 a sc ðx  ctÞ  ðaðc2  a2 Þ < 0Þ; u1:10 ðx; tÞ ¼  bð2  r2 Þ ðc2  a2 Þð2  r2 Þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2ar2 ðr2  1Þ 2 a sd ðx  ctÞ  ; u1:11 ðx; tÞ ¼  bð2r2  1Þ ðc2  a2 Þð2r2  1Þ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2a a 2 ds ðx  ctÞ  u1:12 ðx; tÞ ¼  ; bð2r2  1Þ ðc2  a2 Þð2r2  1Þ

ð28Þ ð29Þ ð30Þ ð31Þ ð32Þ

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " ! !#2 912 = a 2a 2a ðx  ctÞ þ dn  ðx  ctÞ u1:13 ðx; tÞ ¼ ; rcn  ; :bðr2 þ 1Þ ðc2  a2 Þðr2 þ 1Þ ðc2  a2 Þðr2 þ 1Þ 8 <

ð33Þ

8 <

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " ! !#2 912 = a 2a 2a ns  2 ðx  ctÞ þ cs  2 ðx  ctÞ u1:14 ðx; tÞ ¼  ; 2 2 2 2 2 : bð1  2r Þ ; ðc  a Þð1  2r Þ ðc  a Þð1  2r Þ ð34Þ 8 sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " ! !#2 912 = < að1  r2 Þ 2a 2a ðx  ctÞ þ sc  2 ðx  ctÞ u1:15 ðx; tÞ ¼  ; nc  2 2 2 2 2 2 ; : bðr þ 1Þ ðc  a Þðr þ 1Þ ðc  a Þðr þ 1Þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " ! !#2 912 = a 2a 2a ðx  ctÞ þ ds  2 ðx  ctÞ u1:16 ðx; tÞ ¼  ; ns  2 2 2 2 2 2 ; : bðr  2Þ ðc  a Þðr  2Þ ðc  a Þðr  2Þ 8 <

8 <

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " ! !#2 912 = ar2 2a 2a sn  ðx  ctÞ þ icn  ðx  ctÞ u1:17 ðx; tÞ ¼  ; : bðr2  2Þ ; ðc2  a2 Þðr2  2Þ ðc2  a2 Þðr2  2Þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " ! !#2 912 = a 2a 2a ðx  ctÞ þ idn ðx  ctÞ ; rsn u1:18 ðx; tÞ ¼  2 2 2 2 2 2 2 ; : bð1  2r Þ ðc  a Þð2r  1Þ ðc  a Þð2r  1Þ 8 <

912 8

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2a > > = < ar2 dn2 ðx  ctÞ ðc2 a2 Þðr2 2Þ u1:19 ðx; tÞ ¼ h



 i q q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2> pffiffiffiffiffiffiffiffiffiffiffiffiffi 2 > 2a 2a :bðr  2Þ ðx  ctÞ þ cn ðx  ctÞ ; 1  r2 sn ðc2 a2 Þðr2 2Þ ðc2 a2 Þðr2 2Þ

ð35Þ

ð36Þ

ð37Þ

ð38Þ

ðaðc2  a2 Þ > 0Þ; ð39Þ

912

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2a > =  ðx  ctÞ 2 2 2 ðc a Þð12r Þ a u1:20 ðx; tÞ ¼  h

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  i2 ; 2 > > : bð1  2r Þ 1 þ cn  ðc2 a22a ðx  ctÞ ; Þð12r2 Þ 8 > <

sn2

912

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2a > =  ðx  ctÞ 2 2 2 ðc a Þðr 2Þ ar u1:21 ðx; tÞ ¼  h

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi i2 ; 2 > > : bðr  2Þ 1 þ dn  2 22a 2 ðx  ctÞ ; 8 > <

2

ð40Þ

sn2

ðc a Þðr 2Þ

ð41Þ

X. Lv et al. / Chaos, Solitons and Fractals 41 (2009) 82–90

912 8

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  > > = < aðr2  1Þ dn2  ðc2 a22aÞðr2 þ1Þðx  ctÞ u1:22 ðx; tÞ ¼  h

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  i2 ; 2 > > : bðr þ 1Þ 1 þ rsn  ðc2 a22aÞðr2 þ1Þðx  ctÞ ; 8 > < að1  r2 Þ u1:23 ðx; tÞ ¼  h 2 > : bðr þ 1Þ

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  912 > =  ðc2 a22aÞðr2 þ1Þðx  ctÞ

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  i2 ; > 1 þ sn  2 22a 2 ðx  ctÞ ;

