Computer Physics Communications 39 (1986) 439—446 North-Holland, Amsterdam
439
ANALYTIC VIBRATIONAL MATRIX ELEMENTS FOR DIATOMIC MOLECULES J.P. BOUANICH, J.F. OGILVIE* Laboratoire d’Infrarouge, Associé au CNRS, Université de Paris -Sud, Bâtiment 350, F-91405 Orsay Cedex, France
and R.H. TIPPING Department of Physics and Astronomy, University of Alabama, P.O. Box 1921, University, AL 35486-1 921, USA
Received 15 May 1985; in final form 30 December 1985
PROGRAM SUMMARY Title of program: VIBMATEL
No. of lines in combined program and test deck: 5915
Catalogue number: AAFQ
Keywords: molecular, diatomic, vibrational, matrix elements,
Program obtainable from: CPC Program Library, Queen’s Uni-
expectation values, Dunham potential—energy function, rotational dependence
versity of Belfast, N. Ireland (see application form in this issue)
Nature of the physical problem
and sufficient core
The vibrational matrix elements and expectation values for a diatomic molecule, including the rotational dependence, are calculated for powers of the reduced displacement in terms of the parameters of the Dunham potential—energy function [1].
Computer: Sperry 1100/91; Installation: P.S.!. Université de
Method of solution
Pans-Sud, F-91405 Orsay, France
Explicit expressions for the matrix elements in terms of the vibrational quantum numbers v and v’, or ~v, are given for x’, 0 1 8 or 7, respectively, in two different groups: in one group, 0 v v’ 7 and 0 1 8, up to the eighth order in the potential—energy function; in the other group, 0 z~v= v’ — v 7 and 0 1 7, up to the sixth order in the potential—energy function.
Computer for which the program is designed and others on which it is operable: any computer having a FORTRAN-77 compiler
Operating system: SPERRY OS1100 Exec-8, Level 39R2 Programming language used: FORTRAN-77 with nonstandard
IMPLICIT statement High-speed storage required: 169 Kwords
Typical running time No. of bits in a word: 36
1.3 s.
Overlay structure: optional
Reference
Peripherals used: card reader or input console, line printer
El] J.F. Ogilvie and R.H. Tipping, Intern. Rev. Phys. Chem 3 (1983) 3.
*
Present address: Department of Physics and Astronomy, The University of Alabama, P.O. Box 1921, University, AL 35486-1921, USA.
OO1O-4655/86/$03.50 © Elsevier Science Publishers B.V. (North-Holland Physics Publishing Division)
440
J.P. Bouanich et al.
/
Vibrational matrix elements for diatomic molecules
LONG WRITE-UP 1. Introduction According to quantum mechanics a matrix element of the corresponding operator is associated with any physically observable quantity. For the comparison between theoretically and experimentally determined properties, one thus requires accurate expectation values or matrix elements. For the evaluation of these quantities, one can use either numerical methods, requiring numerical integration over an appropriate range, or analytic expressions, if the theory to produce the latter has generated an adequate supply of expressions over the necessary range of quantum numbers of the discrete states. The numerical method is rather general, but requires a relatively long calculation for each value, whereas once the analytic expressions have been formed, probably as the result of long calculations, the results are fairly simple expressions that require only brief times for evaluation.
Here x is the reduced internuclear displacement in terms of the instantaneous R and equilibrium Re distances, x (R Re )/R e Be is the equilibrium having rotational parameter, Be h/(8~i2c~tR~), the same (wavenumber) units as V; y is the appropriate dimensionless expansion parameter, the ratio y 2 Be/We of limiting rotational and vibrational spectral intervals, that governs the convergence of the analytic expressions to follow. The a 1 coefficients are usually determined from the frequencies of lines in the observed vibration—rotational spectra, whether in absorption, emission or Raman scattering. It is convenient [2] to express various molecular properties, for instance rotational parameters Be,, shielding factors or spectral line intensities, in the form of power-series expansions of the corresponding functions in terms of the reduced displacement x; e.g. =
—
=
=
M(x)
=
~ M1x’.
(3)
1=0
2. Summary of the theory and its implementation In the program VIBMATEL, we use a series of analytic expressions for the vibration—rotational expectation values and vibrational matrix elements of a diatomic molecule (in a ~ state) in terms of the parameters of the potential—energy function due to Dunham [1], commonly used in spectroscopic investigations of these molecules: V(x)
=
BeY_2X2(1
~ a1xi).
+ j
=
(1)
I
The vibration—rotational wavefunctions ~ implicit in the calculations are the solutions of the dimensionless Schrodinger equation
d
2 X
+
1
-~-
,~
E~,—
\
V~x
—
BCJ(J + 21) (1 + x)
‘
~
—
0 ~ \
In this case, any vibrational matrix element of the function M(x) can easily be expressed in terms of the sum of the corresponding matrix elements of x: KM(x)k))
=
~ MiKv~x’Iv’)
(4)
/0
in which the (v I and v’) correspond to the vibrational eigenfunctions ‘4i~0(x)and i~0(x).If the values of v and v’ are identical, then we have the expectation values of the function M(x) in a particular vibrational state v v’. Two groups of analytic expressions are used in the program VIBMATEL. In the first group, the expressions are given for explicit values of v and v’, in the range 0 v v’ 7, useful for powers of x in the range 0 I 8. (Higher powers can be =
generated from exact recurrence relations [3].) The expressions contain all terms in the potential-energy parameters up to a8 inclusive. In the second difference vibrational quantum numbers, group, the between expressions are given in terms of the ~v=v’—v,intherange0z~v7forpowersof x up to x7 and contain all terms up to a 6 inclu-
J.P. Bouanich et al.
