Angular distribution of secondary particles produced in the intersecting storage rings at an energy equivalent to 1500 GeV

Angular distribution of secondary particles produced in the intersecting storage rings at an energy equivalent to 1500 GeV

Volume 36B, n u m b e r 6 ANGULAR PHYSICS LETTERS 18 October 1971 DISTRIBUTION OF SECONDARY PARTICLES PRODUCED IN THE INTERSECTING STORAGE RINGS ...

238KB Sizes 0 Downloads 57 Views

Volume 36B, n u m b e r 6

ANGULAR

PHYSICS

LETTERS

18 October 1971

DISTRIBUTION OF SECONDARY PARTICLES PRODUCED IN THE INTERSECTING STORAGE RINGS AT AN ENERGY EQUIVALENT TO 1500 GeV Bombay-CERN-Cracow

Collaboration*

Received 21 August 1971 The angular distribution of secondary r e l a t i v i s t i c charged p a r t i c l e s was m e a s u r e d in the ISR by means of nuclear emulsions used as detectors. The r e s u l t c o n f i r m s the c o s m i c - r a y observations of a dip in the angular distribution around 90 ° in the c e n t r e - o f - m a s s s y s t e m of the colliding protons.

T h e q u e s t i o n of t h e d i s t r i b u t i o n of l o n g i t u d i n a l m o m e n t a of s e c o n d a r y p a r t i c l e s p r o d u c e d in v e r y - h i g h - e n e r g y c o l l i s i o n s of h a d r o n s is of g e n e r a l i n t e r e s t , e s p e c i a l l y in c o n n e c t i o n w i t h t h e p r e d i c t i o n s m a d e by F e y n m a n a n d by Y a n g e t al. [1]. If t h e t r a n s v e r s e m o m e n t a c a n b e a s s u m e d i n d e p e n d e n t of t h e a n g l e a n d of t h e p r i m a r y e n e r g y , t h e d i s t r i b u t i o n of l o n g i t u d i n a l m o m e n t a o r , e v e n b e t t e r , t h a t of t h e l o n g i t u d i n a l r a p i d i t i e s i s r e p r o d u c e d in t h e a n g u l a r d i s t r i b u t i o n of s e c o n d a r y p a r t i c l e s in t h e c . m . s y s t e m of the colliding hadrons. This suggested a very s i m p l e e x p e r i m e n t at t h e C E R N I n t e r s e c t i n g Storage Rings. The intersection region was surr o u n d e d by n u c l e a r - e m u l s i o n p l a t e s a s d e t e c t o r s . T h e d e n s i t y of s e c o n d a r y r e l a t i v i s t i c c h a r g e d p a r t i c l e s w a s r e g i s t e r e d s i m u l t a n e o u s l y at v a r ious angles, giving the inclusive angular distribution integrated over all interaction channels, free from triggering biases. T h e f i r s t r e s u l t s of t h i s e x p e r i m e n t o b t a i n e d in i n t e r s e c t i o n I1 in a n e x p o s u r e p e r f o r m e d d u r i n g t h e n i g h t of 1 8 / 1 9 M a y 1971 w i t h 2 6 . 5 G e V p r o t o n s in b o t h b e a m s , a r e p r e s e n t e d h e r e . T h e c o l l i s i o n s a r e e q u i v a l e n t to c o l l i s i o n s of 1500-GeV protons with stationary target protons. Fig. 1 s h o w s t h e g e o m e t r y of t h e e x p e r i m e n t . T h e 6 0 0 - m i c r o n - t h i c k e m u l s i o n s on g l a s s ( I l f o r d G - 5 , 1 in. x 3 in.) w e r e m o u n t e d h o r i z o n t a l l y on a b a r in p o s i t i o n s at v a r i o u s a n g l e s c o v e r i n g t h e i n t e r v a l f r o m 90 ° t o 35 ° a s see,~ in fig. 1. T h e * Tata Institute of Fundamental R e s e a r c h , Bombay 5, India. CERN, NP Division, Emulsion Group, 1211 Geneva 23, Switzerland. Institute of Nuclear P h y s ics, Department V, Emulsion Group, Miekiewieza 30, Cracow, Poland.