87

ð42Þ

cn2

ð43Þ

ðc a Þðr þ1Þ

91 8

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2 > > = < að1  r2 Þ2 sn2  ðc2 a22aÞðr2 þ1Þðx  ctÞ u1:24 ðx; tÞ ¼  h qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi i2 ; 2 > > : bðr þ 1Þ dn  ðc2 a22aÞðr2 þ1Þðx  ctÞ ;  ðc2 a22aÞðr2 þ1Þðx  ctÞ þ cn

ð44Þ

8 912

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  2a > > < ar4 = cn2 ðx  ctÞ ðc2 a2 Þðr2 2Þ ; u1:25 ðx; tÞ ¼ h

 i q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2> pffiffiffiffiffiffiffiffiffiffiffiffiffi 2 > 2a :bðr  2Þ ðx  ctÞ ; 1  r2 þ dn ðc2 a2 Þðr2 2Þ

ð45Þ

where 0 < r < 1 and c is an arbitrary constant. Remark 1. Solutions from u1:1 to u1:12 are in full agreement with those presented in Li and Pan’s paper [18], solution u1:19 was found by Zheng [19] and the other solutions are new ones. Remark 2. When r ! 0; u1:1 ; u1:2 ; u1:3 ; u1:11 ; u1:17 ; u1:19 ; u1:21 and u1:25 become zero, u1:4 ; u1:8 ; u1:13 ; u1:18 and u1:22 become constants while other solutions degenerate to triangular solutions of Eq. (1). In particular, as r ! 0; u1:5 ; u1:6 ; u1:9 and u1:10 become rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2a a a 2 u1:5:0 ðx; tÞ ¼ ðx  ctÞ ; > 0; ð46Þ sec b c2  a2 c2  a2 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2a 2 a a u1:6:0 ðx; tÞ ¼ ðx  ctÞ ; > 0; ð47Þ csc b c2  a2 c2  a 2 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 a a a u1:9:0 ðx; tÞ ¼  cot2 ; < 0; ð48Þ ðx  ctÞ  2 b 2ðc  a2 Þ c2  a2 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 a a a 2 ðx  ctÞ  2 ; < 0; ð49Þ u1:10:0 ðx; tÞ ¼  tan b 2ðc  a2 Þ c2  a2 respectively. Solutions from (46)–(49) were found in [18] while u1:5:0 and u1:6:0 were obtained by Sirendaoreji [12]. Remark 3. When r ! 1, some of the solutions listed in (21)–(45) become zero or constants, and the other solutions degenerate to soliton-like solutions. Specifically, u1:1 ; u1:3 ; u1:6 ; and u1:9 are turned into rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 a a a ðx  ctÞ ; > 0; ð50Þ tanh2 u1:1:1 ðx; tÞ ¼ b 2ðc2  a2 Þ c2  a2 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2a a a 2  2 ðx  ctÞ u1:3:1 ðx; tÞ ¼ ; < 0; ð51Þ sech b c  a2 c2  a2 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 a a a u1:6:1 ðx; tÞ ¼ ðx  ctÞ ; > 0; ð52Þ coth2 b 2ðc2  a2 Þ c2  a2 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 2a a a  2 ðx  ctÞ u1:9:1 ðx; tÞ ¼  csch2 ; < 0; ð53Þ 2 2 b c a c  a2 respectively, which are the solutions obtained in [12,18].

88

X. Lv et al. / Chaos, Solitons and Fractals 41 (2009) 82–90

3.2. Soliton and triangular function solutions of Eq. (1) From the expression c22 ¼ 2c1 c3 in the formula of (20) and the conditions listed in Table 1, we find that the modulus r is either 1 or 0. Therefore, the degenerated soliton-like and triangular function solutions for Eq. (1) are expressed by 1 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 aðn þ 1Þ aðn þ 1Þ a 2 ðn  1Þ u2:1 ðx; tÞ ¼ ðaðc2  a2 Þ < 0Þ; ð54Þ ðx  ctÞ þ tanh  2 2b 2b 2 c  a2 u2:2 ðx; tÞ ¼

u2:3 ðx; tÞ ¼

u2:4 ðx; tÞ ¼

u2:5 ðx; tÞ ¼

u2:6 ðx; tÞ ¼

u2:7 ðx; tÞ ¼

u2:8 ðx; tÞ ¼

1 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 aðn þ 1Þ aðn þ 1Þ ðn  1Þ a ðx  ctÞ þ coth2  2 2b 2b 2 c  a2

8 > :

2b

8 > :

2b

8 > :

2b

8 > :

2b

8 > :