/
Vibrational matrix elements for diatomic molecules
sive. These two groups of expressions have been derived by different methods, that we summarize as follows, The matrix elements and expectation values in terms of v and v’ have been generated [21entirely by computer algebra [41,through the use of the vibrational wavefunctions [5], q~~0(x)IV~,g1,(x) tJ.~ 0(x).The derivation of the wavefunctions t?11~,O(x) with the aid of quantum-mechanical relations [3] has been described in detail elsewhere [2]. The preexponential functions g~,(x)are polynomials with coefficients involving y and a1. 1Thus, the I v’) can general vibrational matrix element (v I x be written as =
1
(v~xIv)
/
=
N,N,.K0 g (x)xg~(x) 0),
(5)
so all that is required is a method of generating the ground-state (v 0) expectation values of xt. For the latter purpose, a simple two-term recurrence relation has been previously devised [4]. By =
this means, all the expectation values and matrix elements in the first group have been evaluated. The vibrational matrix elements with a functional dependence on v, in the second group, have been evaluated by the application of perturbation theory [6] using the harmonic-oscillator basis set and including the anharmonic-oscillator terms as successive perturbations; these matrix elements have been generated by numerical computer programs. The method has been previously described [7] and some expressions have also been published; the present set of terms extends the treatment. It is important to confirm that the given expressions are correct. For this purpose some procedures are available. First of all, if all the values of the coefficients a 1 are set to zero, the expressions reduce to the harmonic-oscillator results that can be written in closed form. Secondly, the two groups of expressions can be used to check each other, by analytic evaluation of the appropriate differences. Tests have confirmed the correctness of the expressions by this errors). method However, (and in fact located few transcription some expres-a sions for which overlap between the two groups does not occur could not be checked in this way. The expressions in the first group are in this category. However, because of the nature
441
of the generation of these expressions, that in no way deviates from the method of generating the expressions for 1 < 8 and that is in fact a trivial extension of the algorithm for which all necessary terms were confirmed to be correct, it is believed that these expressions are also correct. The expres1 v + 7) in the second group could be sions (v I x checked against those in the first group for only the special case v 0. As an alternative method of checking all the matrix elements, one can use a well known potential-energy function, such as that due Kratzerand [2],calculable for which form. the matrix elements take to a simple It may be desirable to know the rotational dependence of these matrix elements and expectation values, thus in effect to generate the matrix =
elements
=
‘~‘~
—
~
~‘
—
+
7$3( ‘1’
a1(/3)
=
. . . ~
+
•..
/
a1 + y2$[_3a1(1 + a1)
+(j+ 3)(a1+ (—1)’)] 4$2(...)+y6$3(...)+ (7) +yalmost all known diatomic molecules, Because for the range of y is 102 > y> iOn, there is a rapid convergence of these series provided that the ~
values of J are not too large (J 301forv’J), y 10 a 2) All the expressions for KvJ I x 1(f~) and y(/3) have been automatically converted into FORTRAN statements and have then been assembled into ten subroutines. The first eight subroutines contain the statements corresponding 1 v’), 0 tov thev’expressions the first value groupof(vvI xin each sub7, with aindifferent routine. The ninth subroutine contains the expressions for (v I x1 I v + ~v) belonging to the second group. The tenth subroutine produces the J-dependent parameters a 1($) and y(/3) if necessary,
442
J.P. Bouanich et al.
/
Vibrational matrix elements for diatomic molecules
Table 1 Values of contributions of terms containing successive powers of y to vibrational matrix elements of HCI with ~v = I or 2, as v increases 3/2 ~S/2 ~S/2 Sum Matrix element ~ <10_1 0.6393x102 0.8596x10~ <151x3116) 0.4047xl0~ 0.1029 0.5993x10~ O.344SxlO’ 0.2377 Matrix element <01x212)
y 0.5009>< lO_2 0.2295x10~ 0.4069<10~ 0.5841 x101
~,4
—0.2250x103 —0.4467x102 —0.l40lx10~ —0.2886x 10_i
and is executed before the previous subroutines are called as required. The entire program is thus readily adaptable to an overlay or segmented structure for use in a small core, The limitations of the validity of the results can be easily ascertained because the analytic expressions are series in powers of y. As already mentioned, the f-dependence is found by a formal substitution that depends on a rapid convergence of the expressions forconvergence a1(fl) and y($); explicit requirement for this is thattheJ(f + 1) 2. Another limitation of the use of the ex<
Table 2 Description of subroutines of program VIBMATEL Subroutine Input name parameters
Output parameters
MELO MELI MEL2
)~,a1 ~8’
<01 x’I v’), 00 t~v’),
MEL3 MEL4 MEL5 MEL6 MEL7 MELDV ROTDEP
y, y, y, y, y, y, y,
v’
y, y, aa1 —a8, v’
/1 8,8, 10 v’v’ 77 <11 x <21 xt I v’), 0 1 8, 2 v’ 7 <31 x’l v’), 0 I 8, 3 v’ 7 <41 xt I v’), 0 1 8, 4 v’ < 7 <51x’I v’), 0 / 8,5 v’ 7 <61 x’I v’), 0 I 8, 6 v’ 7 <71x’17), t I v + 0dv), l 08 / <7
1—a8, v’ a1—a8, v’ c11 — a8, v’ a1—a8, v’ ai — a8, v’ ai—as, v’ a1 — a8, J ai—as, v, LXv y(f3),
Note that if J * 0 then all the quantities
—0.1100x104 —0.7645x103 —0.4203x102 —0.1239x i0~
—0.7830x106 —0.2213x103 —0.2146x102 —0.9070x102
Sum 0.4772x102 0.1750x101 0.2033x102 0.8092x 10_2
a 1 merely set equal to zero. If the set of known a1 terminates at ak, then all terms (coefficients of y to some power) that contain any potential-energy coefficients a~with j> k should be removed from the expressions. An alternative procedure would be to extend the set of known a1 with values appropriate to a particular model potential—energy function (such as that of Morse or LennardJones [2]). The tsame injunction applies the I v + ~v) for which in mosttocases aexpressions set of a Ky I x 1, I j 6, is required. Also in the
Table 3 Description of COMMON variables and arrays Variable or array name
Description
G Al A2 A3 A4 AS A6
expansion parameter potential energy coefficient potential energy coefficient potential energy coefficient potential energy coefficient potential energy coefficient potential energy coefficient
y a1
A7 A8
potential energy coefficient
a7 O~
MEL (V, L, VP) matrix element V vibrational quantum number L power of the reduced displacement x VP vibrational quantum number R(L, DV) L matrixof power element the reduced displacement x DV difference of vibrational quantum numbers
a2 a3 a4 a5 a6
/ v’
/(clx &
/
Ic +
~v)
J.P. Bouanich et al.
