An Expert System for Diagnosis and Maintenance in FMS

An Expert System for Diagnosis and Maintenance in FMS

An Expert System for Diagnosis and Maintenance in FMS V. D. Majstorovic, V. R. Milacic (1); Mechanical Engineering Faculty, Beograd University/Yugosla...

401KB Sizes 0 Downloads 58 Views

An Expert System for Diagnosis and Maintenance in FMS V. D. Majstorovic, V. R. Milacic (1); Mechanical Engineering Faculty, Beograd University/Yugoslavia Received on January 25,1989 ABSTRACT; T h e building of the expert system for diagnosis and maintenance in FMS i s a very complex interdisciplinary engineering task. In I n t e r C e A T (International Center for Advanced Technology) a model o f a n expert system called EXMAS (Expert Maintenance System) h a s been developed for conceptual diagnosis and maintenance of FElS working stations. T h e e l e m e n t s of the theory of a u t o m a t a , k n o w l e d g e blocks, artificial intelligence t o o l s and techniques have been used in the building o f this model. I n i t s present s t a g e the model i s developed a s the prototype f o r certain working s t a t l o n s , s o that later suiiie o f i t s modules may be linkcd with i t s higher l e v e l s (betvrrn indivldual working s L a L i o n s ) and the integrated software product for other FMS functions.

KEY WORDS: Diagnosis, Expert Systems. F>IS, Maintenance.

1. THE APPROACHES TO THE DEVELOPMENT OF DIAGNOSTIC SYSTEHS - RESEARCH PROBLEM DEFINITION FMS to-day represent t h e highest level of f l e x i b l e automation widespread in industrial environment. These a r e computerised plants with high level data processing distribution and the automatic f l o w o f material, consisting from different mechatronic working stations. T h e development o f t h e concept o f “un-manned” machining s t a t i o n s gave the basic i m p u l s e for the development of diagnostic s y s t e m s a t a l l technoloeic a l levels in flexible manufacture. Kobayashi [ I ] attaches t h e greatest importance for t h e development of this concept t o t h e following three factors: the f l e x i b i l i t y , reliability and diagnostic system. T h e theoretical f u n d a m e n t s of diagnostic s y s t e m s for manufacturing s y s t e m s have been s e t down by prof. Yoshikava [2]. T h e more recent characteristic approaches include: t h e use o f fuzzy s e t s [3], c a u s a l model o f working s t a t i o n s [4] and the u s e of A1 in the s e l e c t i o n of diagnostic s i g n a l s [5,61. The diagnostic system o f working s t a t i o n s i s developed o n theoretical and experimental a n a l y s i s of i t s processes and a p p e a r a n c e s , Fig.1. W i t h s u c h working s t a t i o n diagnostic model the d i a g n o s i s i s made on t h e basis o f comparative a n a l y s e s o f real behaviour and simul.ated diagnostic parameters. T h i s paper has two parts. T h e fj.rsr: part describes developed EXNAS model i l l d e t a i l . The second p o r t presents some r e s u l t s o f practical tests.

2. EXNAS M O D E L During FElS working s t a t i o n lifecycle three s t a g e s may be idenlified: d e s i g n i n g , production and exploitation. T h e first t w o , a s a r u l e , relate to t h e producers and t h e third o n e to users.For this concept a multilevel mainLenance m o d e l has been developed which d e f i n e s the engineering a p p r o a c h e s to: (i)maintenance d e s i g n , (ii)maintenance technology d e s i g n , a n d (iii)mainLenance planning and c o n t r o l [ O ] . T h e model i s based o n a mechanical s y s t e m , and higher l e v e l s relate t o the a b o v e stated g r o u p s o f engineering activites (71. The entire model, the same a s each stratified level, has i t s o w n inputs. o u t p u t s and c o n n e c t i o n s with t h e superior-subordinated l e v e l s [ l o ] . ‘These information f l o w s were t h e basis f o r t h e building of EXNAS model whose principal architecture i s s h o w n in F i g . 2 . It h a s t h e following entities: (i)ES s h e l l (the k n o w l e d g e base a n d inference engine). (ii)the processor and (iii.)the communication i.nterface. T h e physical organisation of the working s t a t i o n i s a starting element: for the description of machine structure and thc determining of technical e f f e c t i veness parameters. T h e c o m p o n e n t s , mutually i n t e r connected with their mechanical, e l e c t r i c a l , thermal or other i n f l u e n c e s may prevent the failure of other components, which i s then defined with the k n o w l e d g e engineering p r o c e d u r e s o n t h e basis o f c o n n e c t i o n s and relations. T h i s may e n a b l e r e l i a b l e establishing o f d i a g n o s i s both for t h e condition-based maintenance technology and c o r r e c t i v e maintenance. T h i s approach is known a s c a u s a l model o r t h e first-principle based reasoning [ll]. T h e second a p p r o a c h , the heuristic reasoning i s s u i t a b l e for t h e representation of heuristic k n o w l e d g e , the description of designere n g i n e c r ’ s and maintenance p l a n n e r ‘ s cognitive processes. T h i s is particularly important in the appearo n c c o f n e w failures or s y m p t o m s , rrh1r.h s e r v e with the existing heuristic k n o w l e d g e about t h e system for establishing o f partial o r f u l l diagnosis. T h i s approach is t h u s s u i t a b l e when i t i s not possible to represent the c o m p l e t e k n o w l e d g e a b o u t m a c h i n e ‘ s

