An economic production quantity model with non-synchronized screening and rework

An economic production quantity model with non-synchronized screening and rework

Applied Mathematics and Computation 233 (2014) 127–138 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepag...

478KB Sizes 0 Downloads 39 Views

Applied Mathematics and Computation 233 (2014) 127–138

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

An economic production quantity model with non-synchronized screening and rework Hui-Ming Wee a,⇑, Wan-Tsu Wang a,b, Tsai-Chi Kuo a, Yung-Lung Cheng a,c, Yen-Deng Huang a a

Department of Industrial & Systems Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, ROC Department of Marketing and Distribution Management, Chien Hsin University of Science and Technology, Jungli 32097, Taiwan, ROC c Department of Industrial Management, Chien Hsin University of Science and Technology, Jungli 32097, Taiwan, ROC b

a r t i c l e

i n f o

Keywords: Economic production quantity Rework Backorder Non-synchronized screening

a b s t r a c t This study investigates an economic production quantity model for imperfect quality items with non-synchronized screening and rework. With time intervals as decision variables, our approach establishes a feasible optimal policy for the inventory system. We presented a solution procedure to derive the optimal policy, and generalized the proposed model to the classic EPQ model by taking the limiting parameter values for the optimal solution. A numerical example is provided to illustrate the theory and its application. Ó 2014 Elsevier Inc. All rights reserved.

1. Introduction In a classic economic order/production quantity (EOQ/EPQ) model, all items purchased/produced are assumed 100% good quality. Since defective items often exist in order/production lots, 100% perfect quality may not be practical in real-life situations. Salameh and Jaber [1] developed an extended EOQ model for a random fraction of imperfect quality items. The poor quality items are sold at the end of the 100% screening process. Maddah and Jaber [2] revisited the model of Salameh and Jaber [1] and rectified the optimal expected annual profit using the Renewal Reward Theorem. Other studies related to the model of Salameh and Jaber [1] include Papachristos and Konstantaras [3], Wee et al. [4], Eroglu and Ozdemir [5] and Yassine et al. [6]. The effect of defective items on the production lot sizing policy has also received considerable attention by many researchers. Rosenblatt and Lee [7] proposed an EPQ model to deal with an imperfect production process system. They assumed that defective items could be reworked instantaneously; their study showed that the presence of defective products motivates a smaller lot size. Hayek and Salameh [8] proposed an EPQ model in which all imperfect quality products were reworked and shortages were allowed. Chiu et al. [9] presented a finite production model that considered rework and backorders under a service level constraint. Jamal et al. [10] developed an EPQ model in which all defective products are reworked to fix the defects during the same production cycle. Related to this research were the papers by Sarker et al. [11] and Cárdenas-Barrón [12,13]. Taleizadeh et al. [14] introduced a multi-product single-machine production system with a stochastic scrapped production rate, partial backorders, and a service level constraint. Chiu et al. [15] provided an optimal inventory replenishment policy for the EPQ with rework and multiple shipments. Recently, Wee and Widyadana [16] considered a production system for deteriorating items with stochastic preventive maintenance time and rework. Taleizadeh et al. [17] developed an EPQ inventory model for multi products in a single machine with rework and interruption in process. In our literature review, there are very few EOQ/EPQ models considering two backorder costs (see for example, Sphicas [18], Omar et al. [19], Cárdenas-Barrón [20], Chung and Cárdenas-Barrón [21]). Cárdenas-Barrón [22] and Wee et al. [23] ⇑ Corresponding author. E-mail address: [email protected] (H.-M. Wee). http://dx.doi.org/10.1016/j.amc.2014.01.150 0096-3003/Ó 2014 Elsevier Inc. All rights reserved.

128

H.-M. Wee et al. / Applied Mathematics and Computation 233 (2014) 127–138

extended the model of Jamal et al. [10] to an EPQ model with planned backorders (linear and fixed costs). Most EPQ models with rework assumed that the production process implicitly includes an inspection/screening procedure, or that the production and screening procedures occur at the same rate. In considering two backorder costs, our proposed models allow the screening rate to be less than the production rate. If the screening rate is less than the production rate, the screening rate determines the rate to fulfill backorders and demand. To derive closed-form solutions, this study uses time intervals rather than production and backorder sizes as decision variables. The optimal production lot size and optimal backorder quantity are derived from the optimal intervals. By analyzing three conditions for the optimal inventory policy, our approach distinguishes between feasible and infeasible optimal policies. If the screening rate is less than the production rate, we have found that the optimal production time is not always greater than the optimal time to eliminate backorders. We provide an alternate model for which infeasible optimal intervals are derived. Moreover, we provide a solution procedure to derive the feasible optimal policy. We show that special cases of EPQ models can be derived by using the parameter limiting values for the proposed model. The remainder of this paper is organized as follows. Model formulation and notation are presented in Section 2. Special case models are developed in Section 3. In Section 4, we use a numerical example to illustrate our solution procedure. Section 5 concludes the paper. 2. Model formulation The following notation is used for this study: T, S Q, Q0 W, W0

u k x d c cR k h b bF p

cycle lengths for Models I and II, respectively production lot sizes in units per cycle for Models I and II, respectively maximum backorder levels in units for Models I and II, respectively production rate in units per unit time demand rate in units per unit time screening rate in units per unit time, x 6 u screening cost per unit production cost per unit rework cost per unit setup cost per production cycle holding cost per unit per unit time backorder cost per unit per unit time (linear backorder cost) backorder cost per unit (fixed backorder cost) percentage of defective items in Q; p is regarded as an expected defective percentage for items during the production; 0 6 p < 1.

In addition, we make the following assumptions: (1) (2) (3) (4) (5) (6)

The replenishment rate is dependent on the screening rate. The demand rate is known and constant. All items are screened 100% with a known screening rate. Defective items are proportional to the production lot. Screening and demand proceed simultaneously. The screening rate is less than or equal to the production rate. Shortages are completely backordered. Production and rework process occur at the same speed. All defective items are reworked to remove the defects.

