JOURNAL OF MOLECULAR SPECTROSCOPY
119,280-290 (1986)
Analysis of the Baldet-Johnson System Bands in the f4C160+ Ion Molecule
The emission spectra of the O-O, O-l and 1-O bands of the Baldet-Johnson system in the “C’60’ isotopic molecule have been recorded and analyzed for the first time. The spectra have been photographed at such a h&h resolution that it was possible to separate most of the lines of all the 12 branches of this transition. The reduction of the spectra of the individual bands has been performed via a nonlinear least-squares fit with the effective Hamiltonian of Brown. By means of the merged calculation the following constants for the u = 0 and u = I levels in both electronic states have been computed: for B2Z+-B,, 4, y,,, for A2J&-8,, 4, A,, Ati, qv, pu and pm and T$$r values. Q 1986AC&IU~C press,Inc. INTRODUCTION It is well known that in the optical spectra of CO+ four band systems and four electronic states have been observed. In the 1920’s three main band systems were discovered: the First-negative (B*B+-X*X’) (I), Comet-tail (A211i-X2X+) (2), and 33aldetJohnson (B*Z+-A211i) systems (3). The Marchand-D’Incan-Janin band system (C*Ar,A’IIi) and a new electronic state were found in the 1960’s (4). Fundamental investigations of the spectra and of the structure of this molecule have been performed by IL Narahari Rao. Only owing to Rao’s analyses, a correct and final inte~retation of the lines, branches, and bands has been performed and the fundamental molecular constants for the electronic states of this molecule have been calculated (5-7). Th, no+..,...bh.rn;~nl :n+n..an+o e-.e-,..-.e~oo ;n the +hnrnl, md ;n mdhnrla nf ,,ht&,;no thp 1 LlFj awl”p,yJIbm IIILQd,Ibz.CJ) pI”~~JJ 111 L11L. L,lL.“kJ CLllll 11, IAI~LII”UO “I ““ubur*.-~ l.V l
spectra, and the use of computers in the reduction of the experimental data caused a new investigation of this molecule in the last 10 years. Special interests are concerned with the high-resolution spectra (8-12) and the spectra of isotopic molecules (13-20). Modem investigations of the Baldet-Johnson bands have begun by the analyses of isotopic displacements of the bandheads in the 13@O+ (21) and ‘*C’*O+(22) molecules. The rotational analysis of bands of this system in i2C160+ (1-O band) and in ‘3C160’ (I-$ O-O, and 0- 1 bands) and in r2C’*Of (1-O and O-O bands) has been performed by Co&ii: ec af. (20). However, some final constants presented in Ref (20) indicate some inconsistencies between their values and the listed wavenumbers and suggest that constants presented must be regarded as questionable (19, 23). This paper, which is a part of systematic and modem studies of the electronic states of the CO+ molecule, presents the analysis of the Baldet-Johnson bands in the 14C60+ molecule and molecular constants for both combining states. 280
0022-2852/86 $3.00 Copyight @ 1986 by Academic All rights of ivpmduction
Press, Inc.
in any form Ixsa’vcd.