2b

8 > :

u2:9 ðx; tÞ ¼

2b

1 h i2 9n1 pffiffiffiffiffiffiffiffiffiffiffiffiffi > a = 1 þ  cosh ðn  1Þ  ðx  ctÞ 2 2 c a aðn þ 1Þ h i þ  pffiffiffiffiffiffiffiffiffiffiffiffiffi > a 2b ; sinh2 ðn  1Þ  c2 a 2 ðx  ctÞ 1 h i2 9n1 pffiffiffiffiffiffiffiffiffiffiffiffiffi > a = 1 þ  cosh ðn  1Þ  ðx  ctÞ 2 2 c a aðn þ 1Þ h i   pffiffiffiffiffiffiffiffiffiffiffiffiffi > a 2b ; sinh2 ðn  1Þ  c2 a 2 ðx  ctÞ

u2:12 ðx; tÞ ¼

1 h i 32 9n1 pffiffiffiffiffiffiffiffiffiffiffiffiffi > a = ðx  ctÞ sinh ðn  1Þ  2 2 c a aðn þ 1Þ 4 h i5 þ  pffiffiffiffiffiffiffiffiffiffiffiffiffi > a 2b ; 1 þ  cosh ðn  1Þ  c2 a 2 ðx  ctÞ

ðaðc2  a2 Þ < 0Þ;

ð57Þ

ðaðc2  a2 Þ < 0Þ;

ð58Þ

1 h i 32 9n1 pffiffiffiffiffiffiffiffiffiffiffiffiffi > a = sinh ðn  1Þ  ðx  ctÞ 2 2 c a aðn þ 1Þ 4 h i5   pffiffiffiffiffiffiffiffiffiffiffiffiffi > a 2b ; 1 þ  cosh ðn  1Þ  c2 a 2 ðx  ctÞ

ðaðc2  a2 Þ < 0Þ;

ð59Þ

2

1 h i32 9n1 pffiffiffiffiffiffiffiffiffiffiffiffiffi > a = i þ sinh ðn  1Þ  ðx  ctÞ 2 2 c a aðn þ 1Þ 4 h i 5 þ  pffiffiffiffiffiffiffiffiffiffiffiffiffi > a 2b ; cosh ðn  1Þ  c2 a2 ðx  ctÞ

2

1 h i32 9n1 pffiffiffiffiffiffiffiffiffiffiffiffiffi > a = ðx  ctÞ i þ sinh ðn  1Þ  2 2 c a aðn þ 1Þ 4 h i 5   pffiffiffiffiffiffiffiffiffiffiffiffiffi > a 2b ; cosh ðn  1Þ  c2 a2 ðx  ctÞ

2b

8 >
ð56Þ

2

8 >
> :

ðaðc2  a2 Þ < 0Þ;

ðaðc2  a2 Þ < 0Þ;

ð60Þ

ðaðc2  a2 Þ < 0Þ;

ð61Þ

2

1 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 aðn þ 1Þ aðn þ 1Þ 2 ðn  1Þ a ðx  ctÞ þ cot 2b 2b 2 c2  a2

> :

ð55Þ

1 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 aðn þ 1Þ aðn þ 1Þ a 2 ðn  1Þ ðx  ctÞ þ tan u2:10 ðx; tÞ ¼ 2b 2b 2 c2  a2

u2:11 ðx; tÞ ¼

ðaðc2  a2 Þ < 0Þ;

ðaðc2  a2 Þ > 0Þ;

ðaðc2  a2 Þ > 0Þ;

1

h i2 9n1 pffiffiffiffiffiffiffiffi ffi > a = ðx  ctÞ 1 þ  cos ðn  1Þ c2 a2 aðn þ 1Þ h i þ  ffi pffiffiffiffiffiffiffiffi 2 > a 2b ; sin ðn  1Þ c2 a2 ðx  ctÞ 1

h i2 9n1 ffi pffiffiffiffiffiffiffiffi > a = 1 þ  cos ðn  1Þ ðx  ctÞ c2 a2 aðn þ 1Þ h i   ffi pffiffiffiffiffiffiffiffi 2 > a 2b ; sin ðn  1Þ c2 a2 ðx  ctÞ

ð62Þ

ð63Þ

ðaðc2  a2 Þ > 0Þ;

ð64Þ

ðaðc2  a2 Þ > 0Þ;

ð65Þ

X. Lv et al. / Chaos, Solitons and Fractals 41 (2009) 82–90

u2:13 ðx; tÞ ¼

u2:14 ðx; tÞ ¼

u2:15 ðx; tÞ ¼

u2:16 ðx; tÞ ¼

u2:17 ðx; tÞ ¼

u2:18 ðx; tÞ ¼

8 > :