2.1. Model I: the production time is greater than or equal to the time to eliminate backorders Fig. 1 depicts the production-inventory model with rework (during the same cycle) and backorders. We assume the production process contains p fraction of defective items. The items are screened to separate the perfect and defective items. At the beginning of interval t2, production and screening start simultaneously. The production interval is t2 + t3. If the production rate is greater than the screen rate, the interval t4 will be greater than zero. The rate of perfect items that are screened during t2 + t3 + t4 is 1  p. During the interval t2, with a known screening rate x, the fraction of the perfect items are used to meet demand and eliminate backorders, at a rate of (1  p)x  k; the remaining perfect items are used to increase inventory, at a rate of u  x. The defective inventory increases at a rate of px. To eliminate backorders and achieve a positive inventory, we assume that (1  p)x  k > 0. The screening process terminates at the end of interval (t2 + t3 + t4) and the defective items of pu(t2 + t3) are reworked immediately. Referring to Fig. 1, the interval t2 builds inventory and eliminates backorders/shortages simultaneously: t 2 ¼ W=ðð1  pÞ x  kÞ ¼ z1 =ðu  xÞ. We have:

W ¼ ðð1  pÞx  kÞt 2 ;

ð1Þ

H.-M. Wee et al. / Applied Mathematics and Computation 233 (2014) 127–138

129

z4 z3 z2 z1

W

Fig. 1. Inventory of good items for EPQ model I.

z1 ¼ ðu  xÞt2 :

ð2Þ

The shortage interval without production is

t1 ¼ W=k ¼ ðð1  pÞx  kÞt 2 =k:

ð3Þ

Since the interval t2 + t3 + t4 is consumed to screen production units per cycle, u(t2 + t3), we have xðt 2 þ t3 þ t4 Þ ¼ uðt2 þ t 3 Þ. It results in:

t4 ¼ ðu  xÞðt 2 þ t 3 Þ=x:

ð4Þ

From Eq. (4), we can see that t4 > 0 if u > x. Referring to Fig. 2, the interval t5 is consumed to rework pu(t2 + t3) defective units with a rate of u. We now have:

t5 ¼ puðt 2 þ t 3 Þ=u ¼ pðt2 þ t3 Þ:

ð5Þ

Subsequently, referring to Fig. 1, we can derive the following expressions:

z4 ¼ z1 þ ðu  px  kÞt 3 ¼ ðu  xÞt2 þ ðu  px  kÞt 3 ;

ð6Þ

z2 ¼ z4  ðpx þ kÞt4 ¼ ðð1  pÞx  kÞðuðt 2 þ t 3 Þ  xt 2 Þ=x;

ð7Þ

z3 ¼ z2 þ ðu  kÞt 5 ¼ pðu  kÞðt 2 þ t 3 Þ þ ðð1  pÞx  kÞðuðt2 þ t3 Þ  xt 2 Þ=x;

ð8Þ

t6 ¼ z3 =k ¼ pðu  kÞðt 2 þ t 3 Þ=k þ ðð1  pÞx  kÞðuðt2 þ t 3 Þ  xt2 Þ=ðxkÞ:

ð9Þ

The total inventory cost per cycle, TC, is composed of the production cost, the screening cost, the rework cost, the backorder cost, and the holding cost. We have

Fig. 2. Inventory of defective items for EPQ model I.

130

H.-M. Wee et al. / Applied Mathematics and Computation 233 (2014) 127–138

  bðt1 þ t 2 ÞW TC ¼ ½cuðt2 þ t3 Þ þ k þ duðt2 þ t 3 Þ þ cR puðt2 þ t 3 Þ þ þ bF W 2     t 2 z1 t 3 ðz1 þ z4 Þ t4 ðz4 þ z2 Þ t 5 ðz2 þ z3 Þ t6 z3 ðt 2 þ t 3 þ t 4 þ t5 Þpuðt 2 þ t3 Þ þh þh : þ þ þ þ 2 2 2 2 2 2

ð10Þ

From Eqs. (3)–(5) and (9), the total cycle time can be rewritten as:

T ¼ t1 þ t2 þ t3 þ t4 þ t5 þ t6 ¼

ðt2 þ t3 Þu : k

ð11Þ

For ease of notation, we use t2 and t (=t 2 þ t 3 ) as decision variables in the total cost function. The total inventory cost per unit time is written as:

TCUðt 2 ; tÞ ¼

TC T 2

kk bt ð1  pÞx bF t 2 k þ dk þ cR pk þ 2 ðð1  pÞx  kÞ þ ðð1  pÞx  kÞ tu 2t u tu 2  t ð1  pÞx t ðð1  pÞx  kÞ þ ðu  kÞ  t 2 ðð1  pÞx  kÞ : þh 2 2t u 2

¼ ck þ

ð12Þ

The objective is to minimize TCUðt2 ; tÞ subject to t P t2 P 0. In Eq. (12), one can see that c, cR and d do not affect the optimal solutions. Lemma 1. For any given t > 0, there are the following cases to minimize TCUðt 2 jtÞ: Case A. For a given t 6 bhFuk ; t2 ¼ 0. Case B. If hu  ðb þ hÞð1  pÞx P 0, for a given If hu  ðb þ hÞð1  pÞx < 0, for a given

bF k hu bF k hu

bF k < t 6 huðbþhÞð1pÞx ; 0 < t 2 6 t.

< t; 0 < t2 < t.

bF k ; t 2 > t. Case C. If hu  ðb þ hÞð1  pÞx > 0, for a given t > huðbþhÞð1pÞx

Proof. See Appendix A.

h

Lemma 1 shows that the optimal time to eliminate backorders, t2 , is dependent on the given production time, t. The interval t2 = 0 implies that the shortage is not allowed. If production time is greater than shortage. However, if production time is greater than

bF k , huðbþhÞð1pÞx

bF k , hu

the optimal policy is to allow for

the optimal time to eliminate backorders is greater than

hu , then the production time, which is an infeasible optimal policy for Model I. In Lemma 1, if x > ð1pÞðbþhÞ

hu  ðb þ hÞð1  pÞx < 0, which means 0 6 t2 < t. In other words, if

hu ð1pÞðbþhÞ

< x 6 u, Model I always attains a feasible

optimal policy, i.e., Lemma 1 Case C does not exist. Consider the first-order-derivative condition for TCUðt 2 ; tÞ. Taking the first derivatives of TCUðt 2 ; tÞ with respect to t2 and t, we have:

@ ðð1  pÞx  kÞððb þ hÞð1  pÞxt2 þ bF k  hutÞ TCUðt2 ; tÞ ¼ ; @t2 ut

ð13Þ

@ 2kk  t 2 ðð1  pÞx  kÞððb þ hÞð1  pÞxt 2 þ 2bF kÞ þ hut2 ðu  kÞ TCUðt 2 ; tÞ ¼ ; @t 2u t 2

ð14Þ

Letting

@ @ TCUðt 2 ; tÞ ¼ 0 and TCUðt2 ; tÞ ¼ 0, we have: @t 2 @t

t2 ðtÞ ¼

hut  bF k ; ðb þ hÞð1  pÞx

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2kk þ t 2 ðð1  pÞx  kÞððb þ hÞð1  pÞxt 2 þ 2bF kÞ tðt2 Þ ¼ : huðu  kÞ

ð15Þ

ð16Þ

Substituting Eq. (15) into Eq. (16), we can derive the solutions for t and t2, as follows:

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 k 2kðb þ hÞð1  pÞx  bF kðð1  pÞx  kÞ ; t ¼ hu bxð1  pÞðu  kÞ þ hkðu  ð1  pÞxÞ

ð17Þ

H.-M. Wee et al. / Applied Mathematics and Computation 233 (2014) 127–138

t2 ¼

hut   bF k : ðb þ hÞð1  pÞx

131

ð18Þ

In the denominator of Eq. (17), we see that bxð1  pÞðu  kÞ þ hkðu  ð1  pÞxÞ is greater than 0. If TCUðt 2 ; tÞ is convex in t and t2, Eqs. (17) and (18) are the optimal solutions to minimize TCUðt 2 ; tÞ. Theorem 1. 2

(i) If 2hku  bF kðu  kÞ > 0, then TCU is convex in t and t2. (a) If hu  ðb þ hÞð1  pÞx < 0, the feasible optimal solution ðt  ; t2 Þ of TCUðt2 ; tÞ is ðt  ; t 2 Þ.     (b) If hu  ðb þ hÞð1  pÞx P 0 and t P t  2 , the feasible optimal solution ðt ; t 2 Þ of TCUðt 2 ; tÞ is ðt ; t 2 Þ. qffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 (ii) If 2hku  bF kðu  kÞ 6 0, then t ¼ hu2kk and t 2 ¼ 0. ðukÞ

Proof. See Appendix A. h The optimal total cost per unit time can be derived by substituting ðt  ; t2 Þ for ðt; t 2 Þ in Eq. (12). From t and t 2 , the optimal production size and maximal backorder level can be derived:

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi uk 2kðb þ hÞð1  pÞx  b2F kðð1  pÞx  kÞ Q ¼ ut ¼ ; h bxð1  pÞðu  kÞ þ hkðu  ð1  pÞxÞ 



ð19Þ

W  ¼ ðð1  pÞx  kÞt2 :

ð20Þ

If p ! 0 and x ! u, Eqs. (19) and (20) are reduced to the optimal solutions for the classic EPQ model with linear and fixed backorder costs. Since p ! 0 and x ! u, we have hu  ðb þ hÞð1  pÞx ¼ bu < 0. Therefore, for a given t > 0, this leads to two cases: t 2 ¼ 0 and 0 < t2 < t in Lemma 1. Subsequently, Theorem 1 reduces to the model without reworking defective items. Corollary 1. For the classic EPQ model with linear and fixed backorder costs: qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi  2 2kkðbþhÞ=ð1k=uÞb2F k2 F kÞð1k=uÞ (i) If 2hku  bF kðu  kÞ > 0; Q  ¼ . and W  ¼ ðhQ bhþb hb qffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2   2kk (ii) If 2hku  bF kðu  kÞ 6 0; Q ¼ hð1k= uÞ and W ¼ 0. 2

If 2hku  bF kðu  kÞ ¼ 0; Q  and W  in Corollary 1 (i) are reduced to identical to Theorem 4 in Chung and Cárdenas-Barrón [21] if Q 2 in bF k In Lemma 1 Case C, we can see that, if t > huðbþhÞð1pÞx , then t 2 >

qffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2kk hð1k=uÞ

and 0, respectively. Therefore, Corollary 1 is qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2ffi 2KDðhþpÞ=ð1D=PÞp2 D . hp

their equation is amended by

t  , i.e., Model I derives infeasible solutions with t < t  2.

Fig. 1 cannot represent the correct inventory behavior for Lemma 1 Case C. When the optimal production time (t ) is less than the optimal time to eliminate backorders (t 2 ), in Section 2.2, we show how to apply Model II to derive the feasible optimal policy. 2.2. Model II: the production time is less than the time to eliminate backorders Fig. 3 depicts the inventory behavior when the production run time is less than the time to eliminate backorders. The inventory behavior for the defective items is the same as that shown in Fig. 2. Similar to the analysis process in Section 2.1, the following equations can be expressed in terms of s2 and s3.

W 0 ¼ ðð1  pÞx  kÞðs2 þ s3 Þ;

ð21Þ

s1 ¼ ðð1  pÞx  kÞðs2 þ s3 Þ=k;

ð22Þ

s4 ¼ s2 ðu=x  1Þ  s3 ;

ð23Þ

s5 ¼ pus2 =u ¼ ps2 ;

ð24Þ

s6 ¼ s2 ðx  kÞðu  ð1  pÞxÞ=ðxkÞ  ðð1  pÞx  kÞs3 =k;

ð25Þ

z01 ¼ ðð1  pÞx  kÞðus2  xðs2 þ s3 ÞÞ=x;

ð26Þ

z02 ¼ us2  xðs2 þ s3 Þ;

ð27Þ

132

H.-M. Wee et al. / Applied Mathematics and Computation 233 (2014) 127–138

z’4 z’3 z’2 z’1

-W’

Fig. 3. Inventory of good items for EPQ model II.

z03 ¼ s2 ðx  kÞðu  ð1  pÞxÞ=x  s3 ðð1  pÞx  kÞ;

ð28Þ

z04 ¼ ðu  xÞs2 :

