Analysis of differential equations of fractional order

Analysis of differential equations of fractional order

Applied Mathematical Modelling 36 (2012) 4356–4364 Contents lists available at SciVerse ScienceDirect Applied Mathematical Modelling journal homepag...

216KB Sizes 4 Downloads 281 Views

Applied Mathematical Modelling 36 (2012) 4356–4364

Contents lists available at SciVerse ScienceDirect

Applied Mathematical Modelling journal homepage: www.elsevier.com/locate/apm

Analysis of differential equations of fractional order K. Sayevand a,⇑, A. Golbabai b, Ahmet Yildirim c,d a

Department of Mathematics, Faculty of Science, Malayer University, Malayer, Iran School of Mathematics, Iran University of Science and Technology, Tehran, Iran Ege University, Science Faculty, Department of Mathematics, 35100 Bornova, Izmir, Turkey d University of South Florida, Department of Mathematics and Statistics, Tampa, FL 33620-5700, USA b c

a r t i c l e

i n f o

Article history: Received 6 June 2011 Received in revised form 8 November 2011 Accepted 15 November 2011 Available online 25 November 2011 Keywords: Caputo fractional derivative Existence and uniqueness of solution Homotopy perturbation technique Nonlinear fractional differential equations

a b s t r a c t This paper provides a robust convergence checking method for nonlinear differential equations of fractional order with consideration of homotopy perturbation technique. The differential operators are taken in the Caputo sense. Some theorems to prove the existence and uniqueness of the series solutions are presented. Results show that the proposed theoretical analysis is accurate.  2011 Elsevier Inc. All rights reserved.

1. Introduction The subject of fractional calculus (that is, calculus of integrals and derivatives of any arbitrary real or complex order) was planted over 300 years ago. Since that time the fractional calculus has drawn the attention of many researchers. In recent years, fractional calculus has played a significant role in many areas of science and engineering. For an interesting history and more scientific applications of fractional calculus, see [1–5]. Finding approximate or exact solutions of fractional differential equations is an important task. Except in a limited number of these equations, we have difficulty finding their analytical solutions. Therefore, there have been attempts to develop the new methods for obtaining analytical solutions which reasonably approximate the exact solutions. Recently, several such techniques have drawn special attention, such as Hirtoa’s bilinear method, the Adomian’s decomposition method, the homogeneous balance method, inverse scatting method, the homotopy analysis method, the variational iteration method, parameter-expanding method, differential transform method and homotopy perturbation technique. The homotopy perturbation technique [6–8] is a promising analytic technique which has successfully been applied to solve linear, nonlinear, initial and boundary value problems of fractional order [9,10]. Considerable research work has recently been conducted in applying this method to Navier–Stokes equation, nonlinear Schrödinger equation, Volterra’s integro-differential equation, nonlinear oscillators, fractional KdV equations, quadratic Riccati differential equation of fractional order and many other problems. For more details about homotopy perturbation technique and its applications, the reader is advised to consult the results of the research works presented in [11–15]. In this paper, nonlinear fractional differential equations are investigated by means of the homotopy perturbation technique. Some theorems about uniqueness and existence of the solutions are presented. Moreover, we consider how the theoretical results may be applied in homotopy perturbation technique. ⇑ Corresponding author. E-mail address: [email protected] (K. Sayevand). 0307-904X/$ - see front matter  2011 Elsevier Inc. All rights reserved. doi:10.1016/j.apm.2011.11.061

4357

K. Sayevand et al. / Applied Mathematical Modelling 36 (2012) 4356–4364

2. Preliminaries and notations This section deals with some preliminaries and notations regarding fractional calculus. For more details see [1–5]. Definition 1. A real function n(t), t > 0 is said to be in the space C a ; a 2 R if there exists a real number p(>a), such that S (m) n(t) = tpn1(t), where n1(t) 2 C[0, 1), and it is said to be in the space C m a ; m 2 N f0g if and only if n (t) 2 Ca. Definition 2. The (left sided) Riemann–Liouville fractional integral of order a > 0 of a function n(t) 2 Ca, a P 1 is defined as