BALDET-JOHNSON
BANDS IN “C’60+
EXPERIMENTAL
281
DETAILS
The emission spectrum of the Baldet-Johnson bands has been produced in a watercooled hollow cathode lamp. The lamp was filled with commercial gaseous carbon monoxide enriched in radiocarbon 14C of 59.3 mCi/mmol activity. The pressure in the lamp was about 3 hPa. The lamp was operated at 600 V and 25 mA. The spectrum was photographed in the sixth and seventh orders of the 2-m Ebert spectrograph (PGS-2, VEB Carl Zeiss, Jena). A reciprocal linear dispersion ranged from 0.05 to 0.07 nm/mm and the resolution ranged from 250 000 to 320 000, respectively. The exposure time on ORWO UV-1 type plates varied from 1 to 3 hr. Thorium standard lines (24) obtained from the hollow cathode lamp were used as a calibration spectrum. The plates were measured using our photoelectrical arrangement which recorded the line positions and the intensity, respectively. The positions of the center of the lines were calculated using the least-squares procedure and assuming a Gaussian profile of the lines. The internal uncertainty of the lines is considered to be 0.007 cm-‘. The observed wavenumbers and differences (o - c) between observed and calculated values are collected in Tables I-III. ANALYSIS OF BANDS AND CALCULATIONS
The rotational analysis of bands, J numbering, and calculation of the preliminary molecular constants have been performed by forming sets of the upper and lower state combination differences, as was described in Herzberg’s monograph (25) and in earlier papers (5, 6). These provisional constants were then used for the direct fitting of measured lines-individual band fits. In this popular method, described by Albritton et al. (26), the experimental wavenumbers are directly compared with the differences of the eigenvalues of the Hamiltonians of both combining states. Due to nonlinear least-squares and repetition procedures, the improved molecular parameters were calculated until convergence was achieved. In this fit we have’used the effective Hamiltonians of Brown et al. (2 7). The respective matrix elements, definition of the molecular parameters, and their physical significance are well known and will not be discussed here. In our least-squares fitting program the following 24 molecular parameters were used for the description of both combining doublet states: (1) (2) (3) (4) (5)
rotational and centrifugal distortion constants B, D, H, L; spin-rotation interaction constants y, yo, yH; h-doubling constants P, PD, PH, 4, 40, qH; spin-orbit coupling constants A, AD, AH; and the Tf,$! value.
Any of the parameters can vary freely or be constrained to a fixed value. Since the highest Jvalue observed in our spectra is J = 37.5 only a set of 11 adjustable parameters should be considered as the minimal data set required to reproduce the experimental wavenumbers of lines. It includes the B, D, y and T,r,rtparameters for the B2Z+ state and B, D, A, AD, p, PO, and q for the A*IIi state. All other parameters did not have any statistical significance and were constrained to zero. In this set of selected parameters only correlation of AD and y parameters of the A*IIi state should be considered.
J
1.5 ::: 4.5 2:: ';.q 915 10.5 11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5 23.5 24.5 25.5 26.5 27.5 28.5 :b*: 2;:; >-a*< ii./ 34.5 35.‘j 36.5 :7.5
0 Pl2 25155.984 151.952 146.204 144.877 141.857 !?Z*E I,Y.",r 134.878 133.246 ;w 130:444 130.229 130.229 130.743 131.560 Z;:f$ . 138.280 140.879 ;g*'o;6' . 150.672 154.672
-z -55
7'
:
1;
:: 14 1.3
.i
55 1 -11 -7 16 -10 25
;a
49
l
7 26
0-c
:;:*::z 2591699
1;x 19a:om 25203.481 209.300 215.452 221.940 228.175 235.990
1E:%! icG:4&i 162.666 164.628
158:164
25159.216 158.438 e':.;;;
'Q,2
TABLE I
0-c 23 9 :;
QR12 25165.802 -168.28i 171.124 174.341 177.917 181 .a13 25165.802 168.280 171.124 174.307
I:
190.662 :i : -1: -10 -14 -10 r:: -40 10 -27 -;i -17 3 13
:;
:: -18 2 -27 -42 -32
25200.603 206.414 212.351 zw.c%j, 225.264
195.569
366.088
XE IRZTRRF.
13
::x 353:820 365.653 377.773 390.220
%% 25310:072 320.471
;::*:;li 239:201
195.336 25200.603 206.148 212.070 218.339
iS6X
9
%+-%I4 --I o-c -22 -23 l
l 26
-39 -26
l
17 2
-"5 -11 18" 19 5 -11 3 -2: 4
22
t
l
-25
0-c
Wavenumbers and Rotational Assignments of the O-O Band of the 14C160+Molecule (in cm-‘)
P22
25159.216
a
11 158.438 157.898
0-c
-:;
169.391 172.362 175.740
::ix 15a:719 !SO G(11 lG:%i
-1; 20 .
1: =!7 -14 -15 -33
1:: -1 3
::3-"4:: 187L344 192.578 197.663 25;;i.;:;
-;; ;z -5 20
215:Oll 221.483 228.314 235.494 243.028 250.913 259.084 $S%,5 .