ð29Þ 0

The total inventory cost per cycle, TC , is shown as:

  bðs1 þ s2 þ s3 ÞW 0 TC 0 ¼ ½cus2 þ k þ dus2 þ cR pus2 þ þ bF W 0 2  0   0     0    0 0 s4 z2 þ z1 s5 z01 þ z03 s2 z4 s3 z4 þ z2 s6 z0 ðs2 þ s3 þ s4 þ s5 Þpus2 : þh þ þ þ þ 3 þh 2 2 2 2 2 2

ð30Þ

From Eqs. (22)–(25), the total cycle time, S, is rewritten as

S ¼ s1 þ s2 þ s3 þ s4 þ s5 þ s6 ¼

s2 u : k

ð31Þ

For ease of notation, we use s2 and s (=s2 þ s3 ) as decision variables. The total inventory cost per unit time is written as:

TCU 0 ðs2 ; sÞ ¼

TC 0 S 2

kk bs ð1  pÞx bF sk þ dk þ cR pk þ ðð1  pÞx  kÞ þ ðð1  pÞx  kÞ s2 u 2s2 u s2 u  2  s ð1  pÞx s2 þh ðð1  pÞx  kÞ þ ðu  kÞ  sðð1  pÞx  kÞ : 2s2 u 2

¼ ck þ

ð32Þ

The objective is to minimize TCU 0 ðs2 ; sÞ, subject to s P s2 P 0. We can see that TCU 0 ðs2 ; sÞ is the same as TCUðt2 ; tÞ if t2 and t are replaced by s and s2, respectively. Similar to Lemma 1, we can now develop Lemma 2. Lemma 2. For any given s2 > 0, there are the following cases to minimize TCU 0 ðsjs2 Þ:

Case A. For a given s2 6 bhFuk ; s = 0. Case B. If hu  ðb þ hÞð1  pÞx P 0, for a given If hu  ðb þ hÞð1  pÞx < 0, for a given

bF k bF k < s2 6 huðbþhÞð1pÞx , hu bF k  < s ; 0 < s < s . 2 2 hu

then 0 < s 6 s2 ;

bF k ; s > s2 . Case C. If hu  ðb þ hÞð1  pÞx > 0, for a given s2 > huðbþhÞð1pÞx

Proof. Similar to Lemma 1. h @ The solutions for @s@2 TCU 0 ðs2 ; sÞ ¼ 0 and @s TCU 0 ðs2 ; sÞ ¼ 0 can be solved by substituting s and s2 for t2 and t in Eqs. (17) and (18), respectively:

H.-M. Wee et al. / Applied Mathematics and Computation 233 (2014) 127–138

s2

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 k 2kðb þ hÞð1  pÞx  bF kðð1  pÞx  kÞ ¼ ; hu bxð1  pÞðu  kÞ þ hkðu  ð1  pÞxÞ

s ¼

133

ð33Þ

hus2  bF k : ðb þ hÞð1  pÞx

ð34Þ

   It is shown that s 2 ¼ t and s ¼ t 2 .

Theorem 2. 2

0   (i) If 2hku  bF kðu  kÞ > 0, then TCU0 is convex in s2 and s. If s P s 2 , the feasible optimal solution ðs2 ; s Þ of TCU ðs2 ; sÞ is   ðs2 ; s Þ. qffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 and s ¼ 0. (ii) If 2hku  bF kðu  kÞ 6 0, then s2 ¼ hu2kk ðukÞ

Proof. Similar to Theorem 1. h From s2 and s , the optimal production size and the optimal maximal backorder level can be derived as follows: 0

Q ¼u

s2

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi uk 2kðb þ hÞð1  pÞx  b2F kðð1  pÞx  kÞ ; ¼ h bxð1  pÞðu  kÞ þ hkðu  ð1  pÞxÞ

ð35Þ

W 0 ¼ ðð1  pÞx  kÞs : 0

ð36Þ 

0

0



ðs2 ; s Þ

TCUðt2 ;



We can show that Q ¼ Q ; W ¼ W and TCU ¼ t Þ. However, Model I (Fig. 1) and Model II (Fig. 2) represent different production schedules and inventory levels, respectively. Therefore, using production size and backorder level as decision variables may not reveal the infeasible optimal policy. Lemma 1 Case A and Lemma 2 Case A have the same optimal policy without shortage. In Lemma 2 Case B, we have that if bF k hu

bF k < s2 < huðbþhÞð1pÞx , then 0 < s < s2 , i.e., s3 < 0. This shows that the optimal time to eliminate backorders is less than the

optimal production time. If s < s2 , Model II cannot represent the correct production schedule. So, if s < s2 , the optimal policy is derived by Model I rather than Model II. We provide a solution procedure to determine the optimal policy. 2

Step 1: Start with Model I. Calculate the value of 2hku  bF kðu  kÞ. qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 2kk (1) If 2hku  bF kðu  kÞ 6 0, then the optimal solution ðt  ; t 2 Þ for TCUðt2 ; tÞ is ;0 . huðukÞ 2

    (2) If 2hku  bF kðu  kÞ > 0 with t P t 2 , the optimal solution ðt ; t 2 Þ for TCUðt 2 ; tÞ is ðt ; t 2 Þ, as shown in Eqs. (17)   and (18). The optimal total inventory cost per unit time is TCUðt 2 ; t Þ. 2 (3) If 2hku  bF kðu  kÞ > 0 with t  < t  2 , go to Step 2.  Step 2: Apply Model II to find the optimal policy. The optimal solution ðs2 ; s Þ for TCU 0 ðs2 ; sÞ is ðs 2 ; s Þ is shown in Eqs. (33)

and (34). The optimal total inventory cost per unit time is TCU 0 ðs2 ; s Þ. 3. Special cases Here we modify Model I in Section 2.1 by not considering the holding cost of the defective items. In other words, the total h i inventory cost does not include the last term of TC in Eq. (10), i.e., h ðt2 þt3 þt4 þt25 Þpuðt2 þt3 Þ . We therefore have the total inventory cost per cycle:

  bðt1 þ t2 ÞW TCM ¼ ½cuðt 2 þ t 3 Þ þ k þ duðt2 þ t3 Þ þ cR puðt2 þ t3 Þ þ þ bF W 2   t 2 z1 t3 ðz1 þ z4 Þ t 4 ðz4 þ z2 Þ t5 ðz2 þ z3 Þ t 6 z3 þh : þ þ þ þ 2 2 2 2 2