( a

1

CðaÞ

It nðtÞ ¼

Rt

nðsÞ 0 ðtsÞ1a

ds;

a > 0; t > 0;

ð1Þ

nðtÞ;

Iat nðx; tÞ ¼

1 CðaÞ

Z

t

nðx; sÞ ðt  sÞ1a

0

ds;

a > 0; t > 0;

ð2Þ

where C() is the well-known Gamma function. Definition 3. The (left sided) Riemann–Liouville fractional derivative of nðtÞ; nðtÞ 2 C m 1 ; m 2 N

S

f0g, of order a is defined as

m

Dat nðtÞ ¼

d ma nðtÞ; mI dt t

m  1 < a 6 m;

m 2 N:

ð3Þ

Definition 4. The (left sided) Caputo fractional derivative of nðtÞ; nðtÞ 2 C m 1 ; m 2 N

( a

Dt nðtÞ ¼

a ðmÞ n ðtÞ m  1 < a < m; ½Im t dm dt m

S f0g, is defined as

m 2 N;

ð4Þ

a ¼ m;

nðtÞ

@ m nðx; tÞ ; m  1 < a < m; @t m a m aþm Dt Dt nðtÞ ¼ Dt nðtÞ; m ¼ 0; 1; . . . ; n  1 < a < n:

a Dat nðx; tÞ ¼ Im t

ð5Þ ð6Þ

Property. Similar to integer-order differentiation, fractional differentiation is a linear operation

Dat ðcnðtÞ þ gvðtÞÞ ¼ cDat nðtÞ þ gDat vðtÞ:

ð7Þ

Definition 5. A two-parameter Mittag–Leffler function is defined by the series expansion [1]

Ea;b ðzÞ ¼

1 X n¼0

zn ; Cðan þ bÞ

z 2 C:

ð8Þ

2.1. The relation between fractional derivative and fractional integral

Theorem 2.1.1. Assume that the continuous function n(t) has a fractional derivative of order a, then we have

8 ba > a < b; < It nðtÞ Dat Ibt nðtÞ ¼ nðtÞ a ¼ b; > : bþa Dt nðtÞ a > b; Iat Dat nðtÞ ¼ nðtÞ 

m 1 X k¼0

Dat Iat nðtÞ ¼



nðkÞ ð0þ Þ

tk ; k!

ð9Þ

m  1 < a 6 m;

nðtÞ; m  1 < a 6 m; m 2 N ; Iat Dat nðtÞ þ nð0Þ; 0 < a < 1:

m 2 N;

ð10Þ

ð11Þ

4358

K. Sayevand et al. / Applied Mathematical Modelling 36 (2012) 4356–4364

3. Existence and uniqueness of the solution This section, is devoted to proving the existence and uniqueness of solutions for fractional initial value problems under a global Lipschitz condition on a finite interval of the real axis in spaces of continuous functions. Theorem 3.1 (Generalized Banach fixed point theorem). Let U be a nonempty closed subset of a Banach space E, and let bn P 0 P for every nand such that 1 n¼0 bn converges. Moreover, let the mapping A : U ? U satisfy the inequality

kAn u  An v k 6 bn ku  v k

ð12Þ

for every n 2 N and for every u, v 2 U. Then, A has a uniquely defined fixed point u . Furthermore, for any u0 2 U, the sequence ⁄ ðAn u0 Þ1 n¼1 converges to this fixed point u . ⁄

Proof. See [16]. h Now, consider the following fractional initial value problems under a global Lipschitz condition

Dat nðtÞ ¼ f ðt; nðtÞÞ; k

n ð0Þ ¼

ðkÞ n0 ;

m  1 < a < m;

ð13Þ

k ¼ 0; 1; . . . ; m  1:

According to (4), Eq. (13) can be written in the following form

Dat ðn  T m1 ðnÞÞðtÞ ¼ f ðt; nðtÞÞ;

ð14Þ

ðkÞ

nk ð0Þ ¼ n0 ; where Tm1(n) is the Taylor polynomial of order (m  1) for n, centered at 0 (see [16]). ðkÞ