25f?;lr%04 .._.___
472.423
R
39
25;;:.;;;
107:455 193.894 25200.603 207.794 31x 999 ..r,.-..G 223.094 231.219
287.307 297.893 25308.757 319.990
394.616 25408.248
WP 451.197
44%:::
0-c
15
:t
-2
-2 -43
17 -11
-1: -13 24 15 -32
27 -8
11
349.186 357.938
z*t',; 263:921 265.816 26e.031 270.650 273.753 277.147 281.061 285.259 209.942 294.Y61
'2666% 260:654 260.880
25265.616 263.921 262.529
P
-10
l
: -13
508
l
1; 27
-29
ia.
-51
-5;
-2
-18 -47 -20 -61
‘2 -: -29
l
o-c
:::% 349:223 356.619 364.517 372.820 361.471
329.145
EXE 283.710 284.189 285.259
25204.375
QP21
ST?%74 a 296.731 25300.202
l
l
22
-2;
-8
1;;
-:II
-16
-20 -32 -31
l
1;
11
263.710 284.315 285.421 286.911 288.722
Q
:z
42
.
0-c
18 :y
421:057 431.780
";'J"o.;W;
349:635
;:;.;;I
:I<:%
312:878 318.136
Jig 17
21
-31 6
Ru
25290.779 293.427 296.524 299.979 25;;;.;9":
o-c
’ Denotes observed minus calculated (merged constants) values in units of lo-’ cm-‘. b Denotes overlapped by strong atomic line, molecular line, and unmeasured. * Denotes overlapped line; not used in the evaluation of molecular constants.
:z 34:5
z 2715 28.5 29.5 30.5 31.5
:z*: 17:5 18.5 19.5 20.5 21.5 22.5 23.5 24.5
13.5 14.5
5:: 2: 1::: ::-: .
J
TABLE I-Continued
-:: -21 -4
-79 -6 19 -11
-34
l
l
l
.
l
l
0-c 11
;4 45 -36
.
l
*
o-c
373.aoa 382.548 391.679
-: * 2 -22
;:
-d -18 -13 -2 24
5 23 16
-10
-1
:;<:76g; 1:;
304.098 308.402 ;$.y",; .
25290.977 @$a? 25300:202
R 21
Z% o:ooob 25524.373
46;:401
;y*;;;
3x,:777 25409.505 420.667 432.2&
$%::;
2>306.596 312.876
sR
23
5 -21 -9 4 27 7 4 24 *
24 -2
-5;
o--c
-3:
::f
872.353
:&X1
-28 -3
65:;
0-C
-10
0-C
i:
PI1
26752.697
Op,2
:::
2:
J
J
a
:3x;
.
26894.910
Qp21
26770.509
p22
t
1’:
21
0-c
;5 *
, -2i *
-1; -14 -11 -31 -17 -21 -4
-'8
:
28 -11 -28 15
”
(I
-26 20 10
0-c
26~~~:??
894.910 ~;s*;~f: w:192
:z 12
-27
22 12
11
:;%:::Z 863.866
842.797
791:691 O.OOOb 799.523
3:kE
---
R
:;63;
.
a;
1;
l
0-c
17
$2
-j-i
14
-2" -5 6
37
l
l
-22
0-C
cm-')
E;t*z:
%
26774.858 776.988
QR
:; 4
8-0
-: 39
:; -4 -16
-12
-i6
:A 14 17
'2 -6
-4; -27 -22 -16 -4
2j
,;
-12
l
0-c
26978.154 ;;7".g; .
RQ21
26;8:::;l: 913.259
::%*899: 8421504 849.197 856.200 863.481 870.837 878.870 887.038
::;::B 818.636 824.182
;'8?*g 784:876 788.104 7~1 .>b6 795.379 799.343 26803.772
26774.858 776.908
Q
1:
l
I:;
-;6
0-a
“g+-“sr”-,
26895.684 894.910 :;:::8::
Qll
773.116 774.856 776.605
: l
+
769:032 768.746 768.748
o-c
26;;; .g;;
PQ,*
Wavenumbers and Rotational Assignments of the 1-O Band of the “C’60+ Molecule (in
TABLE II
21
26975.996
%
i&
-2
0-c
o--c
11
801:312 CD4.403 687.896 $91.719 t95.917
%*!z
873.980
8611.115
P
*'
I% 11 -28 -7
-8
-39
0-c
Note. See Table I footnotes.
