Analysis of the parasitic copepod species richness among Mediterranean fish

Analysis of the parasitic copepod species richness among Mediterranean fish

Journal of Marine Systems 15 Ž1998. 185–206 Analysis of the parasitic copepod species richness among Mediterranean fish Andre´ Raibaut a b a,) , C...

2MB Sizes 186 Downloads 292 Views

Journal of Marine Systems 15 Ž1998. 185–206

Analysis of the parasitic copepod species richness among Mediterranean fish Andre´ Raibaut a

b

a,)

, Claude Combes b, Franc¸oise Benoit

a

Laboratoire de Parasitologie Comparee de l’EnÕironnement ´ (UMR CNRS 5555), UniÕersite´ Montpellier II, Station Mediterraneenne ´ ´ Littoral, 1 Quai de la Daurade, 34200 Sete, ` France Centre de Biologie et d’Ecologie Mediterraneenne et Tropicale (UMR CNRS 5555), UniÕersite´ de Perpignan, AÕenue de VilleneuÕe, ´ ´ 66860 Perpignan Cedex, France Revised 21 April 1997; accepted 26 September 1997

Abstract The Mediterranean ichthyofauna is composed of 652 species belonging to 405 genera and 117 families. Among these, 182 were studied for their parasitic copepods. The analysis of all the works conducted on these crustacea yielded 226 species distributed in 88 genera and 20 families. For each fish species we have established a file providing the species name of the fish, its family, its geographical distribution within the Mediterranean and some of its bio-ecological characteristics. Within each file, all the parasitic copepod species reported on each host species were listed. This allowed to know the species richness ŽSR. of these hosts. We thus produced 182 files within which 226 copepod species are distributed. A program was created under the Hypercard software, in order to analyse our data. Two parameters were studied. The first one is the mean species richness ŽMSR., which corresponds to the mean of the different SR found on the different host species. The second is the parasite–host ratio ŽPrH., which is the ratio of the number of copepod species by the number of host species. These parameters are calculated by our program for all the 182 species of Mediterranean fishes retained in our investigation, on the first hand, and, on the second hand, for one particular group of fish species. We used the following variables to investigate their correlations with copepod species richness: taxonomy—fish families, genera and species; biometry—maximal size of the adult fish; eco-ethology—mode of life Žbenthic, pelagic or nectonic., displacements Žsedentary, migratory with environmental change, or migratory without environmental change., behaviour Žsolitary or gregarious.. Other variables Žcolour, food, reproduction, abundance, distribution area. were also analysed but did not reveal any clear correlation. Providing that our study does not rely on quantitative Žprevalence, intensity. but qualitative basis our aim was only to reveal some tendencies. These tendencies are as follows: Ž1. In many cases, parasite and host phylogeny seem to play an important role. There are fish families with copepods and families with few species of these parasites. The phyletic constraints could be due to the morphological characteristics of the habitat Že.g. structure of the gills. or biologicalrecological characteristics that we were unable to identify. Ž2. It appears that the presence in a same environment of related fish species Že.g. several species of the same genus, or numerous genera of the same family. is correlated with high parasite richness. A likely

)

Corresponding author.

0924-7963r98r$19.00 q 1998 Elsevier Science B.V. All rights reserved. PII S 0 9 2 4 - 7 9 6 3 Ž 9 7 . 0 0 0 7 9 - 1

186

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

explanation is that such situations favours alternated processes of lateral transfers and speciation. Ž3. Some eco-ethological criteria seem to favour the establishment of a large parasite species richness. It should be noted for instance that Mediterranean fishes the most often infected with copepods are generally nectonic or pelagic, migratory, and gregarious species. q 1998 Elsevier Science B.V. All rights reserved. Keywords: parasitic copepods; species richness; marine fish; Mediterranean Copepoda

1. Introduction

2. Material and methods

For more than a century, parasitic copepods of Mediterranean fish have been studied mainly from a faunistic point of view. We intend to review the fauna of these parasitic crustaceans if only to estimate the number of known species. Beyond this simple estimation, we wanted to determine whether relations between the parasitic copepod species richness and host–fish systematics could be proved, as well as finding their bio-ethological characteristics, meaning to discover whether a species or groups of species are preferential hosts for copepods and, as this is likely, to bring some elements of response. The number of known parasitic species in a given host species qualifies its parasitic richness. This concept is often applied to a particular taxonomic group rather than all parasitic groups. The analysis can be performed at various scales: —global: all parasitic species in the whole area of the species; —regional: parasitic species known on a given host in a defined geographical area; —local: parasitic species collected in surveys conducted within a supposedly homogeneous population of the host. Our work is on a regional scale, the geographical area concerned is the Mediterranean Sea. This choice is made for two major reasons: —this is certainly the sea for which the most important taxonomical, biological and ecological data on parasitic copepods are known but also for their fish hosts, essential data for our study, —the Mediterranean Sea is a well defined area with bio-climatic characteristics, homogeneous in the whole, although the oriental part presents an ichthyological fauna in which some species of erythrean origin have sub-tropical affinities ŽMaillard and Raibaut, 1989..

2.1. Origin of data All works on parasitic copepods from Mediterranean fishes were checked: Heller, 1865; Richiardi, 1880; Valle, 1880; Carus, 1885; Brian, 1906, 1912; Delamare Deboutteville and Nunes-Ruivo, 1952, 1953, 1958; Nunes-Ruivo, 1953; Markevisch, 1956; Raibaut et al., 1971; Essafi and Raibaut, 1977; Radujkovic and Raibaut, 1989, to name only the essential. Our list reached the number of 226 known species of parasitic copepods ŽAppendix A. belonging to 88 genera and 20 families. All these works have a common gap; there is no mention of fishes examined on which no copepod was found. We think that lack of parasites on a host is as important as their presence. In the future, it would be advisable, for any study on parasitic fauna to state the number of specimens examined whether carrying parasites or not. In our study, to minimize the influence of such gap, we used unpublished personal data. However, it must be borne in mind that the geographical distribution of parasitic copepods from Mediterranean fishes coincides with the location of the laboratories which studied them. This explains clearly why the majority of data on these parasites comes from the Western Basin and the Adriatic Sea. These remarks also apply to fishes although, it is unquestionable that ichthyological knowledge is more extensive than that on their parasites. Firstly, because several scientific campaigns permitted to study almost exhaustively the Mediterranean ichthyofauna. Secondly, because the economical importance of various species, prompted the usage of various fishing gears allows for larger catches. A synthesis of the most recent data concerning the Mediterranean ŽHureau and Monod, 1979; Whitehead et al., 1984; Fischer et al., 1987. accounted for

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

187

Table 1 Characteristics of fish species and their symbols Maximal size Žcm. A: 0–10 F: 50–60 B: 10–20 G: 60–70 C: 20–30 H: 70–80 D: 30–40 I: 80–90 E: 40–50 J: 90–100

K: 100–110 L: 110–120 M: 120–130 N: 130–140 O: 140–150

Mode of life B: benthic

N: nectonic

P: pelagic

Displacements S: sedentary M: migrator without environmental change Behaviour S: solitary

P: 150–160 Q: 160–170 R: 170–180 S: 180–190 T: 190–200

U: 200–210 V: 210–220 W: 220–230 X: 230–240 Y: 240–250

X

M : migrator with environmental change

G: gregarious

652 species belonging to 405 genera and 117 families. These faunistic data were used but also, in order not to alter the results of our study, 182 species

whose parasitic copepods had been studied ŽAppendix A. were taken into account. These fishes are qualified as ‘known’.

Fig. 1. Signaletic card for each fish species in the Hypercard software.

188

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

Fig. 2. Differences between mean species richness Ž MSR . and parasite host ratio Ž P r H . for imaginary data.