ðkÞ

Theorem 3.2 (Existence). Assume that K ¼ ½0; v   ½n0  b; n0 þ b with some v⁄, b > 0, and let the function f : K ! R be  a1 continuous. Furthermore, define v ¼ minfv ; bCkfðakþ1Þ g. Then, there exists a function n : ½0; v ! R solving the initial value 1

problem (14). Proof. See [16]. h ðkÞ

ðkÞ

Theorem 3.3 (Uniqueness). Assume that K ¼ ½0; v   ½n0  b; n0 þ b with some v⁄,b > 0. Furthermore, let the function f : K ! R be bounded on K and fulfil a Lipschitz condition with respect to the second variable, i.e.,

jf ðx; yÞ  f ðx; zÞj 6 Ljy  zj

ð15Þ

with some constant L > 0 independent of x, y and z. Then, denoting v as in Theorem 3.2, there exists at most one function n : ½0; v ! R solving the initial value problem (14). Proof. See [16]. h a

Theorem 3.4. In equation Dtj nðtÞ ¼ f ðt; nðtÞ; Dati nðtÞÞ, if f be a continuous function which satisfy in a uniform Lipschitz condition, then this equation, subject to the given initial conditions, has a unique continuous solution on interval [0, T]. Proof. See [17]. h

4. Multi-order fractional differential equations A multi-order fractional differential equations (M-OFDEs) can be presented in the following form [14,17,18]

Datn nðtÞ ¼ f ðt; nðtÞ; Dat1 nðtÞ; Dat2 nðtÞ; . . . ; Datn1 nðtÞÞ; ðkÞ

n ð0Þ ¼ ck ;

n 2 N;

ð16Þ

k ¼ 0; 1; 2; . . . ;

where ai 2 R, a1 < a2 <    < an1 < an and Dati is used to represent the Caputo fractional derivative of order ai. 5. M-OFDEs as a system of FDEs In this section, we present a theorem to convert the initial value problem (16) into a system of fractional differential equations.

K. Sayevand et al. / Applied Mathematical Modelling 36 (2012) 4356–4364

4359

Theorem 5.1. Eq. (16) is equivalent to the system of equations in the following form

Dati ni ðtÞ ¼ niþ1 ðtÞ;

i ¼ 1; 2; . . . ; n  1;

Datn ni ðtÞ ¼ f ðt; n1 ðtÞ; n2 ðtÞ; . . . ; nn ðtÞÞ; ðkÞ ni ð0Þ

¼

cik ;

k ¼ 0; 1; . . . ; ai 2 R;

ð17Þ i ¼ 1; 2; . . . ; n:

Proof. In Eq. (16), set n(t) = n1(t) and define Dat ni ðtÞ ¼ niþ1 ðtÞ; i ¼ 1; 2; . . . ; n  1. Hence, by substituting these relations into Eq. (16), we can convert the M-OFDEs into a system of FDEs. h

6. Performance evaluation of homotopy perturbation technique In Eq. (16), let us set

f ðt; n1 ðtÞ; . . . ; nn ðtÞÞ ¼ gðtÞ þ

n X

/j ðtÞnj ðtÞ þ Nðt; n1 ðtÞ; . . . ; nn ðtÞÞ;

ð18Þ

j¼1

where g(t) and /j(t) are arbitrary functions. Also, N is a nonlinear part of f. To solve Eq. (17), we can construct the following homotopy

Dati ni ðtÞ  pðniþ1 ðtÞÞ ¼ 0;

p 2 ½0; 1

ð19Þ

and

Datn ni ðtÞ  p gðtÞ þ

n X

! /j ðtÞnj ðtÞ þ Nðt; n1 ; . . . ; nn Þ

¼ 0;

p 2 ½0; 1:

ð20Þ

j¼1

Homotopy perturbation technique yields the solution ni(t) by the series

ni ðtÞ ¼

1 X

pm ni;m ðtÞ;

p 2 ½0; 1;

i ¼ 1; 2; . . . :

ð21Þ

m¼0

Assume now that

N t;