Annals of the ClRP Vol. 38/1/1989

s t r u c t u r e , i t s f u n c t i o n s and features. O u r research s h o w s that thc combined u s e o f both a p p r o a c h e s i s very convenient. f o r FMS working s t a t i o n s , which h a s been d o n e in the d e v e l o p m e n t of EXMAS. For t h e inference e n g i n e m o d e l , a s t h e second vital EXMAS module, he following p r i n c i p l e was a p p l i e d : f o r the model o f c o n c e p t u a l d e f i n i t i o n o f t h e condition-based maintenance t e c h n o l o g y , f o r w a r d c h a i n i n g , and for corrective maintenance technology back c h a i n i n g w a s used. T h e processor i s t h e second EXMAS e n t i t y , which i s f i l t e r i n g inference e n g i n e c o n c l u s i o n s through: (i)recogniLion procedures for d i a g n o s i s a n d maintenance (cases and processes). (iilenables t h e realis a t i o n o f corresponding logic o f general and s p e c i f i c c h a r a c t e r f o r the subject a r e a , and (iii)optimises c o r r e s p o n d i n g s o l u t i o n s o n the basis of o p t i m i s a t i o n c r i t e r i a , a c c o r d i n g to f u n c t i o n s , s t a t e s , processes and g o a l s . T h e diagnosis l o g i c o f working s t a t i o n s is based o n the research and modelling o f d i f f e r e n t above stated appearances and p r o c e s s e s , w h i l e t h e maintenance technology logic i s based o n : (i)results of d i a g n o s t i c process, and (ii)applied m o d e l s of maintenance technology. T h e economy and optimisation model o t d i a g n o s i s and maintenance r e l a t e s t o he procedures o f t h e maintenance cost optimisation and spare parts s t o r e s , he maintenance planner. appearing in The f u n c t i o n a l knowledge structure in EXMAS may be expressed with the following equation:

F S ~ = (F R ,SB,OB,S, K ) (1) where:FB-functional knowledge blocks, the most important f o r t h i s E S model being those related to different recognition classes, SB-structural blocks representing the k n o w l e d g e and relations in t h e s y s t e m of h i e r a r c h y , OB-operation k n o w l e d g e block b y which conclusion strategy is e s t a b l i s h e d , S coupling f u n c t i o n by which k n o w l e d g e acquisition model i s a c h i e v e d , and K-composition f u n c t i o n by which t h e reasoning model in the k n o w l e d g e base o f this ES i s established. T h e e n t i t i e s of d e c l a r a t i v e and heuristic k n o w l e d g e for the maintenance planner a r e represented through the s t r u c t u r e o f f a c t s and rules in Fig.3. T h e established model of the functional k n o w l e d g e s t r u c t u r e i s t h e basi., for finding c o r r e s p o n d i n g l a n g u a g e with g r a m m a r , and l o r the c o n s t r u c t i o n of a u t o m a t a [ 1 2 , 1 3 ] , s o that the k n o w l e d g e transformation h a s the form:

