An integral inequality for cosine polynomials

An integral inequality for cosine polynomials

Applied Mathematics and Computation 249 (2014) 532–534 Contents lists available at ScienceDirect Applied Mathematics and Computation journal homepag...

217KB Sizes 0 Downloads 79 Views

Applied Mathematics and Computation 249 (2014) 532–534

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

An integral inequality for cosine polynomials Horst Alzer a, Allal Guessab b,⇑ a b

Morsbacher Str. 10, 51545 Waldbröl, Germany Laboratoire de Mathématiques et de leurs Applications, UMR CNRS 4152, Université de Pau et des Pays de l’Adour, 64000 Pau, France

a r t i c l e

i n f o

a b s t r a c t Let

Keywords: Integral inequality Cosine polynomial Convex function

T n ðxÞ ¼

n X 1 a0 þ ak cosðkxÞ: 2 k¼1

We prove that if ak ðk ¼ 0; 1; . . . ; nÞ is an increasing sequence of real numbers, then for any function f which is increasing and convex on the real line we have

1

p

!  Z p  n jT n ðxÞj 1 X f ak ; dx P f Ln n þ 1 k¼0 0

where

Ln ¼

1

p

 Z p   n  1 X cosðkxÞdx  þ   2 0 k¼1

denotes the Lebesgue constant. This extends and refines a result due to Fejes (1939). Ó 2014 Elsevier Inc. All rights reserved.

In what follows, we denote by T n a cosine polynomial of degree n with real coefficients,

T n ðxÞ ¼

n X 1 a0 þ ak cosðkxÞ: 2 k¼1

In 1938, Sidon [5] published the following inequality. Proposition 1. Let ak ðk ¼ 0; 1; . . . ; nÞ be non-negative real numbers. Then there exists a constant C such that

Z p

jT n ðxÞjdx > C  log n  min ak : 06k6n

0

One year later, Fejes [1] proved a refinement of this result (see also [3, Section 2.2.2]). Proposition 2. Let ak ðk ¼ 0; 1; . . . ; nÞ be non-negative real numbers. Then,

1

Z p

p

0

jT n ðxÞjdx P Ln  min ak ; 06k6n

⇑ Corresponding author. E-mail addresses: [email protected] (H. Alzer), [email protected] (A. Guessab). http://dx.doi.org/10.1016/j.amc.2014.10.086 0096-3003/Ó 2014 Elsevier Inc. All rights reserved.

ð1Þ

H. Alzer, A. Guessab / Applied Mathematics and Computation 249 (2014) 532–534

533

where Ln denotes the Lebesgue constant

Ln ¼

1

p

 Z p   n 1 X  cosðkxÞdx:  þ   2 0 k¼1

Setting a0 ¼ a1 ¼    ¼ an ¼ 1 reveals that Ln is the best possible constant in (1). Two questions arise: (i) Is it possible to improve the lower bound in (1)? Rp (ii) Does there exist a positive lower bound for 0 jT n ðxÞjdx, if some of the coefficients are negative? P It is the aim of this note to show that in (1) we can replace the factor min06k6n ak by the arithmetic mean nk¼0 ak =ðn þ 1Þ under the assumption that the coefficients are increasing. This leads to an improvement of (1). Moreover, if a0 6 a1 6    6 an Rp P and nk¼0 ak > 0, then we obtain a positive lower bound for 0 jT n ðxÞjdx. Actually, we prove a bit more. We present a lower Rp bound for 0 f ðjT n ðxÞj=Ln Þdx, where f is an increasing and convex function. In order to prove our result we need two classical inequalities. Tchebychef’s inequality. Let xk and yk ðk ¼ 0; 1; . . . ; nÞ be real numbers with

x 0 6 x1 6    6 xn

and y0 6 y1 6    6 yn :