/
443
Vibrational matrix elements for diatomic molecules
-3
—~
~
-3’f~’O
~ a
~
N
N
i~
0.
0 0
0
o~ f~
~
.-~OO iN iN
r~, “
I
I
I
I~
++++++++++
+++++++++
++++++++++
++
++++++++++
+++
I
ç~I
~2I~
N
-S
V/
N
v/
0
v/ Vf
N
.5
o 0 ~0
N
N
v/
-~
~
0.
~.l ..-~
,~
22 C
E
000
==.-._=~== 00000000
0
a
,..
0
+
~
~
~
~ + ~
.C.Z-C~.
‘el —~-tu .~ .
0
~
00000000
.C,-,r4
<1 — ~
u
,o~,0 0 0 0 000 0
0 ~
E
~,,
5~’
aaaa~.~ 555 0 0 C
0
a
00
u 0
‘40
E-~E
a on...
0#i00000O00~t1~ .0 v 0.0.0.0.0.0.0.
0,
u
~~Ci
9aaaaaaaa~
.-..-
-~
-,2~0 ~
a~ 00000’~00 2~oooooooo 00000000
+
~
—~_.o—u~-~.-
~ .~
“1
>
C
0.
-~
.u
-
2
0. B
++++++
—
.5
~
I ~
‘
I
MU
m~0N~1CNNC<
iN
—
iN 1
,-‘
‘0 ‘0 ~
0.
I.~
r-
00
o._
0
U
.5 * U
Ba 0.
.50.
t-’
_i -
~
~2 a~
.<
•~ E~ ~iB an
0,0
0UU0,~~z vu U
zzzzzzzzz
U
0
a~
E_’
U
_~
I-’
iN~’~~7’0NoO
U
Z~_~Z>~~>
444
J.P. Bouanich et al.
/
Vibrational matrix elements for diatomic molecules
second group in which the v-dependence appears as a parameter to be set, it is important to recognize that for values of v greater than some value (that has to be determined empirically in each particular application) the series in powers of y will fail to converge. For instance, the data in table 1 illustrate the values of the various contributions to
and ten subroutines. In the routine MAIN, the input data are read, the results are printed and the subroutines are called as required. The functions of the subroutines are stated in table 2. The meanings of the common variables and arrays are explained in table 3. The input data are described in table 4.
=
~
1111 I 1’
References [1] J.L. Dunham, Phys. Rev. 41(1932) 721. [21 J.F. Ogilvie and RH. Tipping, Intern. Rev. Phys. Chem. 3 (1983) 3. 131 R.H. Tipping, J. Chem. Phys. 59 (1973) 6433, 6443. 14] J.F. Ogilvie, Comput. Chem. 6 (1982) 172. IS] R.M. Herman, RH. Tipping and S. Short. J. Chem. Phys. 53 (1970) 595. 16] EU. Condon and G.H. Shortley, Theory of Atomic Spectra (Cambridge Univ. Press, Cambridge, England, 1957) p. 34. 17] J.P. Bouanich and C. Brodbeck, J. Quant. Spectrosc. Radiat. Transfer 15 (1975) 873. 181 J.P. Bouanich. J. Quant. Spectrosc. Radiat. Transfer 16 (1976) 1119. 191 RH. Tipping and J.F. Ogilvie, J. Mol. Spectrosc. 96 (1982) 442. [10] J.F. Ogilvie and RH. Tipping, J. Quant. Spectrosc. Radiat. Transfer 33 (1985) 145.
3. Program description Written in the language FORTRAN-77, the program VIBMATEL comprises a MAIN routine
111] J.P. Bouanich, Nguyen-Van-Thanh and I. Rossi, J. Quant. Spectrosc. Radiat. Transfer 30 (1983) 9.
J.P. Bouanich et al. C-. C-
/
445
Vibrational matrix elements for diatomic molecules
.4) ‘.0 ‘0 ‘.O’fl
Its U) It, U) It. U) In U) ‘4 -J ‘4
-S
-z
O C) 0 00 CD 000 C) C) C) 00 C) 00 CD C) C’) 0 0000 C) 0000 C) 0000 C) 000000 11111111111111 SIll Ill .4 .0 (‘am C- — 400 tOO 00. * PS cC).” C (140. PS ‘0 ‘0400. 40*) t) 0. 040 .4 004 * 0. 0’ 0’ ‘0 0. 01 0 0. C) 00 0 . ‘0 C) .4 5’C’>0 2) .440.I”- ‘00’ 040.4..- 0. ‘0 .5) 0.C .0.05’- 0.0.4 C- tO ‘140 PS 04.4.20 ‘0.4 C’-,” .4.44,5,0.4e (‘440 2) (‘4 InC (‘14.4’ to 0*) C) ‘0e (‘14 C) 01014,1,1444, tO ‘0 040.1514 In tO.- .4Ce PSo-to) 00. ‘0 414404) ‘0C
00I0V’(4t)IOIP.4 .4,4.4 4.4.4 InK)In C) C) 0 C) C’) C’) C) Cd C) 0) (210 C) C) C’) C) (2 C) CD C) 0 C) 00 (‘100000 (‘100000000000 IlISIsSuSIS 1115115 III I’.- ‘04450151405’‘0 In (~2)40 C) 4014,2)05’- 40.- 2’ 0 • ‘0’S) 5’. .05”- In,” ‘00 15- .4 40 5’- Cd 5¼.(0 40 1’.. K) 0 * C’- ‘0K) .0 CD ‘0 .0 .20. lOt”) (55 0 (‘5 0’ 40 t0.’J .40.4 >01’S .4. 0’ In 5’- It. ‘040 5’- ‘00 C’- 400 ‘0.- ‘0502)5”. ‘04014) (‘JO K) 0. It. (54 (‘.4 ‘0C0,214) C- . C Cu C) 10.044, C- Inn Ot’,,-’Cu C- ‘4’ ‘00,040 (sir rut. 0’ q-&) ‘4 .‘..4 OP.. K),-04 Cd (55,4 C- ‘0 — (55.4
‘0K)PS0P0.-0In044040040 .440010K) CD 00000 C) I’) 00 4’) 00 4) 0 I-) ID C) 000 C) 00000000000000 IllIlIllill ills,, i C- 05’.. 01-4 tO *).--*0. 2)0..’- (‘10400~ 5’* 0 40 PS 0’ 0’ It (1) 044) 40 000. ‘01010.4 0 * I”. 0.0 C’.. c. (‘I ‘004 tOc 00 00 tO 5’1* — ‘0 tO.’. 0.014402)0.01 In’0’t 85504*) 4550. ‘040 (54 Inc 44) PS 010(58,40K) SOCK) 14)0 C C,, 5¼~ PS K) (540 C- PS tOO 01001010 C-’0 tO (0. 4040 q.-O. ‘4 *)C 40.4*) 0.0-20. 50
00.014)
‘I C- In .4.4.4.4.4.4.4.4.5) K) K) (0(004 C) 2000(3000000000000000 000000000000 ~ 000(30000 511511511555115551111 ‘00K) P.. 0 0,2’ .04004 10400.0 In 040*) ‘0 .4’ .0155
0(14.- SOPSC40 (U — In tO PS 10.4K) CCd 00000000000000000 000000000000000000 IllIllIllIll 151115
.0 ItS 44)44)40
0’ (58 It) .4 • Its
5
.4 U) .4.4 0 C) 0
H
0.4 0. .4 C-
— 0.