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

For each fish species, a signaletic ‘card’ indicating the name of the species, its family, its geographical localization in the Mediterranean Sea and some of its bio-ecological characteristics ŽTable 1. was established. Each ‘card’ listed all parasitic copepods recorded on the host species ŽFig. 1.. When no parasitic copepod was found, the entry ‘no copepod collected’ was made. Thus, a total of 182 cards indexing 226 copepod species was obtained. To analyse this, a programm using Hypercard software was created. Statistical test followed Siegel and Castellan Ž1988. and Sokal and Rohlf Ž1981.. 2.2. Expression of parasitic richness The species richness ŽSR. is a principal datum in regards to a given host species. When this concept is extended to a group of host species, either in systematic units Že.g. family. or according to a specific bio-ecological criterion, there are two different indications possible. The first one, which is named here the mean species richness ŽMSR., is calculated from the mean of species richnesses of various host species constituting the considered group. MSR can be considered a characteristics of the host group if its variance is not too high. The second is the ratio between the number of parasite species and the number of fish species constituting the considered group, named here parasite– host ratio ŽPrH.. Fig. 2 illustrates the difference between MSR and PrH for imaginary data. The relationship between the two values is an indirect expression of the specificity of the parasites in the group of host species under consideration: if both values coincide, all the parasites are oioxenous wfound only onrin one host species ŽEuzet and Combes, 1980.x; when they differ, at least some parasite species infest several host species; when the difference is large, some or all species have a broad host spectrum. In our study, MSR and PrH were automatically computed by Hypercard software either from all 182 host-fish species considered or for any group of host-fish species according to a chosen criterion Žtaxonomical, biological, ecological or other..

189

3. Results The copepod richness for all 182 Mediterranean fish species chosen for this study is analysed for one part, and ‘groups’ which distinctive criterion seem to hold a special interest, for the other part. 3.1. Analysis of the copepod species richness for the whole set of fish Among the 182 species observed, 169 were parasitized and 13 appeared not to be parasitized after undergoing sufficient examination. This latter number is certainly underestimated as it is the result of personal observations. 226 copepods species were found on the 182 fish species examined. It must be noted that in the Mediterranean, the number of parasitic copepod species is clearly the larger than that of fish species hosting them. The species richnesses varies remarkably as 64 fish species are parasitized by a single copepod species, whereas only one fish species, Pagellus erythrinus ŽLinnaeus, 1758., hosts 13 parasites ŽFig. 3A.. The MSR is 2.79 and the PrH 1.25. This demonstrates that parasitic copepods of Mediterranean fish present all the specificity rates. However, a large majority Ž120. of oioxenous species can be counted ŽFig. 3B.. 3.2. Analysis of the copepod species richness according to distinct Õariables We used the following variables to investigate correlations of parasite species richness: taxonomy: fish families, genera and species; biometry: maximal size of the adult fish species ŽTable 1.; eco-ethology: mode of life Žbenthic, pelagic or nectonic., displacements Žsedentary, migrating with or without environmental change., behaviour Žsolitary or gregarious. ŽTable 1.. Other variables Žcolour, diet, reproduction, abundance, distribution area. which analysis did not reveal any possible correlation with parasitic richness, and will not be discussed in this work.

190

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

Fig. 3. ŽA. variations of the parasitic copepod richness among Mediterranean known fish. ŽB. Host spectrum of the parasitic copepod species in the Mediterranean Sea.

3.3. Taxonomic Õariables In order to study the influence of the ‘host family’ on parasitic richness, we have selected the families for which the available data included at least three known fish species. Twenty two families fulfilled this criterion. Fig. 4 shows the values of MSR and PrH for each family compared to the general values of all the fishes. Three types of families stood out: those with low species richness, those with relatively close to aver-

age richness, those characterized by richness clearly above average. Blenniidae, Gadidae, Callionymidae and Gobiidae belong to the first type Žlow parasitic richness.. The second type Žrichness close to average. include Torpedinidae, Squatinidae, Scyliorhinidae, Labridae, Soleidae, Scombridae, Triglidae, Rajidae, Clupeidae, Serranidae, Dasyatidae, Carangidae and Squalidae. In the third type Žrichness clearly above average., Mugilidae, Sparidae, Carcharhinidae, Sciaenidae and Triakidae are found.

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

191

Fig. 4. Mean species richness Ž MSR . and parasitic copepod host ratio ŽPrH. for 22 families of fish in the Mediterranean Sea.

This study reveals the importance of the taxonomic criterion for the family unit. There is a hierarchy in host families going from low parasite richness to high MSR and PrH. This hierarchy does not seem to be influenced by the number of fish species known for each family although it seems that for Sparids, carrying the highest number of parasitic copepods, the number of known species is also high. On the other hand, Labrids, representing 5% of all known fish species, are parasitized by 4% of all the numbered copepods; this amount is doubled for Carangids representing a lower percentage among the examined fish Ž3.9%.. 3.4. Biometric Õariable The influence of the maximal size of host-fish species with parasitic richness expressed by parasitic host ratio ŽPrH. values was analysed. To this effect, fish species were grouped in 5 size classes: 0–20, 20–40, 40–60, 60–80 and 80–100 cm. No relation was displayed ŽFig. 5.. The same analysis was car-

ried out by taking only into account Sparids for which data are more complete. The result confirmed the one reached for all known species and if any correlation could be demonstrated, it would be negative: the larger Sparid species being less parasitized. We have to consider the facts, however, that the majority of known fish species represents maximal sizes between 20 and 80 cm and that within the families poorer in copepods ŽBlenniids and Gobiids. are species of small sizes. 3.5. Eco-ethological Õariables Three eco-ethological criteria were retained to analyse species richness of copepods parasitizing Mediterranean sea fish: mode of life, displacements and behaviour ŽTable 1.. 3.5.1. Mode of life The graph in Fig. 6 shows that the environment influences parasitic richness whether it is expressed by MSR or by PrH. Nectonic fishes are clearly

192

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

above the average when pelagic and benthic fishes are closer to average. The differences of MSR from benthic and nectonic fishes are significant ŽKruskal–Wallis test: H s 6.8, P - 0.05.. These three host types, nectonic, benthic, and pelagic, can be separated in two distinctive groups by the homogeneity or, on the contrary, by the heterogeneity of occupied biotopes. Indeed, benthic and pelagic fishes often live in homogeneous environments with sandy or sandy-silty substrates for the former, the oceanic mass in which physico-chemical parameters are quite constant for the latter. Nectonic fishes, however, belong to species living in diversified marine biotopes such as sandy-silty bottoms, rocks or algal meadows. An observation of graph 6 brings forth the higher parasitic richness for pelagic than for benthic species. In this case, from our point of view, this does not reflect a possible influence of environment but rather a change in life style Žoften solitary for benthic species, while pelagic species are generally gregarious.. Fig. 5. Variations of the parasitic copepod host ratio Ž Pr H . in relation to the maximal size of fish species for the whole Mediterranean set of fish and for Sparids.

3.5.2. Displacements The regrouping of fish species in sedentary and migrating with or without environmental change,

Fig. 6. Variations of the mean species richness Ž MSR . and the parasitic copepod host ratio Ž P r H . in relation of the modes of life of fish hosts.

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

shows that the latter of these groups is characterized by a high species richness ŽFig. 7.. Differences in MSR of migrating fish with environmental change and those of either sedentary or migrating without environmental change, is significant ŽKruskal–Wallis test: H s 18.9, P - 0.01.. Undoubtedly, migrating fish of changing environment stay in areas where ecological conditions are often quite different and these conditions are liable to constitute as many distinct endemiotopes. Thus, among Mugilids, including euryhaline species, the presence of Lernaea cyprinacea Linnaeus, 1758 on Liza ramada ŽRisso, 1826. and on Mugil cephalus Linnaeus, 1758 clearly indicates that these Mullets could only get infested while in fresh water. So, it is the addition of copepod species parasitizing fishes while they stay in different environments, but not necessarily coexisting on the same specimen at the

193

same time, which explains the high parasitic richness. Furthermore, it has been proven that during migrations some copepod species could not tolerate the salinity variation and disappeared. For example, Ergasilus lizae Krøyer, 1863, whose entirely free larval development takes place in brackish waters, infests Mullets while they remain in this brackish environment but does not survive when these same fishes return to the sea ŽRaibaut et al., 1975.. Still among Mugilids, it must be noted that the only strictly marine species, Oedalechilus labeo ŽCuvier, 1829., is parasitized by a single species of copepod.

