An improved error estimate for Maxwell’s equations with a power-law nonlinear conductivity

An improved error estimate for Maxwell’s equations with a power-law nonlinear conductivity

Applied Mathematics Letters 45 (2015) 93–97 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com...

386KB Sizes 0 Downloads 29 Views

Applied Mathematics Letters 45 (2015) 93–97

Contents lists available at ScienceDirect

Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml

An improved error estimate for Maxwell’s equations with a power-law nonlinear conductivity✩ Tong Kang a,∗ , Yanfang Wang a , Liyun Wu a , Kwang Ik Kim b a

Department of Applied Mathematics, School of Sciences, Communication University of China, Beijing, 100024, China

b

Department of Mathematics, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea

article

info

Article history: Received 11 December 2014 Received in revised form 11 January 2015 Accepted 11 January 2015 Available online 7 February 2015

abstract In this work we investigate a fully discrete finite element method for Maxwell’s equations with  a power-law  nonlinear conductivity and prove an improved error estimate with

O τ + hmin{1,α} (α > 0) for both time and space discretization, which is a more accurate approximation than the suboptimal order estimate in [1]. © 2015 Elsevier Ltd. All rights reserved.

Keywords: Nonlinear Maxwell’s equations Backward Euler Edge elements Error estimate

1. Introduction A power-law for the conductivity occurs in various physical models such as the constitutive law for type-II superconductors (see [2]) and modeling of the nonlinear conductivity of the charge-density wave state of NbSe3 (see [3]). In this paper, we will study Maxwell’s equations with a power-law nonlinear conductivity:



ε∂t E + σ (|E |)E = ∇ × H + J , ∂t H + ∇ × E = 0,

(1)

where E and H are the electric and the magnetic field and J denotes the current density. Let Ω ⊂ R3 be a polyhedral domain with the boundary ∂ Ω . This domain is occupied by a nonlinear conducting material with the electric conductivity σ (|E |), which is assumed to be a monotone function of the form |E |α−1 with α > 0. Let a(E ) = |E |α−1 E. For simplification, put the electric permittivity ε = 1. We eliminate the magnetic field H for the system (1) and obtain the following initial and boundary value problem:

 ∂tt E + ∂t a(E ) + ∇ × ∇ × E = F , E (x, 0) = E0 , ∂t E (x, 0) = E0′ , n × E (x, t ) = 0,

(x, t ) ∈ Ω × (0, T ], x ∈ Ω, (x, t ) ∈ ∂ Ω × (0, T ],

(2)

where we define a new source term F .

✩ This work was supported by National Basic Research Program of China under grant number 2014CB845906, R&D of Key Instruments and Technologies for Deep Resources Prospecting (the National R&D Projects for Key Scientific Instruments) under grant number ZDYZ2012-1-02-04, NSFC under grant 91130015 and BSRP through POSTECH BK21 Plus Mathematics. ∗ Corresponding author. E-mail address: [email protected] (T. Kang).

http://dx.doi.org/10.1016/j.aml.2015.01.017 0893-9659/© 2015 Elsevier Ltd. All rights reserved.

94

T. Kang et al. / Applied Mathematics Letters 45 (2015) 93–97

In [1], Durand and Slodička presented a fully discrete finite element method for the problem (2) based on backward Euler discretization in time and curl-conforming finite elements in space. The obtained error estimate is suboptimal, namely, of order τ 1/2 +hmin{1/2,α} . According to the authors, the optimality of the backward Euler method cannot be expected a priori due to the combination of the hyperbolicity and the nonlinearity of the problem. The suboptimality of space discretization is due to the estimation of S3 (see Page 15, [1]). If the nonlinear function a(E ) is replaced by a Lipschitz continuous approximation, then we could use Young’s inequality to estimate S3 and obtain the optimality with respect to h under proper conditions. Some similar suboptimal estimates for eddy current problems and type-II superconductor models are found in [4–6]. The purpose of this work is to prove an improved error estimate with O(τ + hmin{1,α} ) for the problem (2) with α > 0. The theoretical result can be extended to other similar problems. We state the fully discrete scheme and the main result in Section 2 and the proof of the result is given in Section 3. 2. Fully discrete scheme and the main result We set p = max{2, 1 + α} and define the function space





V = u ∈ L p (Ω )∇ × u ∈ L 2 (Ω ), n × u = 0 on ∂ Ω .