2b

8 > :

2b

8 > > > :

2b

8 > > > :

2b

8 > :

2b

8 > :

2b

89

9n1 1 h i ffi pffiffiffiffiffiffiffiffi 2 > a = sin ðn  1Þ ðx  ctÞ c2 a2 aðn þ 1Þ þ  h i 2 pffiffiffiffiffiffiffiffi ffi > 2b a ; 1 þ  cos ðn  1Þ c2 a 2 ðx  ctÞ

ðaðc2  a2 Þ > 0Þ;

ð66Þ

9n1 1 h i ffi pffiffiffiffiffiffiffiffi 2 > a = sin ðn  1Þ ðx  ctÞ c2 a2 aðn þ 1Þ   h i 2 pffiffiffiffiffiffiffiffi ffi > 2b a ; 1 þ  cos ðn  1Þ c2 a 2 ðx  ctÞ

ðaðc2  a2 Þ > 0Þ;

ð67Þ

ðaðc2  a2 Þ > 0Þ;

ð68Þ

ðaðc2  a2 Þ > 0Þ;

ð69Þ

9n1 1 h i ffi pffiffiffiffiffiffiffiffi > a 2 = cos ðn  1Þ ðx  ctÞ c2 a2 aðn þ 1Þ þ  h i2 pffiffiffiffiffiffiffiffi ffi > 2b a ; 1 þ  sin ðn  1Þ c2 a 2 ðx  ctÞ

ðaðc2  a2 Þ > 0Þ;

ð70Þ

9n1 1 h i pffiffiffiffiffiffiffiffi ffi > a = cos2 ðn  1Þ c2 a 2 ðx  ctÞ h i2 ffi pffiffiffiffiffiffiffiffi > a ; 1 þ  sin ðn  1Þ c2 a 2 ðx  ctÞ

ðaðc2  a2 Þ > 0Þ:

ð71Þ

1 i2 9 n1 pffiffiffiffiffiffiffiffi ffi > > a aðn þ 1Þ 1 þ  sin ðn  1Þ c2 a2 ðx  ctÞ =

þ  qffiffiffiffiffiffiffiffi > 2b > ; cos2 ðn  1Þ ðacÞ ðx  ctÞ bc

h

1 h i2 9 n1 pffiffiffiffiffiffiffiffi ffi > > a = ðx  ctÞ 1 þ  sin ðn  1Þ c2 a2 aðn þ 1Þ

  qffiffiffiffiffiffiffiffi > 2b > ; ðx  ctÞ cos2 ðn  1Þ ðacÞ bc

aðn þ 1Þ   2b

Remark 4. Setting  ¼ 1 and using the identities 1 1 ¼ sech2 a; 1 þ coshð2aÞ 2 1 1 ¼  csch2 a; 1  coshð2aÞ 2

1 1 ¼ sech2 a; 1 þ cosð2aÞ 2 1 1 ¼ csc2 a; 1  cosð2aÞ 2

we find that some of the solutions listed in (54)–(71) possess the same form. For example, u2:3 and u2:4 become u2:1 while u2:5 and u2:6 are the same as u2:2 . Remark 5. According to the identities 1  tanh2 ðaÞ ¼ sech2 ðaÞ; 1  coth2 ðaÞ ¼ csch2 ðaÞ and letting  ¼ 1, solutions u2:1 and u2:2 become 1 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 aðn þ 1Þ a 2 ðn  1Þ u2:1:0 ðx; tÞ ¼ ðx  ctÞ sech  2 2b 2 c  a2

u2:2:0 ðx; tÞ ¼

1 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 aðn þ 1Þ ðn  1Þ a  ðx  ctÞ csch2  2 2b 2 c  a2

ðaðc2  a2 Þ < 0Þ;

ðaðc2  a2 Þ < 0Þ:

ð72Þ

ð73Þ

From the expressions 1 þ tan2 ðaÞ ¼ sec2 ðaÞ; 1 þ cot2 ðaÞ ¼ csc2 ðaÞ and choosing  ¼ 1, u2:9 and u2:10 are turned into 1 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 aðn þ 1Þ 2 ðn  1Þ a u2:9:0 ðx; tÞ ¼ ðaðc2  a2 Þ > 0Þ; ð74Þ ðx  ctÞ csc 2b 2 c2  a2

90

X. Lv et al. / Chaos, Solitons and Fractals 41 (2009) 82–90 1 rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 aðn þ 1Þ a 2 ðn  1Þ ðx  ctÞ u2:10:0 ðx; tÞ ¼ sec 2b 2 c2  a2

ðaðc2  a2 Þ > 0Þ:

ð75Þ

Solutions in (72)–(75) were obtained by Sirendaoreji [12] and Wazwaz [20].