3.5.3. BehaÕiour The analysis of parasitic richness by separating fish species according to their gregarious or solitary behaviour, shows that the first group presents an

Fig. 7. Variations of the mean species richness Ž MSR . and the parasitic copepod host ratio Ž P r H . in relation to the displacements of fish hosts.

194

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

Fig. 8. Variations of the mean species richness Ž MSR . and the parasitic copepod host ratio Ž P r H . in relation to the behaviour of fish hosts.

Fig. 9. Variations of the copepod species richness among Mediterranean Mugilids and Sparids.

MSR and a PrH clearly superior to the second ones ŽFig. 8.. The difference between MSR of these two fish categories is significant ŽMann–Whitney bilateral test: U s 2883.5, P - 0.03..

In their larval development, fish parasitic copepods have an infective stage Žcopepodid or premetamorphosis females for the second host of Pennellidae. swimming and active, and gregarity allowing

Fig. 10. Comparison of the number of known fish species Žabove. and the number of parasitic copepod species Žbelow. found on twenty-two fish families.

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

195

196

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

the gathering of targeted hosts, obviously favourizes infection.

4. Discussion

4.1. Taxonomical Õariables Our study brings forth the dominating importance of taxonomical criterion where the family to which the host fish belongs, is concerned. Thus, it must be noted: —the existence of a family hierarchy going from low parasitic richness to high MSR and PrH. —the existence, according to the family, of parasitism ‘constancy’; indeed, the cases where most representants of a family are weakly parasitized or, on the contrary, display high parasitic richness, are numerous. —the lack or the presence of species richness homogeneity. Among families most parasitized, Sparids show very diversified parasitic richnesses from 0 to 10, including the unusual case of Pagellus erythrinus on which 13 copepod species were found although Mullets have generally a parasite richness between 6 to 9 ŽFig. 9.. When comparing ŽFig. 10. the number of ‘known’ fishes per family to the number of known copepods per family, histograms are completely different. Thus, it appears that 5 families out of 22, representing only one fifth of all known fishes, host 40.2% of the copepod species ŽFig. 10.. Does the taxonomical criterion retains its importance on a lower scale? To try and answer this question, we analysed the copepods species richness of two fish families among the best known and most parasitized ones in the Mediterranean Sea, Mugilids and Sparids.

4.1.1. Mugilids This homogeneous family includes 7 species belonging to 4 closely related genera. A total of 12 copepod species belonging to 10 genera and to 7 different families was found on these fish. Amongst

these 10 species, one was found on all Mullet species and 4 parasitized 5 Mugilid species. In other words, almost half of the parasitic copepods of the family Mugilidae present a stenoxenous specificity ŽEuzet and Combes, 1980. because remaining within the family.

4.1.2. Sparids This is a very diversified family from a taxonomical point of view. In the Mediterranean, 18 species belonging to 9 different genera, were examined in search for parasitic copepods. The latter represent 45 species, 16 genera and 8 different families. The analysis of the parasitic richness according to one genus, in this case the genus Diplodus which includes 4 species very well known for their parasitic copepod fauna, shows that the parasitic richness is high Ž16 copepod species found. but not much diversified. Several identical species were found in the 4 white seabream species. This could lead to the hypothesis that the presence in a same environment of closely related species Žhere belonging to a same genus. could favour both speciation and subsequent lateral transfers from host to host. If copepod parasite richness can be explained by the richness as well as the taxonomical and also bio-ecological diversity for Sparids, this is not the case for Mugilids. On the contrary, this family has a homogeneous taxonomy although it presents a high copepod species richness with, however, an essential difference: it is not as much diversified. In our opinion, if Mugilids are host to so many copepod species, it is related to their life style characterized by constant displacements in environments presenting various physico-chemical conditions.

4.2. Biometrical Õariable Contrary to some authors ŽGuegan et al., 1992. ´ who have worked on other fish ectoparasites ŽMonogenea. displaying a positive correlation between the number of parasite species and the maximum size of their hosts, our study did not allow us to link parasite richness with maximum size in fishes examined. It is possible that differences in sampling methods Žnum-

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

ber of examined specimens, area of prospection. do not favour larger species, and thus, alter our conclusion. However, the matter deserves to be reviewed on a basic datum including quantitative information.

197

4.3. Eco-ethological Õariables Our study demonstrates positive correlation in the analysis of all ‘known’ fishes. It stands out that

Fig. 11. Variations of the mean species richness Ž MSR . and the parasitic copepod host ratio Ž P r H . in relation to bio-ethological characteristics of fish hosts in the whole known set of fish and the known fish species without Sparids.

198

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

parasite richness is, on average, highest for fishes which are: —nectonic; —migrating with environmental change; —gregarious. However, the importance of the taxonomic criterion of the host in copepod parasitism can alter this kind of deduction. If all specimens from a same family are characterized by the same criterion, the ‘weight’ of this family could unbalance the global analysis. Indeed, criteria retained represent variables and we see no reason for these variables to be independent. For example, the ‘X Family’ criterion can be linked to a gregarious characteristic, which can in turn be linked to a sedentary characteristic, etc. . . . It is, thus, difficult to evaluate the real ‘weight’ of a given variable to explain the fact that some fish species or group of fish species are more parasitized than others. To try and evaluate the influence of eco-ethological criteria, a complementary analysis excluding from our study Sparids, one of the most copepod parasitized family, was made. The new calculations of parasite richness showed that the tendency expressed in the global analysis remained, although not so pronounced ŽFig. 11.. Even if the taxonomic criterion of host species has a great importance in the parasitic richness variations, their bio-ecology must also be taken into consideration.

5. Conclusion The aim of our study was not to determine all the characteristics which make a fish species a suitable host for a parasitic copepod species. It must be remembered that, whatever its prevalence or intensity, we took into account the presence of copepods even belonging to a single species. Thus, we may suggest some tendencies, such as: Ž1. In a lot of cases, the weight of host and parasite phylogeny seem to play an important role. In the Mediterranean Sea, some fish families are clearly more parasitized than others. The phyletic constrains could be due to morpho-anatomical characteristics, such as gill structure, but also to biological and ecological characters that we are unable to identify.

Ž2. It appears that the presence in a same environment of related fish species Žfor instance several species of the same genus, or numerous genera of the same family. is correlated with high parasitic richnesses. A likely explanation is that such situations favour processes of lateral transfers and speciation. Ž3. High parasite richness installation seems to find a favourable factor in some bio-ethological criteria. Even if cautiones is fitting, we are obliged to note that those Mediterranean fishes most parasitized by copepods Žsix species and more. are mainly nectonic and pelagic species, migrating and gregarious. Appendix A. Checklist of the fish hosts and their parasitic copepods in the Mediterranean Sea Acipenser naccarii Bonaparte, 1836 Dichelesthium oblongum ŽAbildgaard, 1794. Acipenser sturio Linnaeus, 1758 Dichelesthium oblongum ŽAbildgaard, 1794. Alopias Õulpinus ŽBonnaterre, 1788. Dinemoura producta ŽMuller, 1785. ¨ Nemesis lamna A. Scott, 1929 Nemesis robusta Žvan Beneden, 1851. Nessipus orientalis Heller, 1865 Alosa alosa ŽLinnaeus 1758. ClaÕellisa emarginata ŽKrøyer, 1837. Pseudoeucanthus alosae Brian, 1906 Alosa fallax ŽLacepede, ` 1803. ClaÕellisa emarginata ŽKrøyer, 1837. Ergasilus lizae Krøyer, 1863 Anguilla anguilla ŽLinnaeus, 1758. Ergasilus gibbus von Nordmann, 1832 Ergasilus lizae Krøyer, 1863 Argyrosomus regius ŽAsso, 1801. Brachiella thynni Cuvier, 1830 Caligus affinis Heller, 1865 Colobomatus sciaenae ŽRichiardi, 1876. Lepeophtheirus longipes Wilson, 1905 Lernaeenicus Õorax Richiardi, 1877 Lernanthropus gisleri van Beneden, 1852 Neobrachiella cheÕreuxi Žvan Beneden, 1891. Sciaenophilus tenuis van Beneden, 1852 Sphaerifer corÕinae Leydig, 1851 Arnoglosus laterna ŽWalbaum, 1792. No copepod collected Aspitrigla cuculus ŽLinnaeus, 1758. Caligus diaphanus von Nordmann, 1832