FS-G-A

(2)

where:L(G)-the language by which the transformation of f u n c t i o n k n o w l e d g e structure (FS) into s u i t a b l e grammar ( G ) is a c h i e v e d , and A-automaton c o r r e s p o n d ing t o t h e selected language and t h e c o r r e s p o n d i n g grammar. I n t h i s expert system t h e engineering logic i s automata-modelled, but oriented t o e n g i n e e r i n g logic with s o m e empiric c o n t e n t s also. T h e f o l l o w i n g s i t u a t i o n s in t h e diagnosis and maintenance a r e modelled with automat0n:maintenance s t r u c t u r e ; r e l a tions: symptoms-diagnoses, re1ations:diagnostic c o n clusions-maintenance t e c h n o l o g y , e t c . T h i s h a s been achieved with nondeterminate a u t o m a t o n in the form o f a q u i n t u p l e (input.starting s t a t e , transfer f u n c t i o n , s t a t e s and tinal state). W i t h linking o f executivii rules t h e c h a i n s a r e defined f o r t h e k n o w l e d g e acquis i t i o n and inference line. F i g . 4 s h o w s summarised a n a l y s i s o f r e s u l t s obtained with the s o f t w a r e s u p p o r t for a u t o m a t a , maintenance computer s t r u c t u r e s and selected mini machines in the “pilot“ FMS model. T h e l a r g e number o f reasoning l i n e s from 1 2 to 1 7 2 i s

particularly stressed. T h e y e n a b l e the realisation of d i f f e r e n t inference e n g i n e conclusions.