ð37Þ

The total inventory cost per unit time is simplified as:

TCMUðt 2 ; tÞ ¼

TCM T 2

kk bt ð1  pÞx bF t 2 k þ dk þ cR pk þ 2 ðð1  pÞx  kÞ þ ðð1  pÞx  kÞ tu 2tu tu 2    t ð1  pÞx t kðx þ pu þ p2 xÞ  t 2 ðð1  pÞx  kÞ : ðð1  pÞx  kÞ þ u þh 2 2tu 2 x

¼ ck þ

ð38Þ

134

H.-M. Wee et al. / Applied Mathematics and Computation 233 (2014) 127–138

Similar to Lemma 1, for any given t > 0, we can obtain three cases for the optimal t2 values that minimize TCMUðt 2 jt Þ. Solving @t@2 TCMUðt2 ; tÞ ¼ 0 and @t@ TCMUðt 2 ; tÞ ¼ 0, we have:

t2 ðtÞ ¼

tðt2 Þ ¼

hut  bF k ; ðb þ hÞð1  pÞx

ð39Þ

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2kk þ t 2 ðð1  pÞx  kÞððb þ hÞð1  pÞxt 2 þ 2bF kÞ : huðu  kðx þ pu þ p2 xÞ=xÞ

ð40Þ

Substituting Eq. (39) into Eq. (40), we can derive the solutions for t and t2:

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 k 2kðb þ hÞð1  pÞx  bF kðð1  pÞx  kÞ t ¼ ; hu hku þ ð1  pÞðbxu  ðb þ hÞkðð1 þ p2 Þx þ puÞÞ 

t2 ¼

hut   bF k : ðb þ hÞð1  pÞx

ð41Þ

ð42Þ

Theorem 3 2

(i) If 2hkxu  bF kðxu  kðx þ pu þ p2 xÞÞ P 0, then TCMU is convex in t and t2. (a) If hu  ðb þ hÞð1  pÞx < 0, the feasible optimal solution ðt  ; t 2 Þ of TCMUðt 2 ; tÞ is ðt  ; t  2 Þ.     (b) If hu  ðb þ hÞð1  pÞx P 0 and t P t  2 , the feasible optimal solution ðt ; t 2 Þ of TCMUðt 2 ; tÞ is ðt ; t 2 Þ. qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2  2kk (ii) If 2hkxu  bF kðxu  kðx þ pu þ p2 xÞÞ < 0, then t  ¼ huðuxkðxþp uþp2 xÞÞ=x and t 2 ¼ 0.

Proof. See Appendix A.

h

From Eqs. (41) and (42), the optimal production size and the optimal maximal backorder level can be derived, as follows:

Q m

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 ku 2kðb þ hÞð1  pÞx  bF kðð1  pÞx  kÞ ; ¼ ut ¼ h hku þ ð1  pÞðbxu  ðb þ hÞkðð1 þ p2 Þx þ puÞÞ 

W m ¼ ðð1  pÞx  kÞt 2 :

ð43Þ ð44Þ

t 2



If Model I results in infeasible optimal solutions, i.e., > t , we can directly extend Model II to a model in which the holding cost for defective items is not considered. According to Theorem 3, when the screening rate approaches the production rate (i.e., x ! u), the condition that TCMU is 2 convex in t and t2 is transformed into 2hku  bF kðu  kð1 þ p þ p2 ÞÞ > 0. The optimal production size is derived by:

limQ m x!u

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 k 2kðb þ hÞð1  pÞu  bF kðð1  pÞu  kÞ ¼ : h hk þ ð1  pÞbu  ð1  p3 Þðb þ hÞk

ð45Þ

Eq. (45) is identical to Eq. (19) in Cárdenas-Barrón [22]. Furthermore, setting the backorder costs (b and bF) to infinity, Eq. (45) is reduced to

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2kku : hðu  ð1 þ p þ p2 ÞkÞ

ð46Þ

Eq. (46) is identical to Eq. (11) in Jamal et al. [10]. Since a shortage is not allowed, Eq. (46) can also be obtained from limx!u ðut  Þ, where this t  is shown in Theorem 3 (ii). Taking the limiting values of the optimal solutions in our models with respect to different parameters, our models can be reduced to different special cases. For instance, letting x ! u; p ! 0, and bF ! 0, we can derive Q  and W  for the optimal solutions of Model I, the classic EPQ with linear backorder costs. 4. Numerical example Example. k = 300 unit per year, u = 550 units per year, k = $50 per lot size, h = $50 per unit per year, bF = $1 per unit backorder, b = $10 per unit backorder per year, c = cR = $7 per unit, d = $0 per unit and p = 0.1.

135

H.-M. Wee et al. / Applied Mathematics and Computation 233 (2014) 127–138 Table 1 The results of the example for Model I with different screening rates. Screening rate (x)

350

400

450

500

550

TCU⁄ Q⁄ W⁄ z1 z2 z3 z4 t1 t2 t3 t4 t5 t6

3109.82 37.98 1.27 16.9230 0.3587 2.0853 13.5792 0.004231 0.084615 0.015552 0.039464 0.006906 0.006951

3036.90 43.42 5.20 12.9917 1.3157 3.2892 11.3804 0.017322 0.086611 0.007673 0.029602 0.007894 0.010964

2969.04 49.83 9.47 9.0188 2.1576 4.4226 9.1038 0.031566 0.090188 0.000415 0.020134 0.009060 0.014742

2903.95 57.77 14.38 4.7938 2.9505 5.5766 6.6270 0.047938 0.095876 0.009166 0.010504 0.010504 0.018589

2839.37 68.25 20.44 0.0000 3.7622 6.8646 3.7622 0.068121 0.104802 0.019293 0.000000 0.012410 0.022882

Table 2 The results of the example for Model II with different screening rates. Screening rate (x)