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

Aspitrigla obscura ŽLinnaeus, 1764. Acanthochondria triglae Herrera-Cubilla and Raibaut, 1990 Caligus breÕicaudatus A. Scott, 1901 Neobrachiella bispinosa Žvon Nordmann, 1832. Neobrachiella triglae ŽClaus, 1860. Atherina boyeri Risso, 1810 Caligopsis ponticus Markewisch, 1940 Peniculus fistula Rudolphi, 1880 Balistes carolinensis Gmelin, 1789 Taeniacanthus balistae ŽClaus, 1864. Bathypterois dubius Vaillant, 1888 Sarcotretes eristaliformis ŽBrian, 1908. Belone belone Lowe, 1839 Bomolochus bellones Burmeister, 1835 Caligus belones ŽKrøyer, 1863. Blennius ocellaris Linnaeus, 1758 No copepod collected Boops boops ŽLinnaeus, 1758. Colobomatus sieboldi ŽRichiardi, 1877. Lernaeenicus labracis Richiardi, 1880 a Lernaeolophus sultanus von Nordmann, 1839 Naobranchia cygniformis Hesse, 1863 Brama brama ŽBonnaterre, 1788. Colobomatus haeckeli ŽRichiardi, 1877. Buglossidium luteum ŽRisso, 1810. No copepod collected Callionymus lyra Linnaeus, 1758 No copepod collected Callionymus maculatus Rafinesque, 1810 Haemobaphes ambiguus T. Scott, 1900 Callionymus pusillus Delaroche, 1809 Haemobaphes ambiguus T. Scott, 1900 Callionymus risso Lesueur, 1814 Haemobaphes ambiguus T. Scott, 1900 Campogramma glaycos ŽLacepede, ` 1801. Lernanthropus trachuri Brian, 1903 Capros aper Linnaeus, 1758 ClaÕella delamarei Nunes-Ruivo, 1954 Peniculus fistula Rudolphi, 1880 Carcharhinus breÕipinna ŽMuller and Henle, 1839. ¨ Eudactylina aspera Heller, 1865 Nemesis robusta Žvan Beneden, 1851. Perissopus dentatus Steenstrup and Lutken, 1861 ¨ Carcharhinus plumbeus ŽNardo, 1827. Alebion carchariae Krøyer, 1863 Pandarus cranchii Leach, 1819 Perissopus dentatus Steenstrup and Lutken, 1861 ¨

199

Carcharodon carcharias ŽLinnaeus, 1758. Dinemoura latifolia ŽSteenstrup and Lutken, 1861. ¨ Echthrogaleus coleoptratus ŽGuerin-Meneville, ´ 1837. Nemesis lamna A. Scott, 1929 Perissopus dentatus Steenstrup and Lutken, 1861 ¨ Centrophorus uyato ŽRafinesque, 1809. Echthrogaleus coleoptratus ŽGuerin-Meneville, ´ 1837. Cepola macrophthalma ŽLinnaeus, 1758. No copepod collected Cetorhinus maximus ŽGunnerus, 1765. Anthosoma crassum ŽAbildgaard, 1794. Dinemoura producta ŽMuller, 1785. ¨ Nemesis lamna A. Scott, 1929 Chelon labrosus ŽRisso, 1826. Caligus pageti Russel, 1925 Colobomatus mugilis Raibaut et al., 1978 Ergasilus lizae Krøyer, 1863 Lernaeolophus sultanus von Nordmann, 1839 Nipergasilus bora ŽYamaguti, 1939. Pseudocaligus apodus ŽBrian, 1924. Chlorophthalmus agassizi Bonaparte, 1840 ClaÕella denticis Krøyer, 1863 Chromis chromis ŽLinnaeus, 1758. No copepod collected Coelorhynchus coelorhynchus ŽRisso, 1810. Lophoura edwardsi Kolliker, 1853 ¨ Conger conger ŽLinnaeus, 1758. Congericola pallidus van Beneden, 1854 Coris julis ŽLinnaeus, 1758. No copepod collected Coryphaena hippurus Linnaeus, 1758 Caligus coryphaenae Steenstrup and Lutken, 1861 ¨ Pseudocycnus appendiculatus Heller, 1865 Dasyatis centroura ŽMitchill, 1815. Eudactylina minuta T. Scott, 1904 Nemesis lamna A. Scott, 1929 Nemesis robusta Žvan Beneden, 1851. Dasyatis pastinaca ŽLinnaeus, 1758. Eudactylina minuta T. Scott, 1904 Eudactylinella alba Wilson, 1932 Pseudocharopinus malleus Žvon Nordmann, 1832. Trebius caudatus Krøyer, 1838 Deltentosteus quadrimaculatus ŽValenciennes, 1837. Pharodes banyulensis Delamare Deboutteville, 1951 Dentex dentex (Linnaeus, 1758)

200

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

Caligus mauritanicus Brian, 1924 Caligus Õexator Heller, 1865 ClaÕellotis fallax ŽHeller, 1865. Colobomatus denticis ŽRichiardi, 1877. Dentex gibbosus ŽRafinesque, 1810. Caligus Õexator Heller, 1865 Lernaeolophus sultanus von Nordmann, 1839 Dentex maroccanus ŽValenciennes, 1830. No copepod collected Dicentrarchus labrax ŽLinnaeus, 1758. Caligus dicentrarchi Cabral and Raibaut, 1985 Caligus minimus Otto, 1821 Colobomatus labracis Delamare Deboutteville and Nunes-Ruivo, 1952 Lernaeenicus labracis Richiardi, 1880 a Lernanthropus kroyeri van Beneden, 1851 Neobrachiella insidiosa ŽHeller, 1865. Diplodus annularis ŽLinnaeus, 1758. Alella macrotrachelus ŽBrian, 1906. ClaÕellotis sargi ŽKurz, 1877. Colobomatus grubei ŽRichiardi, 1877. Colobomatus sparsi Essafi, 1982 Hatschekia pagellibogneraÕei ŽHesse, 1879. Lernaeolophus sultanus von Nordmann, 1839 Lernanthropus Õorax Richiardi, 1879 Naobranchia cygniformis Hesse, 1863 Peniculus fistula Rudolphi, 1880 Diplodus puntazzo ŽCetti, 1777. ClaÕellotis characis ŽRichiardi, 1880. Colobomatus agassizi ŽRichiardi, 1877. Lernaeolophus sultanus von Nordmann, 1839 Lernanthropus Õorax Richiardi, 1879 Pseudoeucanthus kerkennensis Essafi et al., 1984 Diplodus sargus ŽLinnaeus, 1758. Alella macrotrachelus ŽBrian, 1906. Caligus dieuzeidei Brian, 1932 Caligus ligusticus Brian, 1906 ClaÕellotis sargi ŽKurz, 1877. Colobomatus grubei ŽRichiardi, 1877. Colobomatus oblatae ŽRichiardi, 1900. Hatschekia pagellibogneraÕei ŽHesse, 1879. Lernanthropus sp. Lernanthropus Õorax Richiardi, 1879 Naobranchia cygniformis Hesse, 1863 Diplodus Õulgaris ŽGeoffroy Saint-Hilaire, 1817. Alella macrotrachelus ŽBrian, 1906. ClaÕellotis sargi ŽKurz, 1877. Colobomatus grubei ŽRichiardi, 1877.