1 X

m

p n1;m ðtÞ;

m¼0

1 X

m

p n2;m ðtÞ; . . . ;

m¼0

1 X

! m

p nn;m ðtÞ

m¼0

¼

1 X

pk Nk ;

p 2 ½0; 1;

ð22Þ

k¼0

where

N0 ¼ N 0 ðt; n1;0 ðtÞ; . . . ; nn;0 ðtÞÞ; N1 ¼ N 1 ðt; n1;0 ðtÞ; . . . ; nn;0 ðtÞ; n1;1 ðtÞ; . . . ; nn;1 ðtÞÞ;

ð23Þ

N2 ¼ N 2 ðt; n1;0 ðtÞ; . . . ; nn;0 ðtÞ; n1;1 ðtÞ; . . . ; nn;1 ðtÞ; n1;2 ðtÞ; n2;2 ðtÞ; . . . ; nn;2 ðtÞÞ; .. .: In view of homotopy perturbation technique and in order to generate the necessary data, we obtain

8 ai Dt ni ;0 ðtÞ ¼ 0; > > > > > Dai ni ;1 ðtÞ  niþ1;0 ðtÞ ¼ 0; > > < t Dati ni ;2 ðtÞ  niþ1;1 ðtÞ ¼ 0; > >. > .. > > > > : ai Dt ni ;n ðtÞ  niþ1;n1 ðtÞ ¼ 0

ð24Þ

and

8 an Dt nn ;0 ðtÞ ¼ 0; > > > > n > P > > Datn nn ;1 ðtÞ  /j ðtÞnj ;0 ðtÞ  N0  gðtÞ ¼ 0; > > > j¼1 > > > > n < an P Dt nn ;2 ðtÞ  /j ðtÞnj ;1 ðtÞ  N1 ¼ 0; j¼1 > > > > > . > > > .. > > > a n P > > n > : Dt nn ;m ðtÞ  /j ðtÞnj ;m1 ðtÞ  Nm1 ¼ 0: j¼1

ð25Þ

4360

K. Sayevand et al. / Applied Mathematical Modelling 36 (2012) 4356–4364

Consequently, in view of Theorem 2.1.1 we have

ni;0 ðtÞ ¼

mi X

tk ; k!

cik

k¼0

ni;mþ1 ðtÞ ¼ Iat i ðniþ1 ;m ðtÞÞ; mn X tk cnk ; nn;0 ðtÞ ¼ k! k¼0 n X

nn;1 ðtÞ ¼ Iat n

m ¼ 0; 1; 2; . . . ;

ð26Þ !

/j ðtÞnj ;0 ðtÞ þ N0 þ gðtÞ ;

j¼1 n X

an

nn;mþ1 ðtÞ ¼ It

i ¼ 1; 2; . . . ; n;

! /j ðtÞnj ;m ðtÞ þ Nm ;

m ¼ 1; 2; . . . :

j¼1

Thus, we get the approximate solution of Eq. (16) in the following form

nðtÞ ¼

1 X 1 X

pm ni;m ðtÞjp¼1 :

ð27Þ

i¼0 m¼0

Theorem 6.1. Consider the following equation

Dat nðtÞ ¼ f ðt; nðtÞÞ; m  1 < a < m; m 2 N ;

ð28Þ

a

where Dt denotes, the fractional derivative in the Caputo sense, subject to the initial conditions ðkÞ

nðkÞ ð0Þ ¼ n0 ;

k ¼ 0; 1; . . . ; m  1:

ð29Þ

The homotopy perturbation technique, yields that the initial value problem (28) be equivalent to the nonlinear Volterra integral equation of the second kind

nðtÞ ¼

m1 X

ðkÞ

n0

k¼0

tk 1 þ k! CðaÞ

Z 0

t

f ðs; nðsÞÞ ðt  sÞ1a

ds:

ð30Þ

Proof. Suppose that

f ðt; nðtÞÞ ¼ gðtÞ  LnðtÞ  NnðtÞ;

ð31Þ

where L is a linear operator while N is a nonlinear operator and g is a known analytical function. In view of homotopy perturbation method, we construct the following homotopy