3 . E X M A S - SOME RESULTS OF EXPERIMENTS T h e r e l a t i o n s between certain k n o w l e d g e entities for maintenance technology d e s i g n e r , i.e. a psrt of t h e maintenance p l a n n e r , relating to maintenance planning o f work s t a t i o n s a r e shown in Fig.5. F o n terminate s y m b o l M M represents d i f f e r e n t work station maintenance s t r u c t u r e s , a n d the f a c t s representing declarative k n o w l e d g e . T h e structure and connections for a given mechanical s y s t e m a r e idenLified with the basic rules. T e r m i n a t e s y m b o l a i s defined as:a = (elements, features. quantity), 'and t h e followiAg o p e r a t i o n s a r e carried out over t h i s knnw1Pdgr:a = ( d e c o m p o s i t i o n , c o u p l i n g ) . T h e decomposition operahicns relate to t h e establishlng of the e n t i r e maintenance s t r u c t u r e o f work station,and the coupling i s carried out a c c o r d i n g L O r e l a t i o n s h i p r e l a t i o n s in maintenance s t r u c t u r e in question. T h e formalisaLion of t h i s k n o w l e d g e is made according to the r u l e s with the f o l l o w i n g form: S T R U C T U R E COMPONENTS: : =ELENENT (e1ement)IS-PART-OF(e1ement);STRUCTUKE CONNECTIONS::= E L E I I I E N T ( e l e m e n t ) I S _ A T O E l ( a t o m ) . These three g r o u p s of rules i n P R O L O G notation describe a l l possible f o r m s of t h e s t r u c t u r e o f t h e work station,including: hierarchical s t r u c t u r a l e l e m e n t s , c o n n e c t i o n s and i t s last element. O n the basis of similar hypotheses the d e f i n i t i o n and the formalisation of the k n o w l e d g e for other nonterminate and terminate s y m b o l s o f Lhe graph i n question a r e made. T h e problem of sched u l i n g o f planned maintenance i n WRP production c o n t r o l c o n c e p t in FNS. Fig.3. i s c o m p l e x , f o r which the question o f priorities between planned and corr e c t i v e maintenance has to be s o l v e d . In (81 detailed model i s presented. Here characteristic examples a r e quoted for t h e group o f strategic r u l e s , T h e first example i s : R U L E 4 (Priotity 2 for f a i l u r e removal); IF failure a t work s t a t i o n prioty 2 THEN apply Rule 4 on planned maintenance o p e r a t i o n s with probability o f 0 . 8 . T h e maintenance technology s c h e d u l i n g f o r FMS work s t a t i o n s i s made a c c o r d i n g t o t h r e e criteria: maintenance operations, maintenance work o r d e r s and mechanical s y s t e m t o be maintained. T h e strategic r u l e s f o r scheduled maintenance o p e r a t i o n s a r e classified i n t o f i v e groups. Example: R U L E 2 , I F priority 1 (certainty factor - 0 . 8 ) T H E N maintenance operations planned f o r the most s u i t a b l e production terms. Scheduling o f maintenance repair o r d e r s i s carried out a c c o r d i n g t o criteria for 9 priorities. Example: RULE 3 ; IF priority 2 (certainty factor - 0 . 8 ) THEN carry out work orders with t h e highest downtime c o s t s per unit of time. T h e third group o f rules rel a t e s t o the definition o f priorities for mechanical systems. T h e r e a r e 5 in a l l : RULE 1 ; IF priority 0 (certainty factor -0.9) T H E F mechanical s y s t e m s very complex. T h e failure o n them c a u s e s very g r e a t damage Translated i n t o the e n t i r e logic o f t h i s expert SYStem, f o r n o n t e r m i n a t e node-scheduling ( S C H ) f o u r l i n e reasoning may be established: PIS+ a7 a2 aJ dl d2 , Y S + a 7 bl d7 d2 , MS+ cr c 2 d4 d7 dg and EIS + f, d4 d, d 2 . T h e first reasoning l i n e relates to scheduling according to m a i n t e n a n c e operations, a n d t h e third and the fourth according to t h e maintenance history and the c o n t r o l o f spare part s t o r e s (maintenance orders) In the f u r t h e r text t h e e x a m p l e s o f r u l e s for maintenance planner f o r t h e work s t a t i o n PIC HBG80 a r e given. First two basic rules for nonterminate s y m b o l -DP a r e given, Fig.3. M C a s machining station has c e r t a i n quality parameters relating to t h e geomet r i c a l , k i n e m a t i c and operation a c c u r a c y , s o that the g e n e r a l form o f t h e rule for quality diagnosis parameters may be written in the following form: IF (quality f u n c t i o n ) ( p a r a m e t e r s ) T H E N ( e x a m i n a t i o n procedure). T h e e x a m p l e is: RULE 1 8 (quality diagnosis);IF parallelity o f machined s u r f a c e s A and B in housing No.016845 i s under 0.025 mm THEN establish parallelity o f main s p i n d l e i n relation to x-axis according to DIN 8620. For identification o f f a i l u r e t h e general f o r m o f t h e rule is: IF ( f a i l u r e - o c c u r r e n c e ) T H E N (place.with probability pi)and t h e e x a m p l e is:RULE 28; IF a f t e r completion o f machining c y c l e tool holder not released from main s p i n d l e THEN evidence suggested with probability 0 . i 5 .that failure o n lead-out valve o f pneumatics of tool c l a m p i n g system. Given r u l e s for condition based maintenance technology h a v e a c o m m o n form: IF (machine element) THEN (maintenance technology)(parameters). Example: IF front main s p i n d l e bearing of MC HBG-80 THEN exchange bearing when: (i)vibration amplitude a t measuring s i t e 1 during two successive mesurements 0 . 0 8 mm and 1 during two (ii)temperature a t measuring site s u c c e s s i v e measurements 85'C. T h e r e l a t i o n s between FMS c h a r a c t e r i s t i c s a r e defined with s t r a t e g i c rules applied maintenance technology m o d e l s , and procedures for s p a r e part storage control. E x a m p l e o f rule for s e l e c t i o n and application o f diagnostic procedures: R U L E 5 ; IF (i)main s p i n d l e o n c o n d i t i o n based maintenance and (ii)there e x i s t r u l e s with mention