Hatschekia pagellibogneraÕei ŽHesse, 1879. Lernaeenicus sargi Richiardi, 1880 a Lernanthropus Õorax Richiardi, 1879 Peniculus fistula Rudolphi, 1880 Engraulis encrasicolus ŽLinnaeus, 1758. Peroderma cylindricum ŽHeller, 1865. Epinephelus aeneus ŽGeoffroy St-Hilaire, 1817. Hatschekia cernae Goggio, 1905 Epinephelus guaza ŽLinnaeus, 1758. Caligus serrani Richiardi, 1880 Hatschekia cadenati Nunes-Ruivo, 1954 Hatschekia cernae Goggio, 1905 Lepeophtheirus dissimulatus Wilson, 1905 Lepeophtheirus rotundiÕentris Bassett-Smith, 1898 Etmopterus spinax ŽLinnaeus, 1758. Lernaeopoda longibrachia Brian, 1912 Lernaeopodina spinacis ŽBrian, 1908. Euthynnus quadripunctatus ŽGeoffroy Saint-Hilaire, 1817. Caligus pelamydis Krøyer, 1863 Eutrigla gurnadus ŽLinnaeus, 1758. Caligus diaphanus von Nordmann, 1832 Exocoetus Õolitans Linnaeus, 1758 Bomolochus unicirrus ŽBrian, 1902. Nothobomolochus cornutus ŽClaus, 1864. Gaidropsarus Õulgaris ŽCloquet, 1824. Eucanthus marchesetti Valle, 1884 Galeorhinus galeus ŽLinnaeus, 1758. Kroyeria lineata van Beneden, 1853 Luetkenia integra Richiardi, 1880 Pandarus bicolor Leach, 1916 Perissopus dentatus Steenstrup and Lutken, 1861 ¨ Galeus melastomus ŽRafinesque, 1810. Eudactylina Õilelai Nunes-Ruivo, 1954 Gobius cobitis Pallas, 1811 Taeniacanthus gobii ŽBrian, 1906. Gobius luteus Kolombatovic, 1891 Chondracanthus ninnii Richiardi, 1882 Gobius niger Linnaeus, 1758 Chondracanthus horridus Heller, 1865 Gymnura altaÕela ŽLinnaeus, 1758. Eudactylina turgipes Bere, 1936 Hexanchus griseus ŽBonnaterre, 1788. Caligus lessonianus Risso, 1826 Demoleus heptapus ŽOtto, 1821. Nemesis robusta Žvan Beneden, 1851. Protodactylina pamelae Laubier, 1966 Hirundichthys, rondeletii ŽValenciennes, 1846.

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

Nothobomolochus cornutus ŽClaus, 1864. Isurus oxyrinchus Rafinesque, 1810 Anthosoma crassum ŽAbildgaard, 1794. Dinemoura latifolia ŽSteenstrup and Lutken, 1861. ¨ Nemesis lamna A. Scott, 1929 Pandarus lugubris Heller, 1865 Katsuwonus pelamis ŽLinnaeus, 1758. Pseudocycnus appendiculatus Heller, 1865 Knipowitschia panizzae ŽVerga, 1841. Chondracanthus ninnii Richiardi, 1882 Labrus merula Linnaeus, 1758 Colobomatus doderleini ŽRichiardi, 1883. Hatschekia pygmaea T. Scott and A. Scott, 1913 Labrus Õiridis Linnaeus, 1758 Hatschekia pygmaea T. Scott and A. Scott, 1913 Lamna nasus ŽBonnaterre, 1788. Anthosoma crassum ŽAbildgaard, 1794. Dinemoura producta ŽMuller, 1785. ¨ Nemesis lamna A. Scott, 1929 Lepidopus caudatus ŽEuphrasen, 1788. Caligus lepidopi Richiardi, 1880 a Lepidotrigla caÕillone ŽLacepede, ´ ` 1801. Caligus diaphanus von Nordmann, 1832 Lichia amia ŽLinnaeus, 1758. Bomolochus unicirrus ŽBrian, 1902. Caligus lichiae Brian, 1906 ClaÕella lichiae Richiardi, 1880 a Colobomatus lichiae ŽRichiardi, 1877. Lernaeenicus gracilis Heller, 1865 Lernanthropus gisleri van Beneden, 1852 Nemesis lamna A. Scott, 1929 Neobrachiella elegans ŽRichiardi, 1880. Lipophrys paÕo ŽRisso, 1810. Pharodes banyulensis Delamare Deboutteville, 1951 Lithognathus mormyrus ŽLinnaeus, 1758. Alella pagelli ŽKrøyer, 1863. Caligus diaphanus von Nordmann, 1832 Caligus ligusticus Brian, 1906 ClaÕellotis fallax ŽHeller, 1865. ClaÕellotis strumosa ŽBrian, 1906. Colobomatus pagelli ŽRichiardi, 1877. Lernaeolophus sultanus von Nordmann, 1839 Sparidicola lithognathi ŽKensley and Grindley, 1973. Liza aurata ŽRisso, 1810. Caligus pageti Russel, 1925 Colobomatus mugilis Raibaut et al., 1978

201

Ergasilus lizae Krøyer, 1863 Eubrachiella mugilis Kabata et al., 1971 Lernaeenicus Õorax Richiardi, 1877 Lernanthropus mugilis Brian, 1898 Nipergasilus bora ŽYamaguti, 1939. Pseudocaligus apodus ŽBrian, 1924. Liza carinata ŽEhrenberg, 1836. Pseudocaligus apodus ŽBrian, 1924. Liza ramada ŽRisso, 1826. Caligus pageti Russel, 1925 Colobomatus mugilis Raibaut et al., 1978 Ergasilus lizae Krøyer, 1870 Lernaea cyprinacea Linnaeus, 1758 Lernaeenicus Õorax Richiardi, 1877 Pseudocaligus apodus ŽBrian, 1924. Liza saliens ŽRisso, 1810. Caligus pageti Russel, 1925 Colobomatus mugilis Raibaut et al., 1978 Ergasilus lizae Krøyer, 1863 Eubrachiella mugilis Kabata et al., 1971 Lernaeenicus Õorax Richiardi, 1877 Lernaeolophus sultanus von Nordmann, 1839 Pseudocaligus apodus ŽBrian, 1924. Lophius piscatorius Linnaeus, 1758 Chondracanthus lophii Johnson, 1836 LuÕarus imperialis Rafinesque, 1810 Nothobomolochus cornutus ŽClaus, 1864. Luetkenia asterodermi Claus, 1864 Merluccius merluccius ŽLinnaeus, 1758. Chondracanthus merluccii ŽHolten, 1802. ClaÕella adunca ŽStrøm, 1762. ClaÕella stellata ŽKrøyer, 1838. Lernaeocera lusci ŽBassett-Smith, 1896. Neobrachiella impudica Žvon Nordmann, 1832. Neobrachiella insidiosa ŽHeller, 1865. Neobrachiella merluccii ŽBassett-Smith, 1896. Micromesistius poutassou ŽRisso, 1826. No copepod collected Mobula mobular ŽBonnaterre, 1788. Diphyllogaster thompsoni Brian, 1899 Mola mola ŽLinnaeus, 1758. Cecrops latreillii Leach, 1816 Lepeophtheirus nordmanni ŽEdwards, 1840. Orthagoriscicola muricatus ŽKrøyer, 1837. Pennella filosa ŽLinnaeus, 1758. Philorthagoriscus serratus ŽKrøyer, 1863. Mugil cephalus Linnaeus, 1758 Brachiella oblonga Valle, 1880 a

202

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

Caligus pageti Russel, 1925 Colobomatus mugilis Raibaut et al., 1978 Ergasilus lizae Krøyer, 1863 Lernaea cyprinacea Linnaeus, 1758 Lernaeenicus Õorax Richiardi, 1877 Lernaeolophus sultanus von Nordmann, 1839 Nipergasilus bora ŽYamaguti, 1939. Pseudocaligus apodus ŽBrian, 1924. Mullus barbatus Linnaeus, 1758 Colobomatus mulli Essafi et al., 1983 Colobomatus steenstrupi Richiardi, 1876 Hatschekia mulli Žvan Beneden, 1851. Peniculus fistula Rudolphi, 1880 Mullus surmuletus Linnaeus, 1758 Caligus centrodonti Baird, 1850 Colobomatus mulli Essafi et al., 1983 Colobomatus steenstrupi Richiardi, 1876 Hatschekia mulli Žvan Beneden, 1851. Peniculus fistula Rudolphi, 1880 Muraena helena Linnaeus, 1758 Bomolochus muraenae Richiardi, 1880 b Colobomatus muraenae ŽRichiardi, 1877. Hatschekia obesa Richiardi, 1880 Phagus muraenae Wilson, 1911 Mustelus asterias Cloquet, 1821 Eudactylina insolens T. Scott and A. Scott, 1913 Kroyeria carchariaeglauci Hesse, 1878 Kroyeria lineata van Beneden, 1853 Lernaeopoda galei Krøyer, 1837 Nemesis robusta Žvan Beneden, 1851. Perissopus dentatus Steenstrup and Lutken, 1861 ¨ Tripaphylus musteli Žvan Beneden, 1851. Mustelus mustelus ŽLinnaeus, 1758. Eudactylina insolens T. Scott and A. Scott, 1913 Kroyeria carchariaeglauci Hesse, 1878 Kroyeria lineata van Beneden, 1853 Lernaeopoda galei Krøyer, 1837 Nemesis robusta Žvan Beneden, 1851. Nessipus orientalis Heller, 1865 Paeon Õersicolor Wilson, 1919 Perissopus dentatus Steenstrup and Lutken, 1861 ¨ Tripaphylus musteli Žvan Beneden, 1851. Mustelus punctulatus ŽRisso, 1826. Eudactylina insolens T. Scott and A. Scott, 1913 Kroyeria lineata van Beneden, 1853 Lernaeopoda galei Krøyer, 1837 Nemesis robusta Žvan Beneden, 1851. Nessipus orientalis Heller, 1865