350

400

450

500

550

TCU 0 Q 0 W 0 z0 1 z0 2 z0 3 z0 4  s1  s2 s3 s4 s5 s6

3109.82 37.98 1.27 0.3587 8.3692 2.0853 13.8125 0.004231 0.069063 0.015552 0.023912 0.006906 0.006951

3036.90 43.42 5.20 1.3157 8.7716 3.2892 11.8408 0.017322 0.078938 0.007673 0.021929 0.007894 0.010964

2969.04 49.83 9.47 2.1576 9.2468 4.4226 9.0602 0.031566 0.090602 0.000415 0.020548 0.009060 0.014742

2903.95 57.77 14.38 2.9505 9.8350 5.5766 5.2521 0.047938 0.105042 0.009166 0.019670 0.010504 0.018589

2839.37 68.25 20.44 3.7622 10.6113 6.8646 0.0000 0.068121 0.124095 0.019293 0.019293 0.012410 0.022882

k 300 Since x is constrained by (1  p)x  k > 0, we use the values of x > 1p ¼ 10:1 ¼ 333:33 in this example. Since 2

   2hku  bF kðu  kÞ ¼ 2:675  106 > 0, we have t 2 > 0. In Table 1, if t  ð¼ t  2 þ t 3 Þ < t 2 , i.e., t 3 < 0, the derived optimal policy of Model I is infeasible. It is shown that x = 350 and x = 400 derive infeasible optimal polices for Model I. When t  < t  2 , Model II is applied to find the feasible optimal policy. Referring to Fig. 1, when x ¼ u = 550, all good items filtered from production are immediately used to eliminate backorders during t2, resulting in z1 ¼ 0. Moreover, since the production and screening are synchronized (at the same rate), we can see that t 4 ¼ 0. In Table 2, we can see that x = 450, x = 500, and x = 550 derive infeasible optimal polices for Model II. This example shows that Q 0 ¼ Q  ; W 0 ¼ W  and TCU 0 ðs2 ; s Þ ¼ TCUðt 2 ; t  Þ. However, Models I and II result in different production schedules, respectively. This implies that using production and backorder sizes as decision variables may obtain an infeasible optimal production schedule. Tables 1 and 2 show the optimal total inventory cost decreases as the screening rate increases. Therefore, for a scheduled production rate, a better policy is to ensure the screening rate is the same as the production rate.

5. Conclusion remarks This paper investigates EPQ models with two backorder costs and all defective products are reworked in the same production cycle. In contrast to many related studies, the proposed models allow the screening rate to be less than the production rate. To derive the closed-form optimal solutions, we use time intervals rather than ordering size and backorder size as decision variables. Our approach ensures the feasibility of the optimal policy. For the case with infeasible optimal intervals, we have suggested an alternate solution procedure to derive the feasible optimal policy. Taking the limiting parameter values for the optimal solutions, our models can be generalized to the classic EPQ models. A numerical example is given to illustrate the solution procedure. Further research can investigate the case in which production rate is not the same as the reworking rate and shortages are partially backordered.

136

H.-M. Wee et al. / Applied Mathematics and Computation 233 (2014) 127–138

Appendix A

Proof for Lemma 1. For given t > 0, taking the first derivative with respective to t2, we have

d ðð1  pÞx  kÞððb þ hÞð1  pÞxt 2 þ bF k  hutÞ TCUðt2 jtÞ ¼ : dt2 ut

ðA1Þ

From Eq. (A1), we have

d

lim

t2 !0 dt 2

lim t 2 !t

TCUðt 2 jt Þ ¼

ðð1  pÞx  kÞðbF k  hutÞ ; ut

ðA2Þ

d ðð1  pÞx  kÞððb þ hÞð1  pÞxt þ bF k  hutÞ TCUðt 2 jt Þ ¼ : dt 2 ut

ðA3Þ

Since 2

d

2

dt2

TCUðt2 jtÞ ¼

ðb þ hÞð1  pÞðð1  pÞx  kÞx >0 ut

ðA4Þ

TCUðt 2 jt Þ is convex in t2 for given t > 0. If t < bhFuk, then lim

d t 2 !t dt 2

d t 2 !0 dt 2

TCUðt2 jtÞ > lim

TCUðt 2 jtÞ > 0. Thus,

d dt 2

TCUðt 2 jtÞ remains positive but never reaches zero. Because

TCUðt2 jtÞ is convex, it reaches a minimum at the point of t2 = 0. If t ¼ bhFuk, then lim

d t 2 !0 dt2

d dt 2

d t 2 !t dt 2

TCUðt 2 jt Þ ¼ 0 and lim

TCUðt2 jtÞ > 0. So,

TCUðt2 jt Þ reaches zero at t2 = 0, and the optimal solution is attained at t 2 ¼ 0. d t 2 !t dt 2

To analyze the value of lim

TCUðt 2 jt Þ, we consider the following conditions.

(i) If hu  ðb þ hÞð1  pÞx > 0: If

bF k hu

bF k < t < huðbþhÞð1pÞx ; lim

d t 2 !0 dt 2

d t 2 !t dt 2

TCUðt 2 jtÞ < 0, and lim

TCUðt 2 jt Þ > 0, then

d dt 2

TCUðt2 jtÞ reaches zero at the interior of

the interval ð0; tÞ. bF k t ¼ huðbþhÞð1pÞx ,

If

t2 ¼ t ¼

then

lim d t 2 !0 dt 2

TCUðt 2 jt Þ < 0

and

d t 2 !t dt 2

lim

TCUðt2 jtÞ ¼ 0.