ð1  pÞDat nðtÞ þ pðDat nðtÞ þ LnðtÞ þ NnðtÞ  gðtÞ ¼ 0;

p 2 ½0; 1:

ð32Þ

In order to generate the necessary data, we use the homotopy parameter p to expand the solution in the following form

nðtÞ ¼ n0 ðtÞ þ pn1 ðtÞ þ p2 n2 ðtÞ þ p3 n3 ðtÞ þ    :

ð33Þ

For the nonlinear terms, let us set Nn(t) = S(t). Hence, we have

0

1

0

1

0

1

1 0 0 C B n ðtÞ C B n ðtÞ C B B S0 ðn0 ðtÞÞ C B C B gðtÞ C B 1 C B 0 C C C B C B B B C C B C B0 C B B S1 ðn0 ðtÞ; n1 ðtÞÞ C; Dat B n2 ðtÞ C ¼ LB n1 ðtÞ C  B CþB C C B. B . C B . C B C .. C @ .. B . C B . C B A . . . A A @ A @ @ 0 nj ðtÞ nj1 ðtÞ Sj1 ðn0 ðtÞ; n1 ðtÞ; . . . ; nj1 ðtÞÞ n0 ðtÞ

0

0

ð34Þ

where j = 3, 4, 5, . . . and also, the functions S0, S1, S2, . . . are similar with (22). Consequently, we have

8 m1 P ðkÞ tk > > n0 k! ; > < n0 ðtÞ ¼ k¼0

> n1 ðtÞ ¼ Iat ðLn0 ðtÞÞ  Iat S0 ðn0 ðtÞÞ þ Iat gðtÞ; > > : nj ðtÞ ¼ Iat ðLnj1 ðtÞÞ  Iat Sj1 ðn0 ðtÞ; n1 ðtÞ; . . . ; nj1 ðtÞÞ;

ð35Þ j ¼ 2; 3; . . . :

Hence, we get an accurate approximation in the following form

K. Sayevand et al. / Applied Mathematical Modelling 36 (2012) 4356–4364

nðtÞ ¼

m1 X

ðkÞ

n0

k¼0

! 1 1 X X tk Lnk ðtÞ þ Sk  gðtÞ :  Iat k! k¼0 k¼0

4361

ð36Þ

Finally, we have a nonlinear Volterra integral equation of the second kind in the following form

nðtÞ ¼

m 1 X

ðkÞ

n0

k¼0

tk 1 þ k! CðaÞ

Z

t

0

f ðs; nðsÞÞ ðt  sÞ1a

ds:

ð37Þ

Looking at the questions of existence and uniqueness of the homotopy perturbation technique solution, we present the following results. Lemma 6.1. Eq. (37) is weakly singular if 0 < a < 1 and regular for a P 1. Proof. See [19]. h Lemma 6.2. If 0 < a < 1, Eq. (37) can be written in the following form ð0Þ

nðtÞ ¼ n0 þ

1 CðaÞ

Z

t

0

f ðs; nðsÞÞ ðt  sÞ1a

ds:

ð38Þ

Proof. It is an immediate consequence of (37). Thus, we only discuss the case 0 < a < 1. Now, let us define U as a close subset of the Banach space of all continues function on [0, v], equipped with the Chebyshev norm in the following form

   ð0Þ  U ¼ fn 2 C½0; v : n  n0  6 bg:

ð39Þ

1

U is a nonempty set. On U we define the operator A by ð0Þ

ðAnÞðtÞ ¼ n0 þ

1 CðaÞ

Z

t

0

f ðs; nðsÞÞ ðt  sÞ1a

ds:

ð40Þ



Lemma 6.3. Under the assumptions of the relations (38)–(40), we have

AnðtÞ ¼ nðtÞ:

ð41Þ

Lemma 6.4. In Eq. (40) for "t, t1, t2 2 [0, v] we have [16]