Perissopus dentatus Steenstrup and Lutken, 1861 ¨ Myctophum punctatum Rafinesque, 1810 Peroderma bellottii Richiardi, 1882 Myliobatis aquila ŽLinnaeus, 1758. Eudactylina complexa Brian, 1924 Lernaeopoda galei Krøyer, 1837 Pseudocharopinus malleus Žvon Nordmann, 1832. Naucrates ductor ŽLinnaeus, 1758. Pennella filosa ŽLinnaeus, 1758. Neogobius fluÕiatilis ŽPallas, 1811. Lernaea cyprinacea Linnaeus, 1758 Nettastoma melanurum Rafinesque, 1810 Lernaeenicus sp. Notoscopelus elongatus ŽCosta, 1844. Peroderma bellottii Richiardi, 1882 Oblada melanura ŽLinnaeus, 1758. Bomolochus oblongus Richiardi, 1880 a Colobomatus oblatae ŽRichiardi, 1900. Lernanthropus Õorax Richiardi, 1879 Odontaspis ferox ŽRisso, 1810. Nemesis lamna A. Scott, 1929 Oedalechilus labeo ŽCuvier, 1829. Pseudocaligus apodus ŽBrian, 1924. Pagellus acarne ŽRisso, 1826. Caligus diaphanus von Nordmann, 1832 Colobomatus oblatae ŽRichiardi, 1900. Pagellus bogaraÕeo ŽBrunnich, 1768. ¨ Alella pagelli ŽKrøyer, 1863. Caligus diaphanus von Nordmann, 1832 Caligus ligusticus Brian, 1906 Caligus minimus Otto, 1821 Colobomatus oblatae ŽRichiardi, 1900. Colobomatus pagelli ŽRichiardi, 1877. Hatschekia pagellibogneraÕei ŽHesse, 1879. Pagellus erythrinus ŽLinnaeus, 1758. Alella pagelli ŽKrøyer, 1863. Brachiella minuta Richiardi, 1880 a Caligus diaphanus von Nordmann, 1832 Caligus pagelli Delamare Deboutteville and Nunes-Ruivo, 1958 ClaÕella tenuis ŽRichiardi, 1880. a ClaÕellotis pagri ŽKrøyer, 1863. ClaÕellotis strumosa ŽBrian, 1906. Colobomatus pagelli ŽRichiardi, 1877. Colobomatus pagri ŽRichiardi, 1877. Hatschekia ischnon Leigh-Sharpe, 1936 Lernaeolophus sultanus von Nordmann, 1839 Neobrachiella exigua ŽBrian, 1906.

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

Peniculus fistula Rudolphi, 1880 Parablennius gattorugine ŽBrunnich, 1768. ¨ No copepod collected Phycis blennoides ŽBrunnich, 1768. ¨ ClaÕella alata Brian, 1906 Phycis phycis ŽLinnaeus, 1766. No copepod collected Platichthys flesus ŽLinnaeus, 1758. Caligus diaphanus von Nordmann, 1832 Lepeophtheirus europaensis Zeddam et al., 1988 Lepeophtheirus pectoralis ŽMuller, 1777. ¨ Prionace glauca ŽLinnaeus, 1758. Alebion carchariae Krøyer, 1863 Anthosoma crassum ŽAbildgaard, 1794. Dinemoura latifolia ŽSteenstrup and Lutken, 1861. ¨ Echthrogaleus coleoptratus ŽGuerin-Meneville, ` 1837. Kroyeria carchariaeglauci Hesse, 1878 Kroyeria lineata van Beneden, 1853 Nemesis robusta Žvan Beneden, 1851. Pandarus bicolor Leach, 1916 Psetta maxima ŽLinnaeus, 1758. Lepeophtheirus pectoralis ŽMuller, 1777. ¨ Lepeophtheirus thompsoni Baird, 1850 Pseudocaranx dentex ŽBloch and Schneider, 1801. Lernaeolophus sultanus von Nordmann, 1839 Pteromylaeus boÕinus ŽGeoffroy Saint-Hilaire, 1817. Eudactylina complexa Brian, 1924 Pseudocharopinus pteromylaei Raibaut and Essafi, 1979 Raja (Dipturus) batis Linnaeus, 1758 Acanthochondrites annulatus ŽOlsson, 1869. Charopinus dalmanni ŽRetzius, 1829. Nemesis robusta Žvan Beneden, 1851. Trebius caudatus Krøyer, 1838 Raja (Dipturus) oxyrinchus Linnaeus, 1758 Acanthochondrites annulatus ŽOlsson, 1869. Charopinus dalmanni ŽRetzius, 1829. Nemesis robusta Žvan Beneden, 1851. Raja (Raja) asterias Delaroche, 1809 Charopinus dubius T. Scott, 1900 Eudactylina complexa Brian, 1924 Eudactylina similis T. Scott, 1902 Raja (Raja) claÕata Linnaeus, 1758 Charopinus dalmanniŽRetzius, 1829. Charopinus dubius T. Scott, 1900 Trebius caudatus Krøyer, 1838 Raja (Raja) montagui Fowler, 1910

203

Brachiella inconcinna Richiardi, 1880 a Remora remora ŽLinnaeus, 1758. Pennella filosa ŽLinnaeus, 1758. Rhinobatos cemiculus Geoffroy Saint-Hilaire, 1817 Eudactylina rhinobati Raibaut and Essafi, 1979 ¨ Perissopus dentatus Steenstrup and LYtken, 1861 Rhinobatos rhinobatos (Linnaeus, 1758) Eudactylina rhinobati Raibaut and Essafi, 1979 Rhinoptera marginata ŽGeoffroy Saint-Hilaire, 1817. Pseudocharopinus malleus Žvon Nordmann, 1832. RuÕettus pretiosus Cocco, 1829 Lernanthropus foliaceus Richiardi, 1880 Sarda sarda ŽBloch, 1793. Caligus bonito Wildson, 1905 Caligus pelamydis Krøyer, 1863 Sardina pilchardus ŽWalbaum, 1792. Bomolochus unicirrus ŽBrian, 1902. Lernaeenicus sprattae ŽSowerby, 1806. Nothobomolochus cornutus ŽClaus, 1864. Peroderma cylindricum ŽHeller, 1865. Sarpa salpa ŽLinnø, 1758. Caligus fissus Richiardi, 1880 b Caligus ligusticus Brian, 1906 ClaÕellotis pagri ŽKrøyer, 1863. Colobomatus richiardii ŽValle, 1880. a Colobomatus Õallei Essafi, Cabral and Raibaut, 1984 Sciaena umbra Linnaeus, 1758 Caligus affinis Heller, 1866 Caligus mauritanicus Brian, 1924 Colobomatus sciaenae ŽRichiardi, 1876. Lernaeenicus Õorax Richiardi, 1877 Lernanthropus gisleri van Beneden, 1852 Neobrachiella cheÕreuxi Žvan Beneden, 1891. Neobrachiella hostilis ŽHeller, 1865. Sphaerifer corÕinae Leydig, 1851 Scomber japonicus Routtuyn, 1782 ClaÕellisa scombri ŽKurz, 1877. Scomber scombrus Linnaeus, 1758 AdÕena paradoxa Žvan Beneden, 1851. Caligus pelamydis Krøyer, 1863 ClaÕellisa scombri ŽKurz, 1877. Scomberesox saurus ŽWalbaum, 1792. Bomolochus unicirrus ŽBrian, 1902. Nothobomolochus cornutus ŽClaus, 1864. Nothobomolochus scomberesocis ŽKrøyer, 1864. Scophthalmus rhombus ŽLinnaeus, 1758. Lepeophtheirus europaensis Zeddam, Berrebi, Re-