28.5 29.5 30.5
20.5 21.5 22.5
17:5 :5*: 18.5 19.5
11.5 12.5 13.5 14.5
J
948.323
YO4.453 907.231 910.400 o.ooob
%I
-17
21 11 *
0-c
27008.642 17.624
;x: 955:061 961.691
937.161
931:864
;%I*,‘:,’
w&.6":; 914:191 918.091
904.613
Qll
-7: -25 -8 -12
5 -19
-12
7; 7’
;:
:
14 13 0
cl-c
9.920 19.051 28.550
943.065
%I
TABLE II-Continued
-15 0
0
20
0-c 11
969.609
;;z6": 962:521
943.318
29.005
977.078 984.887 993.031 27001.471 10.327 19.456
R
-*: -33 13
1:
:
16
-1:
38
0-c
%I 21
984.887 994.135
0-c -13 -16
J
0
*12
*
l
:: -4 LO 3 -12 23 -12 21
f
;j
-:: -1
-30 18
0-c
*
;:z;': Ill:857
23700.311
686.671
23687.238
*22
3i
-28 -9
9
-24
-: 15 -12
;4
-3;
24 -26 20 19 -4
'2
24 12
ia
-17 -12 18
l
l
l
-15
0-c
l
*Ql2
-25
0-c
~~:%9" 89L474 23909.269 922.451 936.050
:'x: 8 t. 0.271
798.158 23807.549 817.340 827.493
;:%% 7491744
730.643
23691.645
u22
14
1;
-24 11 x
-j;
r:
-;:
-;
-3 -10
sj
! -10 -19 -7
'S
14 -10 14
0-c
Wavenumbers and Rotational Assignments of the O-l Band of the ‘??O+
TABLE III
12
5%%: 789:502 798.5 0 23807.9 5 9 817.776 827.955
710:597
23f%;:$$
236~6.440
QR
l
1:
1::
-::
-20
l
6 -30
f
0-c
Molecule (in cm-‘)
22
w% 798:b92 23809.007 819.784 830.897 842.411 854.249
~:"4%; 752:508 760.961 769.826
23722.316 729.284
R
-13 -25 -15 -7
l
Y -18 15
;i -2
12 2
o-c
-::
a27*4g3 833.316
25:5 ;:*:
Note. See Table I footnotes.
:t?: .
26.5 27.5 28.5
-:
-;36
g;.;g; t317:036 822.031
-3;
%:% 790.991 791.616 792.662 794.185 796.132 790.550 ?3CO1.352 804.621
:i -15 -7 -14 12 -15 -11
-2:
% -25 -15 -16
0-c
792.848 791.693
Pll
11.5 12.5 13.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5 21.5 22.5
7.5
J
23;px; 920:609
:8x7 885.188 093.498
.
850.462 856.594 b63.105
%% 826:774 830.668
:::%; 8171778
23g::gg all.655 811.929 812.778
QP21
:
-7 6 -1;
-1: I:
1: -12 -2 2
::
-1*3 *
-34
0-c
931.039 941.391
921.108 911:586
;Jp;c?$ 8851616 23%:%;
8561946 863.458
820.520 823.534 826.998 830.897 835.239 840.002 %*Z
ai7.942
Qll
9
-7"
-:6
23
11 ;:
-11 -;i
7 -: 1
o-c
RQ2,
%%E 957:072
23;:;.;',; 925:231
::s*;:: a66:069 873.225
841.847 847.234
238"18:Z~:6 824.716 820.353 gI:&
TABLE III-Continued
-12
1
-2
7 1:
:
-1:
-a -14
::a 20 31 -la -18
o-c 11
24005.963 993:252
i%:fl:; 957.509 tE~'o~
_$
'E 0 -11
2 3
:':
E;?::: 23;'& 925:625
:3 13
-10 -3
-2:6
-3:
-a * *
0-c
i.%Z~$ 866.322 873.493 881.098
a411999 847.439
8241712 820.353 g&is"
238J$.@$
R
;::%3 o:ooob 977.581
"s%*b% 239081656 919.020 929.877
871.342 879.989
23847.949 863.105 855.286
sR21
1'8
::
-; 10
2:
1:
-21 -3:
0-c
288
JAKUBEK
ET AL.