This is a reflexive Banach space (see [1]). Before we give the fully discrete scheme, we define Th as a regular tetrahedral mesh partition of Ω with a mesh size h. We construct a finite element space based on Nédélec’s curl-conforming edge elements:





Wh0 = ϕ ∈ V : ∀K ∈ Th , ∃ a, b ∈ R3 , ϕ|K = a + b × x . We introduce the interpolation operator Π h to have the following estimate (see [7,8])

    u − Π h u

  (3) ≤ ChuW 1,p (curl ,Ω ) ,    for any u ∈ W 1,p (curl , Ω ) = u ∈ W 1,p (Ω )∇ × u ∈ W 1,p (Ω ) . Let ∥ · ∥ denote the L 2 (Ω )-norm. We divide the time interval (0, T ) into M equal subintervals by using nodal points 0 = t0 < t1 < t2 < · · · < tM = T with tn = nτ , and denote the nth subinterval by I n = (tn−1 , tn ]. Set δ ui − δ ui−1 ui − ui−1 , δ 2 ui = . ui = u(ti ), δ ui = τ τ L p (Ω )

With the finite element setting we can formulate the fully discrete scheme as follows: Find ehi ∈ Wh0 such that

         δ 2 eh , ϕ h + δ aeh , ϕ h + ∇ × eh , ∇ × ϕ h = F h , ϕ h , i

i

eh = Π h E , 0 0

i

δ eh0 = Π h E0′ ,

i

∀ϕ h ∈ Wh0 ,

(4)

x ∈ Ω.

Now, we have the main result of this paper. Theorem 2.1. Let E and ehi (1 ≤ i ≤ M) be the solutions of the problem (2) and the scheme (4) respectively. For the source function F and the initial data E0 and E0′ , we assume F (x, t ) ∈ H 1 (0, T ; L 2 (Ω )),

E0 , E0′ ∈ W 1,2 (curl , Ω ).

Suppose that E ∈ H 2 (0, T ; W 1,2 (curl , Ω )). Then we have

 

2 

max ehi − E (ti ) +

1≤i≤M

M   M       2   2 τ ∇ × ehi − E (ti )  ≤ C (τ 2 + h2·min{1,α} ), τ ∇ × ehi − E (ti )  +  i=1

(5)

i=1

where C is a positive constant independent of both the time step length τ and the mesh size h. 3. Proof of Theorem 2.1 Proof. First, multiplying the equation of the problem (3) by any ϕ h ∈ Wh0 and integrating the results over Ω , then we obtain

        ∂tt E , ϕ h + ∂t (a(E )), ϕ h + ∇ × E , ∇ × ϕ h = F , ϕ h .

(6)

Integrating (6) over [ti−1 , ti ] in time yields

     h h ∂t Ei − ∂t Ei−1 , ϕ + a(Ei ) − a(Ei−1 ), ϕ +

ti ti−1

∇ × E, ∇ × ϕ

h



=



ti ti−1



F , ϕh .

(7)

T. Kang et al. / Applied Mathematics Letters 45 (2015) 93–97

95

For i = 1, . . . , M, setting (1)

Ri

(2)

Ri

ti



1

(t − ti−1 )∂tt E dt , = ∂t Ei − δ Ei = τ  ti  ti ti−1 (t − ti−1 )∂t (∇ × E ) dt , ∇ × E dt = = τ ∇ × Ei − ti−1

ti−1

we have



     δ Ei − δ Ei−1 , ϕ h + a(Ei ) − a(Ei−1 ), ϕ h + τ ∇ × Ei , ∇ × ϕ h    ti    (1) (1) (2) h h F , ϕh . = −Ri + Ri−1 , ϕ + Ri , ∇ × ϕ +

(8)

ti−1

It is clear that

 ti    2  (1) 2    Ri  ≤ C τ ∂tt E  dt , ti−1  ti  2      (2) 2 3 ∂t (∇ × E ) dt .  Ri  ≤ C τ

(9) (10)

ti−1

(1)

Define E−1 = E0 − τ E0′ . Then R0



= 0. Making summation for i = 1, . . . , j leads to

j      δ Ej , ϕ h + a(Ej ), ϕ h + τ ∇ × Ei , ∇ × ϕ h i=1 j  j      (2) Ri , ∇ × ϕ h + = −Rj(1) , ϕ h + i=1

i =1

ti











F , ϕ h + δ E0 , ϕ h + a(E0 ), ϕ h .

