t° .P c~t
i~
~
~~
119~ 1 6
s~ra
f~s ~~
~~ ~t
~it~~~t
b~ ph~iop~snt or
p
o., ,~`
~~~
~
~ ~dca~a
~asb~ish~~
~TAAI~E~ 1~i~~~l~tL ~d~,~ornio , of P ys~cr, ~n~~~rsity o~ CeÎi~ortiia ad L~~ ~gele~, â o~ ngel~~
i~eceived 2~3 ~une 1962 " . ~. ~onttDiled apprt)ach suggests b~ eg~e to sttidy~ scattering an1 ÎHtu i , W as i °oar of co$nple~ angular manientunt is applied to the ~c can and frac uations with (:oulomb potentials. It is found that t ai tai ~o enturr~ eigen~alues of and statu are given by the equation fur the ' a~ areaplitu~le at n ' e energies. There are no Regge pole rasons , i.e. poles ïn the first quadrant of the d plan for positive enrgi~ . Somm aid- ~ ~ i~x ~entatrons are gig°en ' all . In the relativistic aises a branch cut ap ~~ th+t ~ pl physical rote tom for ' is di ed.
t has
n su
es
that baryons and
wons are assaciated
ith
e
e pales
of at ' et ants . These poles nZa~e i n the complu an lar gtnentaa plane as a function of energy f ). ey appear in scattering atnp t~des ~b mati from salufions of the ~ er equatian with a ~enn~l function ' h n represented as the sta sitian of a tentials. ® explicit solutit~rts for such tendais ~e bven faund . owever, an explicit salution is d~.no n for the crnl~atnb s~atteri~cg pütude. e ®ulornb fennel ntay n®t be represented a~ a s~~ ositian o~ wa ten ° s so that so e of the results of egge a3 do not. haâd~ t is of interest to co e tine non-relativistic ~:oulotnb st~.ttering p it de ~!~ith scattering pliru c do satisfy the egge con itians . ~n addition e ~ltatdy the properties of t e relay ° tic ~oaxlomb pli de. ts . , , n °n ris ctiveiy the rests ®r the hr ' ~, ein-t~ordon ir~ e ~ tiens. discussion of le tray tories is lnc n
e
tion an litu e na
s te
o
°ne fra
°ts of t e
~3g
n `
an er
if
~
~~ in `~°hieh
tl n
~
an attracti~ra;
Ci)iJ~.o ~ SC
RI~(â A2ISPLIi`t,li.DES
63~
written in the form
r(t + 1-~ ~~~
es
o e ns~der (~C, ~~ for ed ~ as a function of 1. Eq . (3~ shows that negative ob ' ed fr® pure imaginary values of k. Since t:~e poles of the Sn ~ ,~ t® and states occur for positive iz~laginary k we first take ~ see from e . (2~ that the poles of in the -~otnplex 1 plane occur for ~ -1- .-
°rhe
,
jnte r
a
t - -- n~ , f_2 )
~ai=0,1, . . . .
is the ~~a iat quantum number, i .e., it is equal to the number of radial Rer
et~ ~f
Ie
®
pot~~ti~l . or ~~~ Sdhr~d~n~er ~quation with~Coulomb
at~ ~ es t ~ ~ es n ` ual to ~ n®n®ne ti set ° level is ¬~ set of c I~es of i'or . . sing ~ . g we s et~ e . l in hese e sho t eter
i . 2.
intc er oe ~ue~s s
. ~ or ` ~ e ~le ~ a ~
.~~j ole i tions in tû~ co pYex 1plane for ~ fix walue ®f l t to ., ' s with the o ~~ 'te ~ r of l+e~. e uen Ieft. and continues to the 1= ~ ancï 1= ,
line d = -- r~ ® I, -~ - . s ~ increases iro~rn ~- $xa to , ewe toti ly e con ' u®usly increas` sl® an ap r®aches as ~io is sho in . I where e und states are identi ene ~ ~e h ~ir®~en ato ener levels is ap rent in f~ ue is to ass ~ate wIt a ~te r ®f s~i~ o fro Incr ° an co 'n i nite s
~, ole ~
t~c~~~s
e c® of
l 1 1 l~s to
e for a valve of , left of the ° a °
lot the
les
ys
.
ne
e a .
it.
,
le
~
i
sitions in
e
in in ° is
at
~. ~ t
hY
v
l
°~~j °
curr~e rises `th = o. is line y crosses . The . . h ener ~ te e v es, lo
.T m .
1
s the
i
r
t
~ite
uence
le ~
ane .
- ~
t t
lled and
r ,~ht .