8 1 jðAnÞðt 1 Þ  ðAnÞðt2 Þj 6 Ckfðakþ1Þ ð2ðt 2  t 1 Þa þ ðt 1 Þa  ðt2 Þa Þ; > > < ð0Þ jðAnÞðtÞ  n0 j 6 b; > > a n : n kA nðtÞ  An ~nðtÞk 6 ðLv Þ knðtÞ  ~nðtÞk : L1 ½0;t

ð42Þ

1

Cðanþ1Þ

Thus, A has a unique fixed point. Consequently, the proof of the existence and uniqueness of homotopy perturbation technique solution for Eq. (28) is thoroughly investigated. 6.1. Structural stability Let n(t) and v(t) be the solutions, respectively, of the initial value problems

(

(

Dat nðtÞ ¼ f ðt; nðtÞÞ; ðkÞ

nðkÞ ð0Þ ¼ n0 ;

k ¼ 0; 1; . . . ; m  1;

Dat vðtÞ ¼ f ðt; vðtÞÞ; ~

vðkÞ ð0Þ ¼ nðkÞ k ¼ 0; 1; . . . ; m  1; 0 ;

ð43Þ

~ j < . Thus, under natural Lipschitz conditions imposed on f we have [16] where ja  a

knðtÞ  vðtÞkL1 ½0;T ¼ OðÞ;

 ! 0;

T < 1:

ð44Þ

7. Applications In this section to demonstrate the effectiveness of our approach, some examples are presented. It is to be noted that in all examples n 2 Ck[0, T < 1], k = 1, 2, . . . , where

4362

K. Sayevand et al. / Applied Mathematical Modelling 36 (2012) 4356–4364

a ðmÞ Dat nðtÞ ¼ Im n ðtÞ; t

m  1 < a < m;

m 2 N:

Example 1. Consider the following initial value problem [20]

MD2t nðtÞ þ 2S

pffiffiffiffiffiffiffi 3=2 lqDt nðtÞ þ KnðtÞ ¼ #ðtÞ;

0 6 t 6 T;

ð45Þ

n0 ð0Þ ¼ 1:

nð0Þ ¼ 1;

This problem described the motion of a large plate of the surface Sand mass Min a Newtonian fluid viscosity l and density q. The plate is hanging on a massless spring of stiffness K. The function #(t) represents the loading force. The Eq. (45) is so called inhomogeneous Bagley–Torvik equation [20]. The Bagley–Torvik equation is known as a prototype of fractional differential equation with pffiffiffiffiffiffiffi two derivatives. In order to make comparison with the numerical solution of [20] we choose M ¼ 2S lq ¼ K ¼ 1; T ¼ 5 and #(t) = K(t + 1). By the same manipulation as Section 6 we set 3=2 Dt n1 ðtÞ ¼ n2 ðtÞ; 1=2 Dt n2 ðtÞ ¼ n2 ðtÞ  n1 ðtÞ þ 1 þ t;

ð46Þ

n1 ð0Þ ¼ n01 ð0Þ ¼ 1; n2 ð0Þ ¼ 0: It is to be noted that since ni is continuous on the compact set [0, T], it is uniformly continuous there. Whence absolute maximum theorem implies that

jni ðtÞj 6 di ;

t 2 ½0; T;

di 2 Rþ :

ð47Þ

Hence

jni ðtÞ  ni ð~tÞj 6 jni ðtÞj þ jni ð~tÞj 6 di þ ~di ;

t; ~t 2 ½0; T:

ð48Þ

Thus, by the Archimedean property of real number we will have

9L > 0;

s:t: d 6 Ljt  ~tj;

ð49Þ

where

d ¼ di þ ~di :

ð50Þ

Consequently, in view of (4) we have

n1;0 ðtÞ ¼ 1 þ t; n1;mþ1 ðtÞ ¼ I1:5 n2;m ;

m ¼ 0; 1; . . . ;

ð51Þ

n2;0 ðtÞ ¼ 0; n2;1 ðtÞ ¼ 0; n2;mþ1 ðtÞ ¼ I0:5 ðn1;m ðtÞ þ n2;m ðtÞÞ;

m ¼ 1; 2; . . . :