(11)

ti−1

Next, we sum (4) up for i = 1, . . . , j and then subtract (11) to obtain



j      δ(ehj − Ej ), ϕ h + a(ehj ) − a(Ej ), ϕ h + τ ∇ × (ehj − Ej ), ∇ × ϕ h i =1

= Rj(1) , ϕ h 



j  j     (2) Ri , ∇ × ϕ h + + − i=1

i=1

ti

     (Fi − F ), ϕ h + δ eh0 − δ E0 , ϕ h + a(eh0 ) − a(E0 ), ϕ h . (12)

ti−1

For brevity, set 2hj := ehj − Π h Ej . Thus,



j      δ 2hj , 2hj + a(ehj ) − a(Π h Ej ), 2hj + τ ∇ × 2hi , ∇ × 2hj i=1 j  ti j      (2) (Fi − F ), 2hj Ri , ∇ × 2hj + = Rj(1) , 2hj + − i=1 ti−1 i =1       h ′ ′ h h + Π E0 − E0 , 2j + a(Π E0 ) − a(E0 ), 2hj + δ(Ej − Π h Ej ), 2hj





j     + a(Ej ) − a(Π h Ej ), 2hj + τ ∇ × (Ej − Π h Ej ), ∇ × 2hj .

(13)

i=1

Further, we multiply both sides of the equation (13) by τ and sum up for j = 1, . . . , n to have j n n n          τ δ 2hj , 2hj + τ a(ehj ) − a(Π h Ej ), 2hj + τ ∇ × 2hi , τ ∇ × 2hj j=1

j =1

j =1

i =1

j j  n n  n         (2) = τ Rj(1) , 2hj + − Ri , τ ∇ × 2hj + τ j =1

j =1

i=1

j =1

i=1

ti

(Fi − F ), 2hj



ti−1

n n n          + τ Π h E0′ − E0′ , 2hj + τ a(Π h E0 ) − a(E0 ), 2hj + τ δ(Ej − Π h Ej ), 2hj j =1

j=1

j =1

j n       + τ a(Ej ) − a(Π h Ej ), 2hj + τ ∇ × (Ej − Π h Ej ), τ ∇ × 2hj . n

j =1

j =1

i=1

(14)

96

T. Kang et al. / Applied Mathematics Letters 45 (2015) 93–97

Now, we deal with each term on both sides of the equation (14). Using the inequality a(a − b) ≥ a2 /2 − b2 /2 yields n n     2  1  2 1  2     1  h 2 1      τ δ 2hj , 2hj ≥ 2j  − 2hj−1  = 2hn  − 2h0  . j =1

2

j =1

2

2

2

(15)

We use the monotonicity of the function a to conclude that n    τ a(ehj ) − a(Π h Ej ), 2hj ≥ 0.

(16)

j =1

Applying Abel’s summation rule and defining j n   j =1

τ ∇ × 2hi , τ ∇ × 2hj



=

i=1

0

j =1

τ ∇ × 2hj = 0, we have

n  n 2 1   2 1     τ ∇ × 2hj  . τ ∇ × 2hj  +  2 j =1 2 j =1

(17)

Using Young’s inequality, (3) and (9)–(10), we have the following estimates. j n   j =1

(2)

Ri , τ ∇ × 2hj

i=1 n

≤C

j  n  n  2     (2) 2 1   Ri  + τ ∇ × 2hj 

≤C

τ3

T



t0

j =1



n  2  2 1     ∂t (∇ × E ) dt + τ ∇ × 2hj 

8 j =1

n  2  2 1     τ ∇ × 2hj  ∂t (∇ × E ) dt +

T

8 j =1

t0

 2   ≤ C τ 2 E  1

H (0,T ;W 1,2 (curl ,Ω ))

+

n  2 1   τ ∇ × 2hj  , 8 j =1

n  2      τ Rj(1) , 2hj ≤ C τ 2 E  2

H (0,T ;L 2 (Ω ))

j =1

j  n   τ j =1

i=1 n



8 j =1

j=1 i=1



≤ Cτ 2





ti ti−1

3

τ2

0

j =1

n   1   h 2 τ 2j  , 16 j=1

j  n     (Fi − F )dt , 2hj ≤ τ j =1

T



+

(18)

i =1

ti ti−1

(19)

    (Fi − F )dt  2hj 

 2     1      ∂t F dt · τ 2 2hj  ≤ C τ 2 F  1

H (0,T ;L 2 (Ω ))

+

n   1   h 2 τ 2j  , 16 j=1

(20)

n n  2      1   h 2   τ Π h E0′ − E0′ , 2hj ≤ C Π h E0′ − E0′  + τ 2j 

16 j=1

j =1

 2   ≤ Ch2 E0′ 

W 1,2 (curl ,Ω )

+

n   1   h 2 τ 2j  , 16 j=1

(21)

n n           τ a(E0 ) − a(Π h E0 ), 2hj ≤ τ a(E0 ) − a(Π h E0 ) 2hj  j =1

j =1

n n    2·min{1,α}  1   h 2   ≤C τ E0 − Π h E0  + τ 2j 

16 j=1 (the α -Hölder continuity of the function a with 0 < α ≤ 1 in Lemma 6.4, [6]) n  2·min{1,α}   1   h 2   τ 2j  , ≤ Ch2·min{1,α} E0  1,2 + W (curl ,Ω ) 16 j=1 j=1

n n           τ δ(Ej − Π h Ej ), 2hj ≤ τ δ(Ej − Π h Ej ) 2hj  j =1

≤C

j =1

n  j =1

 2   τ h2 δ Ej 

W 1,2 (curl ,Ω )