204

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

naud, Raibaut and Gabrion, 1988 Lepeophtheirus thompsoni Baird, 1850 Scorpaena porcus ŽLinnaeus, 1758. No copepod collected Scorpaena scrofa ŽLinnaeus, 1758. Lernaeolophus sultanus von Nordmann, 1839 Strabax monstrosus Žvon Nordmann, 1832. Scyliorhinus canicula ŽLinnaeus, 1758. Albionella globosa ŽLeigh-Sharpe, 1918. Lernaeopoda galei Krøyer, 1837 Scyliorhinus stellaris ŽLinnaeus, 1758. Lernaeopoda galei Krøyer, 1837 Seriola dumerili (Risso, 1810) Colobomatus lichiae ŽRichiardi, 1877. Lepeophtheirus sp. Lernanthropus micropterygis Richiardi, 1885 Neobrachiella elegans Richiardi, 1880 Serranus cabrilla ŽLinnaeus, 1785. Colobomatus edwardsi ŽRichiardi, 1876. Lernaeolophus sultanus von Nordmann, 1839 Serranus hepatus ŽLinnaeus, 1758. Colobomatus minimus ŽRichiardi, 1877. Serranus scriba ŽLinnaeus, 1758. Bomolochus minimus Richiardi, 1877 a Colobomatus edwardsi ŽRichiardi, 1876. Lernaeolophus sultanus von Nordmann, 1839 Lernanthropus scribae Krøyer, 1863 Solea senegalensis ŽKaup, 1858. Lernaeascus nematoxys Claus, 1887 Solea Õulgaris ŽQuensel, 1806. Acanthochondria cornuta ŽMuller, 1776. ¨ Bomolochus soleae Claus, 1864 Lernaeocera lusci ŽBassett-Smith, 1896. Sparus aurata ŽLinnaeus, 1758. Caligus productus Dana, 1852 ClaÕellotis fallax ŽHeller, 1865. Colobomatus baraldii ŽRichiardi, 1877. Colobomatus oblatae ŽRichiardi, 1900. Lernaeolophus sultanus von Nordmann, 1839 Sparus caeruleostictus ŽValenciennes, 1830. Colobomatoides splendidus Essafi and Raibaut, 1980 Sparus pagrus ŽLinnaeus, 1758. Caligus Õexator Heller, 1865 ClaÕellotis pagri ŽKrøyer, 1863. Colobomatus pagri ŽRichiardi, 1877. Colobomatus benazzii Delamare Deboutteville and Nunes- Ruivo, 1958

Naobranchia cygniformis Hesse, 1863 Neobrachiella exigua ŽBrian, 1906. Sphyraena sphyraena ŽLinnaeus, 1758. Bomolochus unicirrus ŽBrian, 1902. Sphyrna zygaena ŽLinnaeus, 1758. Alebion difficilis van Beneden, 1892 Dinemoura producta ŽMuller, 1785. ¨ Nemesis robusta Žvan Beneden, 1851. Nessipus alatus Wilson, 1905 Spicara maena ŽLinnaeus, 1758. ClaÕella claÕa Richiardi, 1880 a Lernaeolophus sultanus von Nordmann, 1839 Naobranchia cygniformis Hesse, 1863 Spicara smaris ŽLinnaeus, 1758. Caligus smaris Richiardi, 1880 Lernaeocera ninnii Richiardi, 1880 a Lernaeolophus sultanus von Nordmann, 1839 Naobranchia cygniformis Hesse, 1863 Spondyliosoma cantharus ŽLinnaeus, 1758. Alella pagelli ŽKrøyer, 1863. ClaÕellotis fallax ŽHeller, 1865. Colobomatus canthari Delamare Deboutteville and Nunes-Ruivo, 1952 Sprattus sprattus ŽLinnaeus, 1758. Nothobomolochus cornutus ŽClaus, 1864. Lernaeenicus sprattae ŽSowerby, 1806. Squalus acanthias ŽLinnaeus, 1758. Eudactylina acanthii A. Scott, 1901 Eudactylina acuta van Beneden, 1853 Pandarus bicolor Leach, 1816 Pseudocharopinus bicaudatus ŽKrøyer, 1837. Trebius caudatus Krøyer, 1838 Squalus blainÕillei ŽRisso, 1826. Eudactylina acanthii A. Scott, 1901 Eudactylina Õilelai Nunes-Ruivo, 1954 Kroyeria carchariaeglauci Hesse, 1878 Trebius sp. Squatina aculeata Cuvier, 1829 Eudactylina complexa Brian, 1924 Squatina oculata Bonaparte, 1840 Eudactylina complexa Brian, 1924 Squatina squatina ŽLinnaeus, 1758. Eudactylina acuta van Beneden, 1853 Eudactylina complexa Brian, 1924 Demoleus heptapus ŽOtto, 1821. Stromateus fiatola ŽLinnaeus, 1758. Colobomatus fiatolae ŽRichiardi, 1880. Thysanote ramosa ŽRichiardi, 1880.

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

Symphodus cinereus ŽBonnaterre, 1788. Caligus hyalinus Czerniavsky, 1868 Hatschekia pygmaea T. Scott and A. Scott, 1913 Symphodus mediterraneus ŽLinnaeus, 1758. Hatschekia pygmaea T. Scott and A. Scott, 1913 Leposphilus labrei Hesse, 1866 Symphodus melops ŽLinnaeus, 1758. Caligus centrodonti Baird, 1850 Leposphilus labrei Hesse, 1866 Symphodus ocellatus ŽForsskal, 1775. Caligus hyalinus Czerniavsky, 1868 Pharodes clini Brian, 1940 Symphodus rostratus ŽBloch, 1797. Leposphilus labrei Hesse, 1866 Symphodus tinca ŽLinnaeus, 1758. Caligus elongatus von Nordmann, 1832 Hatschekia damianii Brian, 1906 b Hatschekia pygmaea T. Scott and A. Scott, 1913 Leposphilus labrei Hesse, 1866 Syngnathus abaster ŽRisso, 1826. Ergasilus ponticus Markewisch, 1934 Syngnathus phlegon ŽRisso, 1826. No copepod collected Taeniura grabata ŽGeoffroy Saint-Hilaire, 1817. Eudactylina minuta T. Scott, 1904 Pseudocharopinus malleus Žvon Nordmann, 1832. Thunnus alalunga ŽBonnaterre, 1788. Caligus alalongae Krøyer, 1863 Pennella filosa ŽLinnaeus, 1758. Thunnus thynnus ŽLinnaeus, 1758. Brachiella thynni Cuvier, 1830 Cecrops latreillii Leach, 1816 Euryphorus brachypterus ŽGerstaecker, 1853. Pseudocycnus appendiculatus Heller, 1865 Torpedo marmorata ŽRisso, 1810. Eudactylina complexa Brian, 1924 Pseudocharopinus malleus Žvon Nordmann, 1832. Torpedo nobiliana ŽBonaparte, 1835. Eudactylina complexa Brian, 1924 Torpedo torpedo ŽLinnaeus, 1758. Pseudocharopinus malleus Žvon Nordmann, 1832. Trachinotus oÕatus ŽLinnaeus, 1758. Bomolochus unicirrus ŽBrian, 1902. ClaÕella lichiae Richiardi, 1880 a Neobrachiella elegans ŽRichiardi, 1880. Trachinus draco ŽLinnaeus, 1758. Caligus trachini Richiardi, 1880 a Trachurus trachurus ŽLinnaeus, 1758.