Therefore we will obtain



n1;mþ1 ðtÞ ¼ 0; n2;mþ1 ðtÞ ¼ 0;

m ¼ 0; 1; . . . :

ð52Þ

Hence, n1(t) = 1 + t and n2(t) = 0. So, n(t) = 1 + t is the solution of Eq. (45). It is easily verified that t + 1 is the exact solution of Eq. (45). Table 1 shows the resulting error at t = 5 obtained by numerical method in [17] and compared with the solution obtained by the proposed scheme. Example 2. Consider the following initial value problem [21]

Dat nðtÞ ¼

 

3 3 40320 8a C 5 þ a2 4a 9 3 a 4 2 þ 2  t  t t   C ð a þ 1Þ þ  n2 ðtÞ; t 4 2 Cð9  aÞ C 5  a2

nð0Þ ¼ 0;

0 < a 6 2;

n0 ð0Þ ¼ 0ða > 1Þ:

ð53Þ

Assume now that

 

3 3 40320 8a C 5 þ a2 4a 9 3 a t 2  t 4  n2 ðtÞ; f ðtÞ ¼  t t 2 þ Cða þ 1Þ þ a 4 2 Cð9  aÞ Cð5  2Þ Consequently, we will have

ð54Þ

4363

K. Sayevand et al. / Applied Mathematical Modelling 36 (2012) 4356–4364 Table 1 Error at t = 5 for Eq. (45).

jf ðtÞ  f ð~tÞj 6 lkgk1 jt  ~tj;

Error at t = 5 by proposed approach

Error at t = 5 by [17]

(step size)

0 0 0 0

0.15131473519232 0.04684102179946 0.01602947553912 0.00562770408881

(0.5000) (0.2500) (0.1250) (0.0625)

t; ~t 2 ½0; T;

ð55Þ

where





l ¼ sup I2t n00 ðtÞ ; g ¼ gða; t; ~tÞ; s:t:kgk1 < 1: 1

ð56Þ

t2½0;T

The exact solution of Eq. (53) by homotopy perturbation technique was derived in [21] and is

nðtÞ ¼



2 3 a t2  t4 : 2

ð57Þ

~ þ . In view of (44) we have Now suppose that a < a

knðtÞ  vðtÞkL1 ½0;T 6

a~ þ8  9 a~  T jT  1j þ 3T 2 T 2  1 : 4

ð58Þ

Hence by our assumption on a, we find that

sup jnðtÞ  vðtÞj ! 0;

as

 ! 0;

t 2 ½0; T:

ð59Þ

Example 3. Consider the following fractional nonlinear Schrödinger equation

1 @ 2 nðx; tÞ þ jnðx; tÞj2 nðx; tÞ ¼ 0; 2 @x2 jnðx; tÞj2 ¼ nðx; tÞnðx; tÞ; a

iDt nðx; tÞ þ

nðx; 0Þ ¼ eix ;

ð60Þ

ðx; tÞ 2 R  ½0; 2;

where  nðx; tÞ is the conjugate of n(x, t) and i2 = 1. The Schrödinger equation is the fundamental equation of physics for describing non-relativistic quantum mechanical behavior. The nonlinear Schrödinger equation was studied by many researchers [11,22]. By the same manipulation as Section 6, the solution n(x, t) is given as

nðx; tÞ ¼

1 X

a

ðit Þn eix : 2 Cðna þ 1Þ

ð61Þ

n

n¼0

As mentioned in previous examples (Eqs. (48) and (55)) one will set

a a X 1 1 X ðit Þn ðit Þn ix iz jnðt; xÞ  nðt; zÞj ¼ e  e n n¼0 2n Cðna þ 1Þ 2 C ðn a þ 1Þ n¼0 a a X 1 ðit Þn Ea;1 it jx  zj 6 #jx  zj; jðcos x  cos zÞ þ iðsin x  sin zÞj 6 2 ¼ n n¼0 2 Cðna þ 1Þ 2

# 2 Rþ :

ð62Þ

Consequently, in view of homotopy perturbation technique we have [22]

 ! j jk    1 @ 2 nj ðx; tÞ X X t     þ n ðx; tÞn ðx; tÞ n ðx; tÞ dt  nðx; tÞÞ  6 kn n0 ðx; tÞ  eiðxþ2Þ ; jli i k 2  2 @x k¼0 l¼0

  X n Z t  i  j¼0 0

ð63Þ

where n0(x, t) = n(x, 0) and k 2 (0, 1). Thus, we have

nn ðx; tÞ n¼0

1 X

t

! eiðxþ2Þ :

ð64Þ

a¼1 t

Therefore we deduce that for a ¼ 1; eiðxþ2Þ is the exact solution of Eq. (60).