+

n   1   h 2 τ 2j  16 j=1

(22)

T. Kang et al. / Applied Mathematics Letters 45 (2015) 93–97

 2   ≤ Ch2 ∂t E  ∞ L

(0,T ;W 1,2 (curl ,Ω ))

 2   ≤ Ch2 E  2

+

+

H (0,T ;W 1,2 (curl ,Ω ))

97

n   1   h 2 τ 2j  16 j=1

n   1   h 2 τ 2 j  , 16 j=1

(23)

n n           τ a(Ej ) − a(Π h Ej ), 2hj ≤ τ a(Ej ) − a(Π h Ej ) 2hj  j=1

j =1

n n    2·min{1,α}  1   h 2   τ 2j  ≤C τ Ej − Π h Ej  +

16 j=1

j =1

(the α -Hölder continuity of the function a with 0 < α ≤ 1 in Lemma 6.4, [6]) n  2   1   h 2   ≤ Ch2·min{1,α} E  ∞ + τ 2j  1,2 L

(0,T ;W

(curl ,Ω ))

 2   ≤ Ch2·min{1,α} E  1

H (0,T ;W 1,2 (curl ,Ω ))

j n   j=1

(24)

16 j=1

+

τ ∇ × (Ej − Π h Ej ), τ ∇ × 2hj

n   1   h 2 τ 2j  , 16 j=1



i=1

≤C

j n  n  2 1  2      τ ∇ × (Ej − Π h Ej ) +  τ ∇ × 2hj  j

≤C

8 j =1

i =1

j =1

n   j=1 i=1

2    τ 2 Ej − Π h Ej 

 2   ≤ Ch2 E  ∞ L

 2   ≤ Ch2 E  1

W 1,2 (curl ,Ω )

(0,T ;W 1,2 (curl ,Ω ))

H (0,T ;W 1,2 (curl ,Ω ))

+

n  2 1   τ ∇ × 2hj  8 j =1

+

n  2 1   τ ∇ × 2hj  8 j =1

+

n  2 1   τ ∇ × 2hj  . 8 j=1

(25)

Thus, making use of the previous estimates (18)–(25) to (14) and applying Grönwall’s inequality lead to n  n 2  2  2    h     τ ∇ × 2hj  ≤ C (τ 2 + h2·min{1,α} ). 2n  + τ ∇ × 2hj  +  j=1

(26)

j =1

Finally, we use the triangle inequality to arrive at the error estimate for the fully discrete scheme (4), which completes the proof. 

2

Remark 3.1. We use the term max1≤i≤M ehi − E (ti ) as the error E in Section 8, [1] approximately. By comparing the result of Theorem 2.1 with the numerical experiments in [1], Experiment 1 shows the same convergence rate as the estimated O(τ 2 ) rate. Experiment 2 and 3 shows the less convergence rates than the theoretical result in time, but we obtain the almost same convergence rates with respective to the mesh size h as the predicted O(h2·min{1,α} ) rate with α = 0.6 and α = 3.0.



References [1] S. Durand, M. Slodička, Fully discrete finite element method for Maxwell’s equations with nonlinear conductivity, IMA J. Numer. Anal. 31 (2011) 1713–1733. [2] J. Rhyner, Magnetic properties and AC losses of superconductors with power-law current–voltage characteristics, Physica C 212 (1993) 292–300. [3] G. Grüner, A. Zawadowski, M. Chaikin, Nonlinear conductivity and noise due to charge-density-wave depinning in NbSe3 , Phys. Rev. Lett. 46 (1981) 511–515. [4] M. Slodička, S. Durand, Fully discrete finite element scheme for Maxwell’s equations with non-linear boundary condition, J. Math. Anal. Appl. 375 (2011) 230–244. [5] K. Van Bockstal, M. Slodička, Error estimates for the full discretization of a nonlocal parabolic model for type-I superconductors, J. Comput. Appl. Math. 275 (2015) 516–526. [6] V. Vrábel, M. Slodička, An eddy current problem with a nonlinear evolution boundary condition, J. Math. Anal. Appl. 387 (2012) 267–283. [7] A. Buffa, M. Costabel, M. Dauge, Algebraic convergence for anisotropic edge elements in polyhedral domains, Numer. Math. 101 (1999) 823–864. [8] P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, USA, 2003.