Nuclear Physics B220 [FS8] (1983) 13-34 (~) North-Holland Publishing Company
ANALYSIS
OF T H E B E T H E A N S A T Z XXZ MODEL
EQUATIONS
OF T H E
O. BABELON, H.J. de VEGA and C.M. VIALLET Laboratoire de Physique Thgorique et Hautes Energies, Paris*, France Received 28 June 1982 (Revised 25 October 1982) We analyse the Bethe ansatz equations of the X X Z model in the antiferromagnetic region, without assuming a priori the existence of strings. Excited states are described by a finite number of parameters. These parameters satisfy a closed system of equations, which we obtain by eliminating the parameters of the vacuum from the original Bethe ansatz equations. Strings are only particular solutions of these equations.
1. Introduction A n e w a p p r o a c h for t h e analysis of the B e t h e ansatz e q u a t i o n s has b e e n r e c e n t l y p r o p o s e d for t h e chiral i n v a r i a n t G r o s s - N e v e u m o d e l [1]. This w o r k allows a b e t t e r u n d e r s t a n d i n g of t h e e x c i t e d states a b o v e a g r o u n d s t a t e of a n t i f e r r o m a g n e t i c n a t u r e . W e a n a l y s e h e r e , with this a p p r o a c h , t h e e x c i t a t i o n s for t h e a n i s o t r o p i c H e i s e n b e r g m o d e l ( X X Z m o d e l ) , in t h e a n t i f e r r o m a g n e t i c case. T h e h a m i l t o n i a n is H =-~
x
X
y
y
z°z
, 10rnO"n+l "[-OrnO'n+l J~'-AO'nO'n+I
"
(1)
w h e r e o-x, cr y, z a r e t h e P a u l i m a t r i c e s , a n d we shall s u p p o s e the n u m b e r of sites N to b e even. A s is w e l l - k n o w n [2], t h e p r o b l e m of d i a g o n a l i z i n g H r e d u c e s b y t h e B e t h e a n s a t z to t h e r e s o l u t i o n of a s y s t e m of c o u p l e d t r a n s c e n d e n t a l e q u a t i o n s . E a c h e i g e n s t a t e is c h a r a c t e r i s e d b y a set of r o o t s of t h e s e e q u a t i o n s . In the t h e r m o d y n a m i c limit (N--> oo), t h e g r o u n d s t a t e is a s s o c i a t e d to a c o n t i n u o u s d i s t r i b u t i o n of real roots. E x c i t e d states c o r r e s p o n d to s o m e d i s t r i b u t i o n of r e a l r o o t s plus a finite n u m b e r of c o m p l e x roots. In this limit, t h e s y s t e m of t r a n s c e n d e n t a l e q u a t i o n s gives (i) an i n t e g r a l e q u a t i o n for the d e n s i t y of real r o o t s a n d (ii) a finite n u m b e r of c o u p l e d e q u a t i o n s for t h e c o m p l e x r o o t s , involving also t h e real roots. It was u s u a l l y a s s u m e d t h a t t h e c o m p l e x r o o t s a p p e a r in strings [2, 3]. In the p r e s e n t a p p r o a c h , no such h y p o t h e s i s is m a d e . W e first solve t h e i n t e g r a l e q u a t i o n * Laboratoire Associ6 au CNRS no. 280. Postal address: Universit6 P. et M. Curie, Tour 16 - ler dtage, 4, place Jussieu, 75230 Paris Cedex 05, France. 13
14
O. Babelon et al. / Bethe ansatz equations
for arbitrary complex roots and then use the solution in the remaining equations to get a closed system for the complex roots. It is remarkable that this system has again the typical form of the Bethe ansatz equations, suggesting the existence of a higher level Bethe ansatz [1]. Our analysis differs from [1] in that we use m o r e directly the integral equations and the analytic properties of its solution, thus having a more straightforward derivation of the final equations. The description of the ground state and the excited states depends on the value of A. For the ground state we must distinguish A < - 1 , - 1 < A < 1, and A > 1 [2]. For A > 1 the system is ferromagnetic and we do not consider this case here. The analysis of the excitations for A < 1 requires a further distinction between - 1 < A < 0 and0
(I)