205

Caligus trachuri Richiardi, 1880 a Lernaeenicus labracis Richiardi, 1880 a Lernanthropus trachuri Brian, 1903 Trigla lucerna ŽLinnaeus, 1758. Acanthochondria triglae Herrera-Cubilla and Raibaut, 1990 Caligus breÕicaudatus A. Scott, 1901 Caligus diaphanus von Nordmann, 1832 Lernentoma asellina ŽLinnaeus, 1758. Neobrachiella bispinosa Žvon Nordmann, 1832. Neobrachiella impudica Žvon Nordmann, 1832. Neobrachiella insidiosa ŽHeller, 1865. Neobrachiella triglae ŽClaus, 1860. Trigla lyra ŽLinnaeus, 1758. Caligus diaphanus von Nordmann, 1832 Lernentoma asellina ŽLinnaeus, 1758. Neobrachiella insidiosa ŽHeller, 1865. Trigloporus lastoÕiza ŽBrunnich, 1768. ¨ Caligus diaphanus von Nordmann, 1832 Lernentoma asellina Linnaeus, 1758 Neobrachiella impudica Žvon Nordmann, 1832. Neobrachiella triglae ŽClaus, 1860. Trisopterus luscus ŽLinnaeus, 1758. Lernaeocera lusci ŽBassett-Smith, 1896. Tylosurus acus imperialis ŽRafinesque, 1810. Bomolochus bellones Burmeister, 1835 Caligodes laciniatus ŽKrøyer, 1863. Lernanthropus tylosuri Richiardi, 1880 Umbrina canariensis ŽValenciennes, 1843. Neobrachiella hostilis ŽHeller, 1865. Neobrachiella richiardii Ben Hassine and Raibaut, 1978 Umbrina cirrosa ŽLinnaeus, 1758. Caligus affinis Heller, 1865 Lernaeenicus Õorax Richiardi, 1877 Lernanthropus gisleri van Beneden, 1852 Neobrachiella hostilis ŽHeller, 1865. Neobrachiella richiardii Ben Hassine and Raibaut, 1978 Sphaerifer corÕinae Leydig, 1851 Sphaerifer leydigi Richiardi, 1877 Uranoscopus scaber ŽLinnaeus, 1758. Chondracanthus angustatus Heller, 1865 Xiphias gladius ŽLinnaeus, 1758. Acanthochondria cornuta ŽMuller, 1776. ¨ Neobrachiella ramosa ŽRichiardi, 1880. Pennella filosa ŽLinnaeus, 1758. Philichthys xiphiae Steenstrup, 1862

206

A. Raibaut et al.r Journal of Marine Systems 15 (1998) 185–206

Zeus faber ŽLinnaeus, 1758. Chondracanthus zei Delaroche, 1811 Peniculus fistula Rudolphi, 1880 Even though some species are nomina nuda Ž a . or inquirenda Ž b . we have taken into account of them in our analysis because they have been observed.

References Brian, A., 1906. Copepodi parassiti dei pesci d’Italia. Genova, 190 pp. Brian, A., 1912. Copepodes parasites des poissons et des echinides ´ ´ provenant des campagnes scientifiques de S.A.S. le prince Albert 1er de Monaco. Result. Camp. Scient. Prince Albert 1er ´ 38, 1–58. Carus, J.V., 1885. Prodromus faunae mediterraneae. Vol. 1. Coelenterata, Echinodermata, Vermes, Arthropoda. Schweizerbart, Stuttgart, 524 pp. Delamare Deboutteville, C., Nunes-Ruivo, L., 1952. Copepodes ´ parasites de poissons de Banyuls Ž2 e´me serie ´ .. Vie Milieu 3, 292–300. Delamare Deboutteville, C., Nunes-Ruivo, L., 1953. Copepodes ´ parasites des poissons mediterraneens ´ ´ Ž3 e´me serie ´ .. Vie Milieu 4, 201–218. Delamare Deboutteville, C., Nunes-Ruivo, L., 1958. Copepodes ´ parasites des poissons mediterraneens ´ ´ Ž4 e´me serie ´ .. Vie Milieu 9, 215–235. Essafi, K., Raibaut, A., 1977. Copepodes parasites des poissons de ´ Tunisie Ž2 e´me serie ´ .. Bull. Soc. Sci. Nat. Tun. 12, 23–38. Euzet, L., Combes, C., 1980. Les problemes de l’espece ` ` chez les animaux parasites. In: Bocquet, C., Genermont, J., Lamotte, M. ŽEds.., Les Problemes de l’Espece Animal. ` ` dans le Regne ` Mem. ´ Soc. Zool. Fr. 3 Ž40., 239–245. Fischer, W., Schneider, M., Bauchot, M.L. ŽEds.., Fiches d’identification des especes ` de Mediterranee ´ ´ et de Mer Noire, Vol. 2. Vertebres. ´ ´ FAO, pp. 761–1529. Guegan, J.F., Lambert, A., Leveque, C., Combes, C., Euzet, L., ´ ´ ˆ 1992. Can host body size explain species richness in tropical freshwater fishes?. Oecologia 90, 197–204.

Heller, C., 1865. Crustaceen. Reise der Oesterreichischen Fregatte Novara um die Erde in den Jahren 1857, 1858, 1859. Zool. Theil. 2 Ž3., 1–280. Hureau J.C., Monod, Th. ŽEds.., 1979. Check-list of the fishes of the north-eastern Atlantic and of the Mediterranean, Vol. 1. UNESCO, 683 pp. Maillard, C., Raibaut, A., 1989. Human activities and modifications of ichtyofauna of the Mediterranean sea: effect on parasitosis. In: Di Castri, F., Hansen, A.J., Debussche, M. ŽEds.., Biological Invasions in Europe and the Mediterranean Basin. Kluwer, Dordrecht, pp. 297–305. Markevisch, A.P., 1956. Paraziticheskie veslonogie ryb SSSR. Akad. Nauk. Ukr. SSSR, Kiev, 259 pp. Nunes-Ruivo, L., 1953. Copepodes parasites de poissons. Resultats ´ ´ des campagnes du ‘Pr. Lacaze Duthiers’. Vie Milieu 3, 115– 138. Radujkovic, B., Raibaut, A., 1989. Parasites des poissons marins des cotes Copepodes. Acta Adriat. 28, 121– ˆ du Montenegro: ´ ´ ´ 142. Raibaut, A., Ben Hassine, O.K., Maamouri, K., 1971. Copepodes ´ parasites des poissons de Tunisie Ž1e`re serie ´ .. Bull. Inst Oceanogr. Peche, Salammboˆ 2 Ž2., 169–197. ´ ´ Raibaut, A., Ben Hassine, O.K., Prunus, G., 1975. Etude de l’infestation de Mugil Ž Mugil . cephalus Linne, ´ 1758 ŽPoissons, Teleosteens, Mugilides Ergasilus nanus ´´ ´ ´ . par le Copepode ´ van Beneden, 1870 dans le lac Ischkeul ŽTunisie.. Bull. Soc. Zool. Fr. 100 Ž4., 427–437. Richiardi, S., 1880. Contribuzione alla fauna d’Italia. I. Catalogo systematico di crostacei chez vivono sul corpo di animali aquatici. Catalogo degli Espozitioni e della cosa Esposte, Espozitione internationale di Pesca in Berlino, pp. 147–152. Siegel, S., Castellan, N.J., 1988. Nonparametric Statistics for the Behavioural Sciences, 2nd ed. McGraw-Hill, New York, NY. Sokal, R.R., Rohlf, F.J., 1981. Biometry, 2nd ed. Freeman, New York, NY. Valle, A., 1880. Crostacei parassiti dei pesci del mare Adriatico. Boll. Soc. Adriat. Sci. Nat. 6, 55–90. Whitehead, P.J.P., Bauchot, M.L., Hureau, J.C., Nielsen, J., Tortonese, E. ŽEds.., 1984. Poissons de l’Atlantique du Nord-Est et de la Mediterranee, ´ ´ Vols. 1–3. UNESCO, 1473 pp.