0
‘.1
II.
55’O 50(55
‘1)
CO
Z Iii
SC-
‘0
“az
I
C-UI I
CD
ii II ‘0 *0C It)
In
01>
II
(001*) Cl‘a *440> 0.4 >1,) 01 —d II C) (.44’, 0’> o,4~. z r... () ‘2 I II .41-S Z I> 0 01.041 0 41) II
—
(‘SI.) ‘2 0 ‘C flJ”( fr’InI’I 015. 1’
I
(0.0
444
‘2 7
0. I~ UIflI’.J I’— C’. 4448 . ECU.—
US X 5—
CCI
Ii. 1’C
0
II.
10 (18 C)
040
..J
(‘5 10 CUI tO C) flt~j.4 .J’O ‘0 ‘2404)4 0,.. ~i .5
C >
S
H Ii C’S) 2’ ‘2
~ .. ,.J .8
~.4 pJ ~
,n.— .011 4—,
(
r.~]
‘.~ .50441 ‘S’
000.4008 OC- COPS
0 C-
0. C
*
0’ .-
0. PSCuC14r
‘2.2
5¼.
I
0< .. > V
0000000000r,0000000000
ssiisissiis
is,,.,,,
5
ii
I
0000000000000000r)0 S,+IISIi,lISl
*
*4 .. 0,
V
SillS
5
I
C) (1) C 0
0 r
(~dC 10 I”
0
S
S
11+11+1
I
I
?? ‘T
I
I
IllS In C- 40
+ +
~‘
.5 1 0 050’ (1) U
>ooonc-,o
> 4)
0,C).-0JIf,..tInCrupn.SInO,40.tw,tl,’4It,.4ln,fl CCCCC
P4Cu0SCu15)tOIn.4
+OIfl0’0CCuC-CuIn’0K).Sfl~s*ItLflIn 0, C ‘JIll
.— ‘3
o
0 (2
000QOC)(DC)C)
C -
‘0 2’
555
>0.-i-,-
~
.4.
-2 (‘2 0.4 .5
OC(0D.t”)C-0.0.C-r\l’0It5,40.U,O.4Ifl OJIOCICLL’ICO’t’’t000’t0’.Ot”—IflO,0 CC40IO.”r’IIOCuInrO)CCuP4C’,.SOCIn
DID
0.4 01
C) .2
?????
~0C)003~C)~Q(3C),~C)C)
CD
Ill
s + + + i . s . r’.tI’.C).4IrOOrC) 0.flIn(OIt\.JC,4C0’0.4flO4fl51) P5)0 002)400(00) .8 fl’K).4U)WI0.tn.4Cuf0Qfl’00C-,flC-.2M *40r) X’00OC-CuC-rCu~O0IO0’,OPS0C-0*) Iii
C’-
Ii,
.—flOr-OflCd.’-,—PSP4r’-InCut’j.4PSP4 0 0000 on (100 00000
S
It)
I
(¼.0. .4 CC .4 0’ 0 511 I” 10. .4 0 0.4 .8 (.4 (1)51) II) 405¼.0. 0 0 C- In (‘-(54 .4 ‘0.4 8ClflC,”(’dt.r’rtM’0C-td*)OInt’-t’fl’O ,‘CLflIr,-4(flC’flJC’JOt’)I’SI0.r,JCOIC,C0(,J—O 0 0 U. II) fl r C- LI) tO) ‘0 (‘0 ‘0 4) C It) (C C- ‘00. LflflIflIC-C-OH—r’O.---dC.J.O’3CtO ‘DC 1-14 .4 .4 ~‘— (14 1— 0) C t1~(5) 0. (0.
‘0th0.CuInt5)’0In-rC-n.4Lno,Oerr.sLnr.j.0oJ 0JO.0.()IOU’,,OLISC)OtOIt,C’).,*tflV,r’a(),I’aSflIfl 540InC08040(1)CCuU5’OCCInO. CCCCC
S
I
5.5
rInO*”.2.4O’)O.C’0t0.C,4C’.U)Ofl0-J400) * 01 Ifl00’flInU),—0CumC-’0fl’0(’,jIflO.C-5’_.’.. * •noruInmoa-.2r2r.4In.4In.4C-r—or.aa1e >0’0C-C’O.J0..”OC-(5J04)jInC-Q.,”0.-,5fD’Or
‘011) CC ¼.