4364

K. Sayevand et al. / Applied Mathematical Modelling 36 (2012) 4356–4364

8. Discussion and conclusion In this study, we developed a homotopy perturbation scheme to solve the nonlinear fractional differential equations based on the Caputo definition. The uniqueness and existence of the homotopy perturbation technique solution was examined. The test we performed to evaluate the performances of the proposed analytical approach is encouraging. Moreover, the results show that the solutions of proposed scheme are stable. Finally, we point out that this new strategy has its own limitations and should be generalized and verified for more complicated linear and nonlinear problems. In other words, the present paper is only an introduction to the topic, and there remains a lot of work to do. References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22]

I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calculus Appl. Anal. 5 (2002) 367–386. J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul. 16 (2011) 1140–1153. K.B. Oldham, J. Spainer, The fractional calculus, Academic Press, New York, 1974. G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach, Yverdon, 1993. J.H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng. 178 (3/4) (1999) 257–262. M.A. Noor, S.T. Mohyud-Din, Homotopy perturbation method for solving Thomas–Fermi equation using Pade approximants, Int. J. Nonlinear Sci. 8 (2009) 27–31. Y. Khan, Q. Wu, Homotopy perturbation transform method for nonlinear equations using Hes polynomials, Comput. Math. Appl. 61 (2011) 1963–1967. S. Momani, Z. Odibat, Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A 365 (2007) 345–350. O. Abdulaziz, I. Hashim, S. Momani, Solving systems of fractional differential equations by homotopy-perturbation method, Phys. Lett. A 372 (4) (2008) 451–459. A. Yildirim, An algorithm for solving the fractional nonlinear Schördinger equation by means of the homotopy perturbation method, Int. J. Nonlinear Sci. Numer. Simul. 10 (2009) 445–450. D.D. Ganji, S.S. Ganji, S. Karimpur, Z.Z. Ganji, Numerical study of homotopy-perturbation method to burgers equation in fluid, Numer. Methods Partial Differ. Eqn. 26 (4) (2010) 114–124. M. Dehghan, F. Shakeri, The numerical solution of the second Painlevé equation, Numer. Methods Partial Differ. Eqn. 25 (5) (2009) 1238–1259. A. Golbabai, K. Sayevand, The homotopy perturbation method for multi-order time fractional differential equations, Nonlinear Sci. Lett. A 1 (2) (2010) 147–154. A. Golbabai, K. Sayevand, Analytical treatment of differential equations with fractional coordinate derivatives, Comput. Math. Appl. 62 (2011) 1003– 1012. K. Diethelm, N.J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl. 265 (2002) 229–248. K. Diethelm, N.J. Ford, Numerical solution of the Bagley–Torvik equation, BIT 42 (2002) 490–507. V. Daftardar, H. Jafari, Solving a multi-order fractional differential equation using Adomian decomposition, Appl. Math. Comput. 189 (2007) 541–548. P. Linz, Analytical and numerical methods for Volterra equations, SIAM, Philadelphia, 1985. R.L. Bagly, P.J. Torvik, On the appearance of the fractional derivative in the behaviour of real materials, J. Appl. Mech. 51 (1984) 294–298. O. Abdulaziz, I. Hashim, S. Momani, Application of homotopy perturbation method to fractional IVPs, J. Comput. Appl. Math. 216 (2008) 574–584. J. Biazar, H. Ghazvini, Convergence of the homotopy perturbation method for partial differential equation, Nonlinear Anal. RWA 10 (2009) 2633–2640.