Here,

d dt 2

TCUðt 2 jt Þ

reaches

zero

at

bF k . huðbþhÞð1pÞx

bF k , then lim If t > huðbþhÞð1pÞx

d t 2 !0 dt 2

d t 2 !t dt 2

TCUðt 2 jt Þ < lim

TCUðt2 jtÞ < 0. Because TCUðt2 jt Þ is convex, it reaches a minimum at

the interior of interval ðt; 1Þ, which means t 2 > t. (ii) If hu  ðb þ hÞð1  pÞx ¼ 0: If

bF k hu

bF k < t < huðbþhÞð1pÞx ! 1; lim

d t 2 !0 dt 2

d t 2 !t dt 2

TCUðt 2 jt Þ < 0, and lim

TCUðt2 jtÞ > 0;

d dt 2

TCUðt2 jtÞ reaches zero at the interior of

the interval ð0; 1Þ. If hu  ðb þ hÞð1  pÞx ¼ 0, Case C does not exist. (iii) If hu  ðb þ hÞð1  pÞx < 0: If hu  ðb þ hÞð1  pÞx < 0, then bF k hu

bF k huðbþhÞð1pÞx

< 0. So, the condition for Case B,

bF k hu

bF k < t < huðbþhÞð1pÞx , is replaced by

< t, which shows that the optimal t2 is at the interior of ð0; tÞ. If hu  ðb þ hÞð1  pÞx < 0, Case C does not exist. h

Proof for Theorem 1. The second derivatives of TCUðt2 ; tÞ with respect to t2 and t are as follows.

@2 ðb þ hÞð1  pÞðð1  pÞx  kÞx TCUðt2 ; tÞ ¼ > 0; ut @t22

ðA5Þ

@2 2kk þ t 2 ðð1  pÞx  kÞððb þ hÞð1  pÞxt 2 þ 2bF kÞ TCUðt2 ; tÞ ¼ > 0: 2 @t ut3

ðA6Þ

Since ð1  pÞx  k > 0, we can see that Eqs. (A5) and (A6) are greater than zero. Subsequently, we have:

@2 ðð1  pÞx  kÞððb þ hÞð1  pÞxt 2 þ bF kÞ : TCUðt2 ; tÞ ¼  @t2 @t ut 2 To verify the convexity of TCUðt 2 ; tÞ, we calculate the following condition:

ðA7Þ

137

H.-M. Wee et al. / Applied Mathematics and Computation 233 (2014) 127–138

@2 TCUðt2 ; tÞ @t22

!

! !2 2 @2 @2 kðð1  pÞx  kÞð2kðb þ hÞð1  pÞx  bF kðð1  pÞx  kÞÞ TCUðt ; tÞ  ; tÞ ¼ : TCUðt 2 2 @t2 @t @t 2 u2 t4 ðA8Þ

2 If 2kðb þ hÞð1  pÞx  bF kðð1  pÞx  kÞ > 0, then Eq. (A8) is greater than and t2. The optimal solution ðt  ; t 2 Þ is derived by Eqs. (17) and (18). 2 2 In Lemma 1, we can see that if h t  bF k > 0, i.e., ðh tÞ  ðbF kÞ > 0, 2 2 ðh tÞ  ðbF kÞ , we have

u

u

zero, which means that TCUðt2 ; tÞ is convex in t then t2 > 0. Substituting t by t in Eq. (17) in

u

2

2

2

ðhut Þ  ðbF kÞ ¼

ðb þ hÞð1  pÞxkð2hku  bF kðu  kÞÞ : bxð1  pÞðu  kÞ þ hkðu  ð1  pÞxÞ

ðA9Þ

2

If 2hku  bF kðu  kÞ > 0, Eq. (A9) > 0. Subsequently, we obtain 2

2

2kðb þ hÞð1  pÞx  bF kðð1  pÞx  kÞ ¼ 2bkð1  pÞx þ 2hkð1  pÞx  bF kðð1  pÞx  kÞ   k 2 2 ð1  pÞx  bF kðð1  pÞx  kÞ > 2bkð1  pÞx þ bF k 1  u ! ! k2 2 2 ð1  pÞx þ k  ¼ 2bkð1  pÞx þ bF

u

   x 2 > 0: ð*u P xÞ: ¼ 2bkð1  pÞx þ bF k2 1  ð1  pÞ

ðA10Þ

u

2

So, if 2hku  bF kðu  kÞ > 0, Eq. (A10) > 0 implies that TCUðt2 ; tÞ is convex in t > 0 and t2 > 0. The optimal solution ðt ; t2 Þ of TCUðt 2 ; tÞ is derived from Eqs. (17) and (18). 2 If 2hku  bF kðu  kÞ 6 0, then t 2 is attained at zero. Therefore, the optimal t can be derived from Eq. (16):

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2kk þ t2 ðð1  pÞx  kÞððb þ hÞð1  pÞxt 2 þ 2bF kÞ 2kk ¼ : t 2 !0 huðu  kÞ huðu  kÞ

t ¼ lim tðt 2 Þ ¼ lim t 2 !0

ðA11Þ



2

Proof for Theorem 3. Similar to Theorem 1, if 2kðb þ hÞð1  pÞx  bF kðð1  pÞx  kÞ > 0, then TCMUðt 2 ; tÞ is convex in t and t2. In the denominator of Eq. (43), we have

      hku þ ð1  pÞ bxu  ðb þ hÞk ð1 þ p2 Þx þ pu > hku þ bku  ð1  pÞðb þ hÞk 1 þ p2 x þ pu ð*ð1  pÞx > kÞ    ¼ ðb þ hÞ ku  ð1  pÞk ð1 þ p2 Þx þ pu     ¼ ðb þ hÞ ku  ð1  pÞkpu  ð1  pÞ 1 þ p2 kx      ¼ ðb þ hÞ 1  p þ p2 ku  1  p þ p2  p3 kx      P ðb þ hÞ 1  p þ p2 kx  1  p þ p2  p3 kx ð*u P xÞ ¼ ðb þ hÞkxp3 > 0:

ðA12Þ

Therefore, Eqs. (43) and (44) are real solutions for t and t2, respectively. 2 2 From Lemma 1, we see that, if hut  bF k > 0, i.e., ðhutÞ  ðbF kÞ > 0, then t2 > 0. Substituting t by t in Eq. (43) in 2 2 ðhutÞ  ðbF kÞ , we have: 2

2

2

ðhut Þ  ðbF kÞ ¼

ðb þ hÞð1  pÞð2hkxu  bF kðxu  kðx þ pu þ p2 xÞÞÞ : hku þ ð1  pÞðbxu  ðb þ hÞkðð1 þ p2 Þx þ puÞÞ

ðA13Þ

2

If 2hkxu  bF kðxu  kðx þ pu þ p2 xÞÞ > 0, then Eq. (A13) > 0. Subsequently, we can obtain the following: 2