Then, n n n X X X xk  yk 6 ðn þ 1Þ xk yk : k¼0

k¼0

ð2Þ

k¼0

The sign of equality holds in (2) if and only if x0 ¼    ¼ xn or y0 ¼    ¼ yn . Jensen’s inequality. Let g be convex on ðc; dÞ and let h be integrable on ½a; b with c < hðtÞ < d. Then,

1 g ba

Z

!

b

hðtÞdt

6

a

1 ba

Z

b

g ðhðtÞÞdt:

a

Proofs can be found, for instance, in [4, Section 2.5] and [2, Section 6.14], respectively. Our general inequality can be stated as follows. Theorem. Let ak ðk ¼ 0; 1; . . . ; nÞ be real numbers satisfying

a0 6 a1 6    6 an :

ð3Þ

Then, for any function f which is increasing and convex on the real line we have

1

p

!  Z p  n jT n ðxÞj 1 X dx P f f ak : Ln n þ 1 k¼0 0

ð4Þ

If a0 < an and f is strictly increasing, then (4) holds with ‘‘>’’ instead of ‘‘P’’. Proof. We follow the method of proof given in [1]. As shown in [1] we have

Ln ¼

n X 1 pn0 þ pnk ; 2 k¼1

with

pnk ¼

1

Z p

p

0

ð5Þ

cosðkxÞ sgn sin ððn þ 1=2ÞxÞdx ¼

1 8ð2n þ 1Þ X

p2

1

2 2 m¼0 ð2n þ 1Þ ð2m þ 1Þ  4k

2

:

ð6Þ

Applying jAj ¼ A sgn A P A sgn B we obtain

1

Z p

p

0

jT n ðxÞjdx P

1

Z p

p

0

T n ðxÞ sgn sin ððn þ 1=2ÞxÞdx ¼

n X 1 pn0 a0 þ pnk ak : 2 k¼1

ð7Þ

From the series representation in (6) we find

1 p < pn1 <    < pnn : 2 n0

ð8Þ

Using (3) and (8) we conclude from Tchebychef’s inequality that

! n n n X X X 1 1 1 pn0 a0 þ pnk ak P pn0 þ pnk ak ; 2 nþ1 2 k¼1 k¼1 k¼0

ð9Þ

534

H. Alzer, A. Guessab / Applied Mathematics and Computation 249 (2014) 532–534

with equality if and only if a0 ¼ an . Next, we combine (7), (9) and (5). This gives

1

p

Z p n jT n ðxÞj 1 X dx P ak : Ln n þ 1 k¼0 0

ð10Þ

Since f is increasing, we get

f



1

p

!  Z p n jT n ðxÞj 1 X dx P f ak : Ln n þ 1 k¼0 0

ð11Þ

An application of Jensen’s inequality leads to

1

p

  Z p  Z p  jT n ðxÞj 1 jT n ðxÞj dx P f f dx : Ln Ln p 0 0

Combining the last two inequalities yields (4). Moreover, if a0 < an and f is strictly increasing, then the inequalities (9)–(11) are strict, so that we obtain (4) with ‘‘>’’ instead of ‘‘P’’. h Remark 1. If f is decreasing and concave, then the converse of (4) holds. 2. The special case f ðxÞ ¼ x reveals that if a0 6 a1 6    6 an , then the following improvement of (1) is valid:

1

Z p

p

0

jT n ðxÞjdx P Ln 

n 1 X ak P Ln  min ak : 06k6n n þ 1 k¼0

References [1] [2] [3] [4] [5]

L. Fejes, Two inequalities concerning trigonometric polynomials, J. London Math. Soc. 14 (1939) 44–46. G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Camb. Univ. Press, Cambridge, 1952. G.V. Milovanovic´, D.S. Mitrinovic´, Th.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Sci, Singapore, 1994. D.S. Mitrinovic´, Analytic Inequalities, Springer, New York, 1970. S. Sidon, Über Fourier-Koeffizienten, J. London Math. Soc. 13 (1938) 181–183.