TABLE IV Molecular Constants’ for the B and A States of “C’60’ Determined by Least-Squares Fits for Infidel Bands (in cm-‘) o-o BE'
B” D;
Yv
lo6
‘102
Et D;.106 A A2FI _
v
Arri.104
t.61290(16j 6.85(22)
1.933(Z)
r.951(15)
1.892(24)
1.45087(11)
1.433592(99)
1.45090(16)
5.479(87)
$.28(15)
5.58(21)
-122.0609(49)
-121.9856(33)
-122.0730(50)
-1.55(13)
-1.50(12)
-1.14(18)
1.77177)
b
fC in parent&es
t.639124(98) 6.40(15)
Pny_.lo6
-0
a V&IS
1.63927(11)
1.125(53)
T' - TM,, v' u
a~: estimated
l-c
6.569(87)
p,.to2
s.104
O-1
1.215(44)
1.207(61)
-0.5(11)
t.7(15)
-1.89(16)
-1.67(19)
-2.16(29)
25224.2990(30)
23752.2264(20)
26835.6785(32)
0.026
0.016
0.022
293
246
202
standaxi errors in units of the last digit of the corresponding parameters.
b Standard deviation of fit. c Number of degrees of freedom.
Thus, y was constrained to be zero and correlations between other parameters were ignored. The results of the individual band fits are collected in Table IV. Calculation of the final molecular parameters for the v = 0 and v = 1 levels for both electronic states has been performed by the least-squares merge fit, described by Albritton et al. (28) and by Coxon (29). The output molecular constants yielded by the merge fit are collected in Table V. The estimated variance of this fit was $ = 0.9485 and the number of degrees of freedom wasf= 10. By using these constants the wavenumbers of the lines and respective differences of the observed and calculated (o - c) values were calculated.
The first analysis of the Baldet-Johnson bands and calculation of the molecular constants for the B2Zf and A211istates in the 14C?O+ molecule provide an opportunity for us to briefly recapitulate the previous data for the excited electronic states in isotopic COf molecules. As mentioned earlier, the fundamental work concerned with the bands of this system has been performed by Conkic et al. (20). Unfo~~ately, however, the results presented in the above paper exhibit serious inconsistencies, which are discussed in Refs. (19, 23), and require a new and modem reanalysis. Some comments should be. made on the results obtained from the analysis of the First-negative (13, 15, 16) and from the Comet-tail bands (17-19). Generally, the
BALDET-JOHNSON
289
BANDS IN ‘%?O+
TABLE v Merged Molecular Constants’ for the B and A States of “C’60c (in cm-‘)
B2E+ -
Bv _
1.639204(58)
1.612822
Dx' lo6
6.516(61)
6.703(67)
1.946(12)
1.880(20)
25224.2997(29)
26835.6778(31)
yflO* T;' _
B
T;j
v
D,. lo6 A" _
A'U
1.433672(60)
5.431(61)
5.398\64)
-122.0667(34)
-121.9851(32)
A,.104
-1.393(94)
p,.102
1.173(37)
PDv' 106
1.33(63)
-0.24(98)
c&v'104
-1 .97(14)
-1.72(18)
'P VO * Values
1.450812(59)
0
(61)
-1.528(110) 1.216(43)
1472.0733(36)
in parentheses are estimated standard errors in units of the last digit of the corresponding parameters.
molecular constants obtained either from the analysis of incompletely resolved spectra of the ‘Z-*T: and *II-*2 transitions or from the analysis of single bands can be recognized only as preliminary results. Therefore, we conclude that the constants obtained in the present work are the best constants concerned with excited electronic states in isotopic CO+ molecules. ACKNOWLEDGMENT This work was supported in part by N. Copernicus Astronomical Center of the Polish Academy of Sciences under contract with the MR I.8 Program. RECEIVED:
December 12, 1985 REFERENCES
1. 2. 3. 4. 5. 6. 7.
8. 9. 10.