ISIS
5
. . +
5
I
55555
CuC0C~JC0CuCCCu0JCt’flCu1’,J.4flj04 (2 DC) (203 C) 0(2000000 (DC C,00000000C1000000sJ0
5
4, ,— .4) (‘1 C) .— C 0’ 0 .“
I
K)WICu’0’0O.0’0~4Ifllfl.4lfl210.C-Ctfl0 .8 .— 0. sO 0) C~).2 5’-. 40(55 ‘OC- K)0 0 0. tOsS *fl5’..”P4fl*)C-K)’tI00040.K)ff)ItIr.J0 *1.4 00’ I).4U) (Cl 0’ ‘0000 ‘0QI4)c 0111 C (0.0 5’- II) 0’ C-’ 0.10 P4400. ‘00.. C- .0 t.,0.0.SCU)F’.-InK)CO’0’0’.tC’CuO s—i— P.. (‘5 ‘(0.5) F’. 0i.40.40C..- 5¼.‘I’.
Cl
iSISISSISSI
I
K)CO40CC4008CK)4004K)PSPS.4tOCu 00000000CDOcD00000tnfl
CCI1.InJIn•4 5—.’- .—t.JtOq— C.”.(’Jr-fl.—C,00 0 0000 nOn n ‘2 n 0 00000 0 000
I
1151155155 (1)0-4
I
4” 0’ Cl- .4 ‘0 I’.. .0(54 It\ 05 .4 0 .. tO ‘4 C~, .0 .8 (5) C- 00 C- (5.8.2 CI 0. C.~’ In CI F— ‘C 0. (‘1 *0.4OIn00Qlr,.4r0p-,rNC-*1.--.—tfl.0v,.0 )CIfltflt.Jt.Ji’.’0..’t’_—J5¼.I(,,—I’flp’flfl.(..tfl’0fl’4 0 In C- ‘0 0) (5 Ir( 0. C- 0) ‘4 0 0 ~t. . ‘.4 C-LnC-CeC-fl.It’,O.tOCJrnrlo’0tc,oirio,—C(‘1 15.4 .2 . In (0. r I’-. C- 4.4 1- C.’ — - 11) In
I
illS C .4 C 04
5
(,JOJr’jc\ItO.4eCufljrU (‘IC.’COJC’CCCC C’ IT’ ‘.200’DCOC)Q0C)00C2 ~T) I_I 00(3 00000C)00000C)000I000C)OCJ
III
A > 4,
1555 ‘OC- I’)
.— 100 04 K)O0 Cu * )*0.-rC-0.$.—*)(000000.I’-’0OPS 010,.. ‘0InIn’40’&’fl’0fl.t.4In0’.S.WI*)C0400111C-K)0’0’0.44000400. .4 C-0 ‘0 C- 1flC.4 04.4 C-C-InC.Cur-i .8
-. .J *
V1O&0’00P-tfl0.0l0K)000InLtSCuC’JC-C-04’0 .8 “5 ‘0 0. ‘0 .0.5) .— 0i,—’.t C-’O C- .4 0. 0 0. 44) C-’0 tO *CK)U)WI0’’0fl0’0’C’0ffIC-ttl.2C-CIr.0’01C-*1 .440 ‘00.0’ ‘00 C- .4 0’ C- ‘3 ISs 4014) 6) 0. tO 0.051) .“5’-. I”. C F’- ‘0 (1) C 0.4(140 ‘0 C- C0.4 400’ (5.8 C-.4C-C’0nJ,—-,tO.—o.’.tOClnrlx,OCut’)O .— C- 40.4 5¼.— 4)4 5¼.(5)40 ‘0 (1) 0. C- ‘0 (11.” r.J
S
4040.44004,24040
+
InInInK)In.2PSP4CuK)tOPJPSPSt11OJCSJPJCC.0fl(20flO0000OC~00000OO0O
I
..tCSiCInPJr.4
0000C)0000000000000
K)Its.’-.-..’.SIF.
‘3’0C.*K)04P4l11.4CIn
I
‘0.40*) ‘000.40 010.’.’t 14) 402)0.8 C- PS’J0’0In 00 U’S
-s u.-.
-.
~J)
.8 •PS.4.,10.4P40C’0O’’0PSK)IOPfl’0F’.. * I’. ‘Old) (5) (5.8 ItS K) .4 50 C 1) ‘0IOIt, 100511 0.0.04040.4.4.200.04.440.404
.4.4K),2.4,4K)~K)K).44004K)t”)PS~’SCu040404
In’0InIn.4’0*1In.2PiInK)O0.InCut5)’04.40)
5
H
‘2
I
‘4.4
*0
40fl,K)...4040CPJCPSO”K)tO’0.”PSSOCu
04’0..0’WI0.C-C-fl,’005
(‘.50 0’S) (0 .4 . ‘5)5 0.Vs lOll
I
In 0440.40440
K)..’...CuO’(OIdCCCCC-’0.’-PflOJ.--IOC-’OccflJ
5
F
I’SJC,4
II
,J
0 444 0 0
.5 Cur.2
C) 0 (2 0 0 ~fl C) C) 00 00 C’) 00 C) C) 000000000000000000 liii,,,, 5511111111 lOPS Ci 040 P4040.4.0.4040 In 4040.400.
000C200’DOOOOOOCIC’OOIDOOO 000000C’10000C(OOC(00C,OC)0 551515555555515555515 .Sr’C0’0C-0’C-40.”C0’InInOC-04’00’00’ .0.4 * 10 II) InC 0.15)0 -.8 I’- 0. 00440 0. C- InC_I 0. 00’ 0’ .8 InInC-.’-*).C-0C-0.In’0C40In.-0C-04C-In *1C)0’..C0.P-tO0.P40.t11K)CP-.0C).2C2l0’OC-
III
0.?’. 050 44.Q
iS
155 Pit’
—
*0 I’S IC 5-
IC ‘C &
C”
I,.,> 0T CII 0 ‘bC) (C ‘0’—
.