4. Conclusion Using a different auxiliary equation presented in Sirendaoreji [12] and the symbolic computation system Matlab, we obtain the Jacobi function solutions, the solitons and the triangular function solutions to nonlinear Klein–Gordon equation (1) in the case n = 3. As seen in the above, the method not only can recover the previously known solutions which were found by tanh and sin–cosine method, but also can provide new and more distinct solutions for Eq. (1). However, for arbitrary exponent n, we only obtain the degenerated soliton-like and triangle function solutions to Eq. (1). It may need other techniques to deal with the Jacobi elliptic function solutions for the nonlinear Klein–Gordon equation (1) with arbitrary exponent n.

References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26]

Wadati M. Introduction to solitons, Pramana. J Phys 2001;57(5–6):841–7. Wadati M. The exact solution of the modified Kortweg–de Vries equation. J Phys Soc Jpn 1972;32:1681–7. Wadati M. The modified Kortweg–de Vries equation. J Phys Soc Jpn 1973;34:1289–96. Logan DJ. An introduction to nonlinear partial differential equations. New York: Wiley; 1994. Ablowtiz MJ, Clarkson PA. Nonlinear evolution equations and inverse scattering. Cambridge University Press; 1991. Alhumaizi KI. Comparison of finite difference methods for the numerical simulation of reaction flow. Comput Chem Eng 2004;28:1759–69. Hashim I. Adomian decomposition method for solving BVPs for fourth-order integro-differential equations. J Comput Appl Math 2006;193:658–64. Olver PL. Applications of Lie groups to differential equations. Springer; 1986. Sirendaoreji, Jiong Sun. Auxiliary equation method for solving nonlinear partial differential equations. Phys Lett A 2003;309:387–96. Sirendaoreji. A new auxiliary equation and exact traveling wave solutions of nonlinear equations. Phys Lett A 2006;356:124–30. Sirendaoreji, Sun J. A direct method for solving sine-Gordon type equations. Phys Lett A 2002;298:133–9. Sirendaoreji. Exact traveling wave solutions for four forms of nonlinear Klein–Gordon equations. Phys Lett A 2007;303:440–7. Li W, Xie FD. Using symbolic computation to construct traveling wave solution of nonlinear partial differential equation. Chinese Phys 2004;13:1639–64. Fan E. Using symbolic computation to exactly solve a new coupled mKdV system. Phys Lett A 2002;299:46–8. Abdou MA, Soliman AA. Modified extended tanh-function method and its application on nonlinear physics equations. Phys Lett A 2006;353:487–92. El-Wakil SA, Abdou MA. New solitons and periodic wave solutions for nonlinear evolution equations. Phys Lett A 2006;353:40–7. Wang Q, Chen Y. An extended Jacobi elliptic function rational expansion method and its application to (2 + 1)-dimensional dispersive long wave equation. Phys Lett A 2005;340:411–26. Li P, Pan ZL. A new development on Jacobian elliptic function expansion method. Phys Lett A 2004;332:39–48. Zheng Q, Yue P. New exact solution of nonlinear Klein–Gordon equation. Chinese Phys 2006;15:35–8. Wazwaz AM. Compactons, solitons and periodic solutions for some forms of nonlinear Klein–Gordon equations. Chaos Solitons & Fractals 2006;28:1005–13. Wazwaz AM. The tanh method, solitons and periodic solutions for the Dodd–Bullough–Mikhailov and Tzitzeica–Dodd– Bullough equations. Chaos Solitons & Fractals 2005;25:55–63. Wazwaz AM. Exact solutions for the generalized sine-Gordon and the generalized sinh-Gordon equations. Chaos Solitons & Fractals 2006;28:127–35. Wazwaz AM. Two reliable methods for solving variants of the KdV equations with compact and noncompact structures. Chaos Solitons & Fractals 2006;28:454–62. Wazwaz AM. A variable separated ODE method for solving the triple sine-Gordon and the triple sinh-Gordon equations. Chaos Solitons & Fractals 2007;33:703–10. Zhang S. Symbolic computation and new families of exact non-travelling wave solution of (2 + 1)-dimensional Konopelchenko– Dubrovsky equations. Chaos Solitons & Fractals 2007;31:951–9. Li HM. New exact solutions of nonlinear Gross–Pitaevskii equation with weak bias magnetic and time-dependent laser fields. Chinese Phys 2005;14:251–6.