C. M. BLACKBURN,Proc. Natl.Acud. Sci. U.S.A. l&28-34 (1925). T. R. MERTON AND R. C.JOHNSON,Proc. R. Sot. London, Ser. A 103,383-395 (1923). M. F. BALDET,C.R. Acad. Sci. Paris 178, 1525-1527 (1924). J. MARCHAND, J.D'INCAN,AND J.JANIN,Spectrochim.Acta A 25,605-609 (I 969). K. NARAHARIRAO, Astrophys.J. 111, 50-59 (1950). K. NARAHARIRAO, Astrophys.J. 111, 306-313 (1950). K. NARAHARI RAOAND K. S.SARMA,&fern.Sot. R. Sci. Liege 13, 181-186 (1953). A. CARRINGTON AND P.J. SARRE,Mol. Phys. 33, 1495-1499 (1977). A.CARRINGTON,D.R.MILVERTON, ANDP.J.SARRE,MO/. Phys.35, 1505-1521(1978). A. CARRINGTON,D.R.MILVERTON,P.G.ROBERTS,ANDP.J.SARRE,J. Chem.Phys.68,5659-5661 ( 1978).
290
JAKUBEK
ET AL.
II.N. D. F'ILTCH, P.G.Szwro,T.G. ANDERSON,C. S. GUDEMAN, T. A. DIXON, AND R.C. WOODS,J. Chem. Phys. 76,3385-3388 (1982). 12. M. BOGEY, C. DEMUYNCK, AND J. L. DESTOMBES,.I. Chem. Phys. 79,4704-4707 (1983). 13. J. D. JANJIC,Ph.D. thesis, University of Novi Sad, 1972. 14. D. S. PESO, J. D. JANJIC,D. Z. MARKOVI~, M. RYTEL, AND T. SIWIEC,BuII. Sot. Chim. Belgrade 39, 249-255 (1974). 15. D. S. PEW?, D. 2. MARKOVIC, AND D. S. JANKOVIC,Fizika (Zagreb) 7,83-89 (1975). 16. J. D. JANJI~AND D. S. PESI~,Astrophys. J. 209, 642-647 (1976). 17. B. R. VUJIS~, Ph.D. thesis, University of Belgrade, 1977. 18. B. R. VUJISIC,D. S. PESIC,S. WENIGER, AND D. RAKOTORLIIMY,Indian. J. PureAppl. Phys. 18,370372 (1980). 19. R. D. BROWN, R. G. DITTMAN, D. C. MCGILVERY, AND P. D. GODFREY, J. Mol. Spectrosc. 101,6 l70 (1983). 20. L. CONK&, J. D. JANJIC,D. S. PESI~, D. RAKOTOARIJIMY,B. R. VUJISIC,AND S. WENIGER,Astrophys. J. 226, 1162-1170(1978). 21. R. K. AXJNDI, R. K. DHIJMWAD, AND A. B. PATWARDHAN, J. Mol. Spectrosc. 34, 528-532 (1970). 22. R. K. DHUMWAD, A. B. PATWARDHAN, AND V. T. KULKARNI, J. Mol. Spectrosc. 78,341-343 (1979). 23. Z. JAKUBEK,R. QPA, A. PARA, AND M. RYTEL, Mol. Phys., in press. 24. A. GIACCHETTI, R. W. STANLEY, AND R. ZALUBAS, J. Opt. Sot. Amer. 60,474-489 (1970). 25. G. HERZBERG,“Spectra of Diatomic Molecules,” 2nd ed., Van Nostrand, New York, 1950. 26. D. L. ALBR~TTON,A. L. SCHMELTEKOPF,AND R. N. ZARE,An introduction to the least-squaresfitting of spectroscopic data, in “Molecular Spectroscopy: Modem Research” (K Narahari Rao, Ed.), Vol. 2, pp. l-67, Academic Press, New York, 1976. 27. J. M. BROWN, E. A. COLROURN,J. K. G. WATSON, AND F. D. WAYNE, J. Mol. Spectrosc. 74,294-318
(1979). 28. D. L. ALBRITTON, A. L. SCHMELTEKOPF,AND R. N. ZARE, J. Mol. Spectrosc. 67, 132-156 (1977). 29. J. A. COXON, J. Mol. Spectrosc. 72, 252-263 (1978).