5
.4 5) 40.2 .4.4 .5 44) (11 K) p5) K)p#, frfl (5) 040404 0 C) 0) 0 0) 0 CT) C) 0) C) C’) C) , ) 0 0 0 C) C)
0000 00000000000000000 IllilIllill 5155515511 404004000.40.4.0 C- 5’- 0 C- In .‘lO.4O’C 0140 * ‘0C-4004,—0PSPS.-”.”3.ltS’0.4.40’0P4rP-_.— * C- ItS 014 1)) 5¼.‘55.4 0’) (114. (55 .4 C’) ,— In Off) — ‘0 05 (0. *100.440.4400.0. 40 5¼. 0.040 .0 C- 040.40,44004 040.40K).- 044040.404 C- 00. 0. It) 0, 10In0C ‘0.0*) (55400.- 040.20*) ..‘ 0,004)0440 C-’0
O
0
2 0.4U),0C-..tOPS0.’40K)40C-40.40.
,CN10,C%fli’OC-C-IOInOIn-C-fliC-IflIn C 55(0040 In (U 405¼,0.01414)04.0 ‘0.40 .4000404 ‘00.0K) 04 50.4PS’0 0.0.40 0’ .- (55 4)5 .“. ~— .4 C C .2 404 K) 2) (‘1 0’ ‘S .4
.00440 5¼. 15. CC 0’ ‘00. ‘0In.4 C- .200. K) 5¼. 040. -.5’ 040’ (55.4.2 .0 5¼.00.001 C’- .-O. C-tO,4 ‘000 0. 04 .4 .4 K) 0. 0. 04 .-. .— .4 C- 0. In — (‘4 Cd -4’ 0 .-
.2
-
-0 .4) .40’ K) 154.4.0 ‘0(5JPS.4In.4 tO 0. C-.4 .8 .OC-C-0K)0.4C-C-0’K)*).C-0’.’P4’0
* In..’0lnC-.4In0’.*0..240C400,0,4’C-K)InC* In0’00.F.-C.-’0C-PSC-K)C-’0OC.4.-C)l0400 *10’ 4045’0 ‘0 fllr,2...’00’In0.00’0PSSflInflt
Ii
‘S 50
0,0U)OCWSCDC14LO’I0OIn0C)I000IflC)
“
446
J.P. Bouanich et al.
/
Vibrational matrix elements for diatomic molecules
P. P.- ‘(1 ‘0.0 ‘0 ‘0 in in it) IC IC o CI) CD CD C) C’ C’ C) C) C) C) C) Ci C) C) C) C) C) C) C’ C) C) C) C) C) C) C 1111111111,1111111111 ‘XiPJr-st.0000’i’iPnflrOirrP-ininr.000 4 in P.- P.. 0. -. P4 in P. ~‘J .4 P... .3 In In 4 .0.3 4’) P. ‘0 ‘0 C’) ‘.9 .0 p.. In In P1 (‘I 3< in -.3 P. .0 .4 ri 0. 0’ 4’) ‘0 P.. CS. naru. .00’ intlfl1rtOiflIOifl PD p.. .4 (‘4 In ‘4 it) C) 0... P. In in in In0.04In -Sr rn1r~ KS.) 0’
I.’-. • * 3<
in ‘4.9 ..t .3 .310 C) C) C) C) I’) C) C) C’ C) C) C)
In -t P.) 4’) ‘0 (0 in C’ i P4 ‘0 in tO 0’ Cl Itt 0. P.) P.. ‘0 ‘O P... .4(0 in P.. 0. 1- P1 PP Itt 4’, r
‘0’O ‘0 in ‘0 ‘0 in U) in in in’4 .9 .4 ‘4.2.4 .3 In In In C) ID C) 0)0 C) C ~) C) C) CD C) C) C) i) C) C) 3) CD)) C) C) C) C) C) C) C) C) C) C) C) C) CD C) C) C) 3) C) C) C) C) CD IS SIllS 1111111 1111111 I’. i) ‘0-9 in ‘0i— ‘.3 (“P. 4” P.) 04 in C’ P.1 0. I”’ U) ‘0 C) i.fl is. IC TI ‘0 — ii) In 4 I.) P.S in 0’ .3 it’ (s. .4) ‘4) in (I, 0’ in .3 in in C’ 0’ ‘0 r C) PP 1) ri (‘4 in ‘0 in 0’ Ct) 0. .0 CD in 0. ‘0 0. C)-.t Ci .0 P. (0 in in P.. P. .4’ In in — 311 In (3. P. ‘04) 0. inP.’4 in in (U in 0’ 4)4 In P. (3. In C”4 t’J’3 .201 0’ ‘0 in P. ‘0 In 0’ N in 4’) in in C) ‘41.3 11) rIC0.rIn’4r’4’0P.InTPaPi31Jin’00’rPi’4
‘0 In ‘0 tO C) I) Ci C) C) CD C) C) C) C’ 1111111 P. .9 is. 13. ‘0 P. 4 P.. 0 P.’. p. * P.. in in ,— 0 1< ii) pi) .0 P. ‘0 t~)it’ P14) C’ Cd 0. C) .4 .4)
I- ‘0 In PA it) P.) P1.0 -t 10)0.3.0 C) C) C’ C) C) C) C) C) Ci C) 0 C) 3) 0 C) 003)0 C) C’ C) DC) C) C) liii 111,1 I In f~i0’ 0’ ‘4 0 r.IC) 4) II) ‘0 In In p.. 3%. 4)’4) it I’.. P.. .2 i’d (‘4 P4 0. .4) 4) is. P.. is. 0. i. ‘0 .4 In 4) ‘4 ‘0 itt ‘Cii) P... 0. 0’ P. 0 0 C’ 0 05 0 4)4.454) i 4)0.0 P4 ‘09)0 In’O In’4 0. P... In s-. in C) .4 4’) P.. 0 e