CoüLO"
Cy
A
hfl
~LiTi1~?ES
it i a ~~Mtx t ere is an i nits nu r of poles having 1 > . ~ bo nd s f `e les . ~t~e o i the results s own in fig. 3 . All the poles appear sere c ecreases onotonic ly with and c(c~o) = 0. This > is of t .e s e as that w °c r uces the resonances described t , a le lies at a finite int on the real I skis for E ~- 0 and into the u r half plane. In the Coulomb case for E > 0 r tts the Left o t e line el ® -- . high xnay expressed as a superposition of ~ukawa potentials, b~°t~veen the residue of ~ik, Ij (considered as a function c~f k for fixed s to le and Eile square of the no ir~tion constant C is given by
c~r es
a
onali lc
be y
~I~es p~ all t e or tlte relate I) at
e as
In this
totic fo
o the radial wave function u(r) is of the form lim u(r} -~ Ce`~`. .-~
sinus imaginary corresponding to a bound state. n the Coulomb
ln e . ( ~ case princi
oti~ f® of the square of the wave function for a bound state with Btu nurn r is given by 2r ~ . _ .1_ ._ .___ liro u ~ --~ na f~+i-~ l)I' n-I) n
Z~e
- ar,, ",
e a~nay ex nd for e 1 as a function of k in the neighbourhood t k ï/r~, obtaining the residue
siat of the
if we
sider the ~nalogue of e
we see
t
in eq . (7) to ~
. (7~ holds except for the factor (- ? )~.
we inSommerfeld-~~atson integral representation for f(®} write 1 = pe~~ and let p -~ x foc large AIE, real k and ph ~~~~l Q. It' ~'e
art order to write
vesti
(7)
te
~ ,
(9) ~~ -~ e(2i ~~ togs°(~~~'~) _ ~.~ < rp < ~~..
°I"his ~s
,pts~ti~
®f the integral vio~ar assures the con~`ergence ïk c ---?ï sin d
S®
is str~~ ~tt
s~n
I tc
p~it~a . . e cont~sur t ~ ~ntc 1 r~ ntation of t ï~n t~ " t. s~ nto r fra~ 1= - --~ao to 1= -- -~- ë~ and clo on âc~ r~ ht atf plant.
e
e vv °- ce~s (1 - .~ ~~~( ' ( p ~. -~ iv ,
-~ ( iv-~- ij%~
i
(12)
.
c
ete
ctfl l1 ,~ ~,5
~ci t cI
cc
o
c u l~
t_ o tio t e ei - or o e tion t t e e ~ ~ since only t en o t ere e °st e scatteri a li e rt~ay written
('
~
`~tc®~)
(s+ ~ ~) s+ ®~.)
(
s the s e 1 plane cut as s. is cut âs due to the ~ 2 in the ~i ® or on equation . t represents a strong n.
.
old-
stem cant®ur for ¬he
sin-Cordon amplitude.
for f(8). The vertical contour y its a S- representation end of the _ ~ n Y in this case, o `~~°er. ~t must run tw°een the variable v by ~s shown in fib. . ~ can then define a new :he inte al repress cation
rce~
e ~~xnd s te
4
8i~9
ere ~s an
ite t~u
~Ie~ are ob ai
Y7~rs
r of b nd st~:tes and nc~ reso ;t
'~i~ ~r~ iv~l t ad~e
es
a
~~
1 r tote t
~t'fe
~t
~.
~~
~~
~~
oUB.~
~~~
~~
6 .~
~ ~ s t ere a j ïs nti i of a. ~.rïse u e crossïng all ïtive inte al 1 v lues, ~ as ~ °~ . he und state ener ïes ~re the
tri+ on the top shit of the compie~ 1 plane for E > r~c~ for the ordon equation .
lcin-
o~ pote trajectoric$ oc' the sccc~~c~ sheet of the complex 1 glane for E > me=.
r~a
ït
~ï
ndïng to a cre~ssing of a no~~-negatitite integer 1. There is an inwith r, y~ctorïes and an infattite num r of a®'1nd states associated . The the solutions c~f eq . (~7) have complex 1 values ~ïan but with t~ve . n region I~ the values of 1 are also complex three regions ï o~ the phase of the function s~l) in all h~
r~s t
.
~,f lo t s te l ~r the s etches .
t
~ to
on-s ° n ar
s
~1
ed
t e ~,
v~rittßn as a s litu e ~na j, viz. ~ o ent
(s ® 6y)
` . ~~ ~ s ~ r~
t
t ft
t~ ~
.
o~ ~
f'
~ ~~
~s of
1'~s ~ 1 ~- gY
S
ire v is the relativistic ,velocity. n this case the ®f t e irac hydrogen a~to . The equation
lee o ~~ ~
rve the
stags
s-l-l-iy es t e eher ~e seen to de in
lace of d.
f
ei envallues and s o~rs t e it e e er e sin t ener leve6s nd on j lone. e results are t e e t of t. , ith j ~~ o ~;rfeld- atson represen tion is o ore ' e as
-a~
2i cos~ ~~
e slo
s
te
oh t e tra~e~ctory of a egge le in t e ~ ver us .~ tity ne %s a nce in applications ~~. or tent° tter° t ~~ slo evaiuated un siate ener is related to an average radius iated ~ - t t hound t e fo a y
relativistic
o lo h scat
in t e appro ri te re
~o is (22~
l , i the relativistic case, e ave 2
~e
l ~ ta. 2~ i`:
y9~9~
t
t e
~ 3
r®lessor i vers for n~ valuable suggestions. atic~nal fence oundation.
hi, Phys . ~~ . Letters ~ (1962) 4I (1959) 951 hanks (Per~anron Press, London, 195 ) P. ä if 'tz, Q stum ry of atomic collisions (The Glarendon Press, London,
u