of VIBRATIONS, and (iii)Lhere exist rules with word T E M P E R A T U R E THEN suggested evident (0.75) that r u l e s relating t o VIBRA'PIONS should be executed before rules with word TEMPERATURE. T h e presented ES model w a s tested a t the a b o v e mentioned working station. T h e k n o w l e d g e base for the diagnostic s y s t e m for ZIC HBG-80 w a s formed in PROLOG notation by forming t h e following f a c t s and rules: f a i l u r e occurrence probability, symptoms, definition of connections: diagnosis(e)-symptom ( u ) ~element (u)-technology(ej o f c o r r e c t i v e maintenance and element (u)-spare part (parts). T h e chaining i n the k n o w l e d g e base i s achieved with t h e u s e of PROLOG f e a t u r e s , backward r e t r i e v a l , when i n interactive dialogue, ES answers, corresponding f a c t s a b o u t the symptom a r e entered for t h e c h a i n i n g of hypotheses. T h e c o n c l u s i o n s a r e d r a w n via c e r t a i n t y f a c t o r , calculated with B a y e s formula.Conflicting s i t u a t i o n s a r e solved with selectivity c o e f f i c i e n t s , representing the s u m o f Bays probability r e l a t i o n s o i the e v e n t : s y m p t o m - d i a g n o s i s . I n order to check t h e basic f e a t u r e s of developed ES, i t w a s tested o n 39 different e x a m p l e s f o r t h e above mentioned MC. T h e folowing r e s u l t s w e r e o b tained f r o m a n s w e r s received and e x p l a n a t i o n s g i v e n by reasoning lines: (i) absolutely a c c u r a t e a n s w e r s : 10 t e s t e x a m p l e s o r a b o u t 2 5 X ; (ii) e x a c t a n s w e r s 17 test (answer reliability interval:0.9-0.6), e x a m p l e s o r 4 5 % ; (iii)partly exact ansuers.requiring additional a n a l y s e s (reliability interval:0.4-0.6). 8 t e s t e x a m p l e s , o r a b o u t 2 0 % ; and (iv) w r o n g o r unsatisfactory a n s w e r s (reliability i n t e r v a l 0.4). 4 test e x a m p l e s , o r a b o u t 12%. I n Fig.6 the o u t c o m e of t h i s LS i s s h o w n o n : a) m a i n m e n u , b)problem d e f i n i t i o n , c)knowledge base e d i t o r , and d)ES answer with the reasoning l i n e explanation. G i v e n answer relates to conceptual diagnosis and m a i n t e n a n c e , a s w e l l a s t o required s p a r e parts. For working s t a t i o n MC DC-30 the k n o w l e d g e base has been formed o n the basis o f t h e translation of t h e existing diagnostic s y s t e m into f a c t s and rules, w h i l e f o r I R B 6 / 2 ASEA t h e f o r m a l i s a t i o n of e l e c t r o n i c e r r o r s i n Lhe k n o w l e d g e base r u l e s w a s made. Finally, t h e k n o w l e d g e base w a s formed for UMC-850 c o n t a j n i n g quality i n d i c e s o f t h i s ME1 (kinematic a c c u r a c y , measuring u n c e r t a i n t y , g e o m e t r i c a l accuracy of a x e s and Lhe measuring o f e t a l o n pieces). In this e x a m p l e EXNAS i s used a s ES consultant f o r establishing o f checking procedures f o r corresponding quality parameters. T h e o u t p u t f r o m this ES for a l l described e x a m p l e s with detailed comment of r e s u l t s i s given in [ a ] . 4.

CONCLUSlON T h e described ES model has been developed for off-line approach to t h e d i a g n o s i s and m a i n t e n a n c e o f FMS working s t a t i o n s , Fig.7, with the f o l l o w i n g possibilities of industrial application: (i) t h i s model may be applied with the u s e o f PC c o m p u t e r s for c e r t a i n work s t a t i o n s , (ii) with i n s t a l l i n g o f a corresponding A 1 language i n t o t h e c o m p u t e r control u n i t , i t w i l l be possible to translate the existing diagnostic s y s t e m into t h e expert d i a g n o s t i c system according to t h e EXXAS m o d e l , a s i t h a s been done for MC DC-30 and IRB 6 1 2 . T h e f u t u r e r e s e a r c h o n t h i s ES will i n c l u d e : (i)the research and improveof ment o f ES basic features,such a s : (a)testing established concept o f t h e k n o w l e d g e base and inference e n g i n e on a l a r g e c o m p u t e r , with d i f f e r e n t languages and A1 t o o l s , (b)the research o f o p t i m a l models f o r t h e representation o f different k n o w l e d g e , and in particular of c o g n i t i v e p r o c e s s o f m a i n t e n a n c e e n g i n e e r s , (c)the research o f i n f e r e n c e e n g i n e model with distributed r e a s o n i n g , and (d)the d e v e l o p m e n t o f a learning m o d e l , orinted to s p e c i f i c problems in d i a g n o s i s and maintenance o f divergent FMS work s t a t i o n s , and (ii)the research o f problems r e l a t i n g to t h e ES e n v i r o n m e n t , these being: (a)occurrences and diagnostic processes o n d i f f e r e n t FMS work s t a t i o n s , (b)CIM c o n c e p t , t h e p l a c e , t h e role and t h e integration of ES with t h e s o f t w a r e f o r t h i s c o n c e p t , and (c) t h e development o f models o f a d a p t i b l e e x p e r t .. aiagnostic systems