‘Oiniifl in in ‘0.4 .3.5 .3’4 4’4 .5.3 in (i) in In Ii) C’ C) C) Ci 0 0 0 Ci C) C) ID ID C) ID C) CD C) ID 0 C’ Ci C’ C) C) C) CD Ci 0 1) C) C) C) C) C C’ C) C’ C’ C) CD liii. SI 11111111111111 4)0 .3 IC tO is’ 01 ~0 in 4” ‘5 ‘3. Cnr 0. 0 ‘CI In-2 5’. ‘OP... P.4 0. ‘00. In .5 K) in PC ID in In (0 in ,-. in PA 4’) 0. 10 P... ‘0 )0 “4.2 35) (I. P. C’ in P. (‘1 0.0 ‘C’ P.COin It) Ii’) CO ‘3) P. 0. 0. 0. Il) is.’4 ‘CIn in 0. (P 0. (0 ‘00 .s.inO.’.tO0InP.PSJ’4 ‘flinIt)in0.?-.U)0.’4
,Ofli 1- in (‘Jr in 4)Je In In PA its .tIn ‘0.40) DO C’ C) C’ C’ 0 ID C’ C’ C’ C’ C’ C’ C’ C) C’ CD C) C) C’ C’ Cl C’ 0 00 C’ C) 0 CD 00 0 0 0 11111111111,111111 .4’) 00. 0 0. OIl) ‘CC) In... In 0(0 4” 0 ‘4 1%. in 3 CD .0 .3 00 P.S C) 351.4 .9 PA itt P4 .30. in 4 0. in ri 0. tO P. .9 OP.. PA 311 0 P.) .4 .4 P4 in P. P. 3) inn in P. ‘0 in iCC) ‘0 (0.in C) .2 Itt ‘00.—fl.OCCUrIn..t.04)PI)04)P40I’iA4) P..—..’P4040.v’r’d’4InP.’CIflP4ePAO 0’rC.A Piininininr ‘4in’tilInInis.itIItS
I
p.. o o ‘5 • in
‘0 4 4 3<
4)3 CD CI 4’) 0. In II)
GPAin’4Inr.—rCUCdrinIn(’-Ori”JC.l’4Or • .2.4.4 in .4 ‘4.2.31!) It) 10 In Ii) In K) KIP.’ C) C) C) 0 0 C) C) C) C) 0 Ci ‘fl 0 C) In C In c’, 00 fir) ID 0) C) C) 0)0 C) C) C) 000 C)fl I S I I I S I I I I S S I S I S S I in 0. P. In.3 in .0.0 P. (UIn’4 0.00’ In PP ‘00) (0 4 .510 4)4 ‘0 P1. It) P. ii’) 040. PU (51 .4 ‘0 in o. ri C:, 4 .t(’)-4 3.4 3’4 ‘CI’.. in P. C) It’ ‘0 0. in 4)4 03 i1 In is. )
II ‘p
SI’..
5.0 013.4 <0
4’ C) —
II In
W .3 ii)
4’
A
1< i-i 4’ 5-
0. ii .J
it)’C.O Ii. iililt!))”) 5— in ills) •
~‘
4 0) ii .4 V
‘t_~S
“, 0
U. C) P. i_i 1)11)) .1) 0 (U fliIi)fl.J 0. ..JIi’l’4 K’) I-) ‘4’.. ‘4 I II I) 0 .4 .1’
05 ‘-(II ‘Oil) P.
I) 51 0. 0~
I
I
S
S
S
I
.4 rUin .4’ 0) Psi In .4’ P.S in .5.2 C) ID C) 0 CC) 0 0 0 0 C) C’ C) 00 PD 00 PD C’) Ci 000
S
S
S
I
I
I
S
I
114 0’ —
in Iii C) .4 •0 .4
I
I
I
I
InP.rrt’in’t(i’.’.ininCU’4N.Ini’1P.I0in3’JIfl 4 Ifl’O (0 tI (0 0’ 0 In P. 13. ‘0 -.3 0 in ‘0 0. 0 C) C *ttlP.’4C)’CIn’t)P.0.0’iin...In.-”0’.-’.tI’O’40. X0ON.p,Jf’..I’Jit,’4P.’4inr0’0.0.’40.00(n-t in in it) 1’) i ‘4 CI 0 rd C) a’ ‘CI P’ — I’. 1’) 0, 0. 3.1 3’. P..OIni—0’.iP..I-3rP.iO4ii’J0(.4O’CCII’.C. ._ P. In .4’ q— P. ..- (Ci 1- 1’ 3 In i/I (4 0. P. 10. (tI Is. i~’(‘.1 I
A > + .4 ii .4 4 4
Int’)r-sinIn.4n.mpuPAInInCUp.aCUvli’.iCUr.iinrr 0000,flOCi0000fl000000fl00 flC)flflflflflr,0000000fl00000I 11551511 ISIS 111155151
I
S
in-S 04.0 C) .s.0. Inr P.m CD Pd In (‘105- P. (0 4 — ri .— 0. ‘CC) It. .00 .00 P. 0 in P. q—’0’4 a In ‘OP. in SO in in P. ‘0 PA 0’. 4’, 0. .3 .2 ‘OP. i.ii.JininP.CdOin’OP.PdOiininO.PAPJP. in C) 311 (0 in p00)0 in in P.O .2 4)) P. in 0 tO 0. ii) In .010 U) 0-P.S In In ‘0(0 0. tIn .0 PlO. inrSIIt).s.Inin.-P4inP4inIiflini’0.~.P4inP4