2

2kðb þ hÞð1  pÞx  bF kðð1  pÞx  kÞ ¼ 2bkð1  pÞx þ 2hkð1  pÞx  bF kðð1  pÞx  kÞ 2

2

> 2bkð1  pÞx þ bF kðxu  kðx þ pu þ p2 xÞÞð1  pÞ=u  bF kðð1  pÞx  kÞ 2

¼ 2bkð1  pÞx þ bF k2 ðu  ð1  pÞðx þ p2 x þ puÞÞ=u 2

P 2bkð1  pÞx þ bF k2 ðu  ð1  pÞðu þ p2 u þ puÞÞ=u ð*u P xÞ 2

2

¼ 2bkð1  pÞx þ bF k2 ðu  ð1  p3 ÞuÞ=u ¼ 2bkð1  pÞx þ bF k2 p3 > 0: 2 bF kðx

2

ðA14Þ

Therefore, if 2hkxu  u  kðx þ pu þ p xÞÞ > 0; TCMUðt2 ; tÞ is convex in t > 0 and t2 > 0. The optimal solution ðt ; t 2 Þ of TCMUðt 2 ; tÞ is derived from Eqs. (43) and (44).

138

H.-M. Wee et al. / Applied Mathematics and Computation 233 (2014) 127–138 2

If 2hkxu  bF kðxu  kðx þ pu þ p2 xÞÞ 6 0; t2 is attained at zero. Therefore, the optimal t can be derived from Eq. (42), as follows:

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2kk þ t2 ðð1  pÞx  kÞððb þ hÞð1  pÞxt2 þ 2bF kÞ 2kk ¼ : t2 !0 huðu  kðx þ pu þ p2 xÞ=xÞ huðux  kðx þ pu þ p2 xÞÞ=x

t ¼ lim tðt2 Þ ¼ lim t 2 !0



ðA15Þ

References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23]

M.K. Salameh, M.Y. Jaber, Economic production quantity model for items with imperfect quality, Int. J. Prod. Econ. 64 (2000) 59–64. B. Maddah, M.Y. Jaber, Economic order quantity for items with imperfect quality: revisited, Int. J. Prod. Econ. 112 (2) (2008) 808–815. S. Papachristos, I. Konstantaras, Economic ordering quantity models for items with imperfect quality, Int. J. Prod. Econ. 100 (1) (2006) 148–154. H.M. Wee, J. Yu, M.C. Chen, Optimal inventory model for items with imperfect quality and shortage backordering, Omega 35 (2007) 7–11. A. Eroglu, G. Ozdemir, An economic order quantity model with defective items and shortages, Int. J. Prod. Econ. 106 (2007) 544–549. A. Yassine, B. Maddah, M. Salameh, Disaggregation and consolidation of imperfect quality shipments in an extended EPQ model, Int. J. Prod. Econ. 135 (2012) 345–352. M.J. Rosenblatt, H.L. Lee, Economic production cycles with imperfect production processes, IIE Trans. 18 (1986) 48–55. P.A. Hayek, M.K. Salameh, Production lot sizing with the reworking of imperfect quality items produced, Prod. Planning Control 12 (6) (2001) 584–590. S.W. Chiu, C.K. Ting, Y.S.P. Chiu, Optimal production lot sizing with rework, scrap rate, and service level constraint, Math. Comput. Model. 46 (2007) 535–549. A.A.M. Jamal, B.R. Sarker, S. Mondal, Optimal manufacturing batch size with rework process at single-stage production system, Comput. Ind. Eng. 47 (1) (2004) 77–89. B.R. Sarker, A.A.M. Jamal, S. Mondal, Optimal batch sizing in a multistage production system with rework consideration, Eur. J. Oper. Res. 184 (3) (2008) 915–929. L.E. Cárdenas-Barrón, On optimal manufacturing batch size with rework process at single-stage production system, Comput. Ind. Eng. 53 (1) (2007) 196–198. L.E. Cárdenas-Barrón, On optimal batch sizing in a multi-stage production system with rework consideration, Eur. J. Oper. Res. 196 (3) (2009) 1238– 1244. A.A. Taleizadeh, S.T.A. Niaki, A.A. Najafi, Multiproduct single-machine production system with stochastic scrapped production rate, partial backordering and service level constraint, J. Comput. Appl. Math. 233 (2010) 1834–1849. Y.S.P. Chiu, S.C. Liu, C.L. Chiu, H.H. Chang, Mathematical modeling for determining the replenishment policy for EMQ model with rework and multiple shipments, Math. Comput. Model. 54 (2011) 2165–2174. H.M. Wee, G.A. Widyadana, A production model for deteriorating items with stochastic preventive maintenance time and rework process with FIFO rule, Omega 41 (6) (2013) 941–954. A.A. Taleizadeh, L.E. Cárdenas-Barrón, B. Mohammadi, A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufacturing process, Int. J. Prod. Econ. 150 (2014) 9–27. G.P. Sphicas, EOQ and EPQ with linear and fixed backorder costs: two cases identified and models analyzed without calculus, Int. J. Prod. Econ. 100 (1) (2006) 59–64. M. Omar, M.B. Zubir, N.H. Moin, An alternative approach to analyze economic ordering quantity and economic production quantity inventory problems using the completing the square method, Comput. Ind. Eng. 59 (2) (2010) 362–364. L.E. Cárdenas-Barrón, The derivation of EOQ/EPQ inventory models with two backorders costs using analytic geometry and algebra, Appl. Math. Model. 35 (5) (2011) 2394–2407. K.J. Chung, L.E. Cárdenas-Barrón, The complete solution procedure for the EOQ and EPQ inventory models with linear and fixed backorder costs, Math. Comput. Model. 55 (11–12) (2012) 2151–2156. L.E. Cárdenas-Barrón, Economic production quantity with rework process at a single-stage manufacturing system with planned backorders, Comput. Ind. Eng. 57 (3) (2009) 1105–1113. H.M. Wee, W.T. Wang, L.E. Cárdenas-Barrón, An alternative analysis and solution procedure for the EPQ model with rework process at a single-stage manufacturing system with planned backorders, Comput. Ind. Eng. 64 (2) (2013) 748–755.