~~

5. REFERENCES Kobayashi. K., Inaba,S.,1985, T h e P r a c t i c a l Appr o a c h t o a n Unmanned FMS O p e r a t i o n , F l e x i b l e Automation in Japan, IFS (publications),Ltd., Bedford. 2. Y o s h i k a w a , H . , 1 9 7 7 , A Preliminary S t u d y o f Diagn o s i s and Elaintenance o f ?lanufacturing S y s t e m s , N T H S I N T E F , Trondheim. 3. S h a h i n p o o r , PI., V e l l s , D . , 1 9 8 6 , Engineering D i a g n o s t i c s and Troublesl~ooting: A New U s e f o r Fuzzy Logics, C l a r k s o n C o l l e g e o f Technology, Post dam. 4 . T a k a t a , S . , e t a l l , 1 9 8 5 , Monitoring and D i a g n o s i s System o f Machine T o o l s , Department of P r e c i s i o n E n g i n e e r i n g , UniversiLy of T o k y o , Tokyo. 1.

- -

5 . M o n o s t o r i , L . , 1986, L e a r n i n g P r o c e d u r e s i n M a c h i n e T o o l N o n i t o r i n g , C o m p u t e r s i n I n d u s t r y , No. 7,pp.53-64. 6. Weck, e t a l l , 1984, U n i v e r s e l l e s S y s t e m z u r P r o z e s und Anlagenubermachung, L a b o r a t o r i u m f u r Werkzeugmaschinen und B e t r i e b s s l e h r e der RWTH A a c h e n , Aachen. 7 . Mi.laci.c, V . , Plajstorovic, V., 1987, The Future of Computerised Maintenance, I F I P Working Conference "Diagnostic and Preventive Maintenance Strategies i n Manufacturing Systems",Dubrovnik. 8. M a j s t o r o v i c , V . . 1988, T h e DevelopmenL o f the &S M o d e l f o r D i a g n o s i s a n d : . l a i n L e n a n c e o f FMS w o r k i n g s t a n t i n n n . PhD t h e s i s , E l e r h n n i r n l E n g i neering Faculty, Beograd University. 9. M a j s t o r o v i c . V . , 1987, E x p e r t S y s t e m f o r C o m p u t e r I n t e g r a t e d M a i n t e 11a n c e , P r o c e e d i n 8 o f I n t e r n a t i o nal Conference: "Elodern Concepts and Methods i n Maintenance", London. l O . N i l a c i c , V . , Plajstorovic, V . ,1988, The Building of t h e K n o u l e d g e B a s e Model f o r C o m p u t e r I n t e g r a t e d M a i n t e n a n c e S y s t e m , P r o c e e d i n g s of I n t e r n a t i o n a l C o n f e r e n c e : " H a n u f a c t u ring International", Atlanta. 1 1 . Waterman, D . , 1 9 8 6 , A G u i d e t o E x p e r t S y s t e m s , A d d i s o n W e s l e y P u b l i s h i n g Company, E l a s s a c h u s e t t s . lZ.Hilacic, V. ,1987, Manufacturing Systems IIIManufacturing Systems Design Theory, Faculty of Mechanical Engineerjng, Beograd (in SerboCroatian). 1 3 . A l e x a n d e r , J . , H a n n a , F.. 1 9 7 8 , A u t o m a t a T h e o r y : An E n g i n e e r i n g A p p r o a c h , E d w a r d A r n o l d , L o n d o n .