03.4 C) II It, (DIn 3.. (‘4 P.. 0.
‘4.24)5.5.4 ‘4inPflInin.SinniP.JInr1mr~JC.JrIJr.Jr’d C)QC)ID0000 000C’000000IDCIC) 0000000000C)000000C) QOCI ISSISIIiISISSS 1151511 •1nIn’4.—p0n4r..oi’-Jo.20.r)’O’OI’-n.4’3)a,in *P4’Cr’0OinP.’5t.-.’4P..rin’4C’4’C0.rl’-lIt’ 4 In’0In(0P.P...5’40O.0’4In0-Q0P.4P.inO. ‘00, )
IC ii 0. V
~
•04.-.SI’JKIP’Jin’5Intfl.SInPd.*InIn 00000000CC’ 01)0 0C’C’00 0000000000 0000C’C’C’C’ SSSSIISIIIISISISS S 4’0fl’4C).—inP.iflflC)P.’Oinin’OininiO’.t •raa’i.—’4O.2P.Inin’O’4in’4P4OC’InIn * PACin’4P40’P.InC)-4P.P1P.P.i)dInitlin X0’C’COin...’4P.P.Iniflininin’OPAInin Ii’) .11 in in (0 tI p.. in ‘4’) — (U in 0. .4’) 4)’) ‘(1 in 0 ‘00In1(IP.P.iino.’.tP.In’4..ttP.P.Inii) ‘5’0’OP.inin.40J’4P.P.InininP4inin 1551 in.”OK).”rinCUinP’)InCdInI”lI%i’4InP4 oOC)orinrioOc(C)C;000000 000r,On000C’,000CDOOC)0 51+1 III S 111111111
I
In(U(Oin.S..tCCmn)’I4.3~4ln9It) On.iinOP. U (0 P. in 01.4 in q—O ‘4) C) irt.4 ii. 04 CU Psi PS •i’SiO.iniflifli’)i.00’r.I’O.0...’OP.P..30.’4 )(CinP.0.’’OP.ini’JP’JI’ir)OInPiiil)O’P.. in’5 In r C) C’.) If’ ‘C’S 1) 0’ in .‘. Odin .3 0’ in P’.C.’C)iIU)rflP.’tr,flr0’4(O.3.—P4 I’— 1’)) — P.. P.) .4 In P. P.m .3 ‘3’ .4 r is. — p.. 0. 3.1
I
IllS
nir.Jc.J(.JOI’4...r.ap.r.iIfl 000C’OC.C,O’J’D r.-.r04rr.-’.—r i)0000iD(’C0C.C. C) C) C) 0 00 0 C) C) CI C) 0 0 (DC) S.) C) Ci C C CI 11115 SPill 1115115 liii i’.- .3 0 .‘— ‘1 Oil’, P in a PU ..3rK)~mfl it, I’. Ci -.3 Ii. 0, •‘00 0.r~4iCI’i0P.i(0’0I~1t~r0-’Sr0’001’4’1 *P.IP)JlS..4Klmfl0mninr~Y,0(l~flC~’C1’iP.I.tr.* (C Ci (‘.1 -.3 C, r in I’. (.4 0. .0 C’) .— -0 .3 in F’— 0. -i-i 3) .4 0 CI C .3 t’J ‘0 p.- it) ‘0 It’ 1!) r- (1 IC 0’ 0 it) 1 1- C’., )I,it,IUP.hi”J0.i’.JiflC’flr’1fl40’0U)t’JKII)l))C K’(u..3.—K)0’i’~’p..a’r’IP P,.—,.K)K)PI..--inIfl..t’ S I I ..0,II-iIn’,3~—P—.— Pu,n,—O.—P..I.—C..-—nC.r, ~nrIc-.inCThi,cn,nmnr,C)r)flr)r’,r,r)r,Cfl’fir’)
fliP.) CD’) l.A (C •
I
in (‘Sin .5 (.4,-’ 0) 0 P’S 0) Or) C) 00) non
SI
o IT) (‘SN. 11.0’
Ii P. a
P.JP3 C) n Cii’)
in Z iii
S C)
(3 ‘3 o
ii..
in C) C) I
4’) ‘1) 1) C) N. • ‘4
S
oc.C’000C)C’00000CD0000 r.J,—i)In,—0nJ,—rflJCUrInrJnu.Sr~JP.A 0 0 1.) 0 C’ C) C) CC) C) C) 0 C’ C) 0 11+111-S 11511555511 (.4 P.’ 0’ In 0’ 1.. CS. .3 r ,“ ‘p i.-, in r,m 9’. If N iflt’.i’0’0’4 In.’0’.4r.’In.~’-it.I.O’CIninIn 3 nJ,nnirp~I,no’r.lininrc,tnrin(3o.Inpi a’ C) .‘. Ii) (U I— -o .3 -3 ‘(1 5’ 1 0) 0 — C) C) .5 C’ 0- 5) F’) K) (‘.1 ‘00,1 1’) in 0 .5 PC) I’
,o.0o.in,00ic.4r.orCIrU’0C.A’4’4
I Ii ..-p’,i’),.~C)c)nJ,.-.—rJr,irtn~.irU.4pJpJ Iflflr)C1I”IC)ViC)iflCflflC’)I)rIfli”iC)C)
15515115 III I II I I+I+++ ...._p,.P.In3)In.tflr(flfl,”.fl)r.tN-3’.f’.Jflif.Ifl * (‘.1 3) P.4 0) (4 in .3 1’. ‘0 .4, ‘0 ‘3 .— )(. fl (I. 0) .0 1.’ 0’ •P.r).nrini.oInr,n,(...nr)...3r..n,n.CS.’t,ini’, )C0CUCC)CU0.U)OP.0’inP.CUP1in’0’Oint01t~1l’ (1) F’) .3 .~ 0. ‘013, CI. ml, 0~ 0. C) ‘O r. in in F”) F’. 100- in r.J1)O()In’Cin’tC)Oin’CC)inK)’5t’mfl.P.iIflln .-‘0’O.s.CU’0iP,OI’.PCiin’0.-rlOi3. I I I
0
00
0 t’. 1In SO’ P. 0 0 0.40.
III
I+I’I++S III 11111111 .—..-rPP’.P.I’0’0 0’n”ItI’flI’flr OinU’P.’OP._ * 0 ‘I) ‘0 — ‘0 ‘r 0 3. In I’) ‘C’S .5 ‘0 N.m 0 0. p.. *P..4fl... fli.’it,ICi.. flI)-’0inlf’flflInItI.,t XOCJP.P.JP.hIOininini>(OininPJ0’in0.In IC in P.S (“i’d tO. .9 (‘SIn In 0111 (0 .33) Ifl’0 .4 CUinCUOht,i’.00,iflr,040’P)P.-0.’0OP. p-..inI’4r’)P.,Oin III III
• 000000000)flOii000)C)).)0000 N 1<.— 1” 1
* C)C)QCC’C)OI)CD 1-
1-
OIDCD0000C)
(Cr_-I’.
ci
0.fl..-P.,01.titI._rQ01’4inP.Iin’4I!(lfl’4it~,tin1fl
.4 a G0inC)in~O._P.1P.PiinIt)in.tI0.’4inflin IC in in in in
0. 3) 0
0. 0 in PD 0
0 C) C) 0
is. is. in_inns
ri
0,2 I’) K) IC 3) ‘.3 .5 il)
in C’S 0
it) I)
in
C) in CI C) it) C
is.— Ci in 0