STRUURE

F&

TEChWOlOGIK

DESCRIPTION

COMPONENTS CDNNCT~ONS

SPARE M T S OESCRIPTON

mOOuCTION

MAINkNANCE MODELS

GRAPH

P1ANNING

Mrnm

FOR MAIMENANCE PLANNER

~1 STRAKGK RU1fS

I

a4iu

GIVEN RULES

RU(ES

I

LOCATION

I

r

Fffi.3 FACTS AN0 RULCS FOR UAINTENANCE PLANNCR STRUCTUM

THEORt7lCAL ANALYSIS EXPtRrrCNTAl ANAllYS

I

MOOEL OF WORKING STA TlON

CLWFARATIVF ANALYSIS

SMLATION

I

J

3

MINI MACHINE 1-

NCMV

mc- eso

6 10

MINI MACHINE 2 MC DC- 30 MINI MACHINE 3ASEA IR8 6 / 2

t

3

I

I

-

I

4

4 12

MINI MACHINE 5MC HBG eo

-

FG. 1. BWCK MOM OWELOPING DUGNOSK E X m T SYSTEM M p

MINI MACHINE 6MC HBG eo

-

I

4

I

8 4

1

4 10 _. 3

48

4

-

32

4

5

7

3

2

2

2

4 12

I

6

MINI MACHINE 4 NCMM UMC- 850

-

12

5

<

6

172 10

(2 170

S

FIG. 4. AUTOMATA CHARACTERISTICS WITW

I USCR

I I

-1

INPUT

INTfRFWTER

FIG.2. EXPERT SYSTfM R)R MAINTtNMCE It-k'MSI

- BASIC

I

STRUCTURE

491

C O M M E N T

a) SUGGESTED E X M A S

choice Expert System for Conceptual Diagnosis and Maintenance for FMS Working Stations -LOCATION-BEARING-with probability 0 . 4 2 2 Y O 5 4 7 (Prototype. Version 1.0)

I think so because: The question-ARE-VIRRATIONS_INCREASED-answered:5, EXMAS

-

MAIN W N U : Thc que.stion-IS-TEMPERATURE-HIGHER-answered: yes

1.

PROBLEM D6FINITION

2.

KNOWLEDGE BASE EDITOR

Against so formulated opinion are the facts that: The question- IS-MAIN-SPINDLEPROTATINf;-answered: no 2 . 1.

READ The forming

of

the

opinion

about

this

choice not

2.2. APPEND

influenced by: 2 . 3 . DELETE

The question-IS-NOISE-INCREASED-answered:O 2.4.

PRINT Remark: Other choices less probable.

2.5. GO BACK

Yes 3.

ACTION

4.

EXIT

?-ma1ntenance-techno1ogy . For diagnosis BEARING-LOCATION

additional maintenance

technology is:

b) 1,

TAKE_DOWN-BEARING-ANDEXCHANGBD_DAMAC;ED-DAMAGED-ELEMENT, PROEiLEM DEFINITION

while spare parts are:

For diagnosis position MAIN-SPINDLE probability

OUTSIDE~RING-NUM~ERPlOOOOl-*~INTERNAL~RING~NIJMBER~

is 0.1;

100002~BALL~NUMBER~1OOOO~~i~HOLDER~NUMBER~lOOOO4

-

IF position main-spindle THEN 0.92 0.3 noise;

yes

-

FOR symptom-VIBR question is considerable;

?-halt.

-

4 2.

FIG.6. EXMAS - B A S I C FEATURES a) Main M e n u ; b ) Problem D e f i n i t i o n ; c ) Knowledge Base Editor; d ) E X M A S ' answer

KNOWLEDGE BASE EDITOR IF

-

locat ion-main-spindle

THEN

maintenance

technology:diagnostic-programs_SJ37-e~8tabli~h diagnosis-fiinction-spindle-then-consult-maintenance-mnual-chapter-lO-*-l1_i-12;

-

1-1

IF location-main-spindle THEN spare parts are:

-0MGNOSK

id-number-fro~catalogue_r/d_045604_+-600504-

TiCHWLOoI

i-5006500-*-500069; d) 3.

ACT I ON ?-execute-diagnosic. IS_BlJTTON-"TOOL-NOT-CLAMPED"-AI.IGHT: no.

! I

IS~THERE~NO~CLEANINGOF_MAIN_SPI"O_AIR~:no.

IS-MAIN-SPINDLE-ROTATING: no. ARE-VIBRATIONS-INCREASED: 5. IS-ROTATION-UBBVEN: 0. IS-NOISE-INCREASED: 0 . IS-TEMPERATURE-HIGHER: yes.

Suggested choice (i): LOCATION-BEARING with probability 0 . 4 2 2 ' 3 0 5 4 7 yes ?-why.

492

-1NTiR FACi CNC CU