a v e r a g e d i s t a n c e of t h e s e d e t e c t o r s f r o m t h e i n tersection "diamond" was about 2 m. The bar w i t h p l a t e s w a s p u t i n t o t h e f i n a l p o s i t i o n by m e a n s of a r e m o t e h a n d l i n g s y s t e m * * . T h i s w a s d o n e a f t e r t h e i n j e c t i o n a n d f i n a l p o s i t i o n i n g of b o t h b e a m s . T h e b a r w i t h e m u l s i o n s s t a y e d in t h i s p o s i t i o n f o r 9 h o u r s . T h e n it w a s r e m o v e d a g a i n b e h i n d t h e ISR s h i e l d i n g w e l l j u s t b e f o r e t h e b e a m s w e r e d u m p e d , in o r d e r not to e x p o s e t h e p l a t e s to s t r o n g r a d i a t i o n f r o m b e a m - p i p e interactions. T h e c u r r e n t of p r o t o n s in b o t h p i p e s w a s r e c o r d e d r e g u l a r l y d u r i n g t h e r u n . It w a s a b o u t 1A in e a c h p i p e . A l s o t h e b a c k g r o u n d r a d i a t i o n f r o m b o t h p i p e s w a s c h e c k e d by c o u n t e r t e l e s c o p e s , s h o w i n g no l a r g e f l u c t u a t i o n s ( f l a s h e s ) d u r i n g t h e 9 h o u r s of e x p o s u r e . T h e p l a t e s w e r e t h e n p r o c e s s e d a,ld s c a n n e d f o r f l a t m i n i m u m - i o n i z a t i o n tracks entering the plates from various direct i o n s . F i g . 2 s h o w s t h e a n g u l a r d i s t r i b u t i o n s of t h e s e t r a c k s o b s e r v e d in f o u r p o s i t i o n s of d e t e c t o r s : 90 ° , 70 ° , 50 ° a n d 35 ° ( c o r r e s p o n d i n g to 90 °, 67.1 °, 44.8 ° a n d 28.4 ° in t h e c . m . s y s t e m of the colliding protons). Each distribution shows a m a x i m u m in t h e r e g i o n w h i c h c o r r e s p o n d s to t h e d i r e c t i o n c o n n e c t i n g t h e p l a t e w i t h t h e c e n t r e of t h e i n t e r s e c t i o n of t h e p i p e s ( t h i s d i r e c t i o n i s c a l l e d 0 ° in fig. 2). T h e w i d t h of t h e b o t t o m of t h e s h a d e d a r e a s in fig. 2 c o r r e s p o n d s to t h e a n gular interval which the interaction "diamond" s u b t e n d s at t h e p o s i t i o n of t h e c o r r e s p o n d i n g e m u l s i o n d e t e c t o r . It c a n b e s e e n t h a t t h e m a x i m u m w i d t h of t h e p e a k s is in good a g r e e m e n t w i t h t h e s e p r e d i c t e d i n t e r v a l s (40 c m w a s a s ** We adapted for this purpose the "Telelift ~ s y s t e m supplied by Union-Kassenfabrik A.G.. ZUrich. 611

V o l u m e 36B, n u m b e r 6

PHYSICS

LETTERS

shield

18 O c t o b e r 1971

of tracks 2" inllnal 200

J ~e""

~--

X -.x--

1:If

\

\

.

.~

m

emulsion

I

plata

I

-20 °

4/ / /

~

I.ff

i

I

/ / I f

f / I / . r l / / / / j / i

i, 4

Fig. 1. G e n e r a l l a y - o u t of the e x p e r i m e n t in I1. T h e b l a c k r e c t a n g l e s i n d i c a t i n g the e m u l s i o n p l a t e s a r e not to s c a l e , in r e a l i t y t h e y h a v e ~ 2 t i m e s s m a l l e r d i m e n s i o n s . + and - indicate t h e s i g n s of a n g l e s u s e d in the s c a l e s in fig. 2. s u m e d a s t h e l e n g t h of t h e " d i a m o n d " ) . T h i s i n dicates that the tracks coming from other directions are due to the background of radiation prod u c e d in t h e w a l l s o f t h e p i p e s a n d in t h e m a g n e t ic s h i e l d i n g n e e d e d b y o t h e r e x p e r i m e n t s performed simultaneously in i n t e r s e c t i o n I1. T h e strongly directional radiation from pipe 1 is also clearly seen in the distributions corresponding t o d e t e c t o r s at 50 ° a n d 35 ° . W e s u b t r a c t e d t h i s b a c k g r o u n d s h o w n a s t h e d a s h e d l i n e s in f i g . ~.. We believe that the numbers of tracks corres p o n d i n g to t h e s h a d e d a r e a s a r e p r o d u c e d b y t h e secondaries emitted from the whole "diamond" 612

-t0 °

O"

+ K)*

+20 °

Fig. 2. Raw a n g u l a r d i s t r i b u t i o n s of m i n i m u m - i o n i z a tion t r a c k s o b s e r v e d in n u c l e a r e m u l s i o n s at ISR l a b o r a t o r y a n g l e s i n d i c a t e d at the left s i d e of e a c h d i a g r a m . D a s h e d l i n e s a r e fitted to the b a c k g r o u n d . Shaded a r e a s c o r r e s p o n d to the r a d i a t i o n f r o m the " d i a m o n d " . T h e s c a n n e d e n t r a n c e a r e a of t h e d e t e c t o r at 35 ° is about two t i m e s s m a l l e r t h a n for e a c h of the o t h e r t h r e e d e tectors. in the directions of particular detectors. We normalized these numbers to the common solid angle and obtained in this way the relative intensities of charged relativistic secondaries at various angles*. Fig. 3 show these data indicating a * O u r definition of a r e l a t i v i s t i c p a r t i c l e is that its v e l o c i t y ~ 2,, 0.6. T a k i n g into a c c o u n t the l o s s e s in t h e wall of the b e a m tube and the m o t i o n of the c . o , m . r e f e r e n c e f r a m e , this m e a n s that the m o m e n t u m of the a c c e p t e d p i o n s e m i t t e d at 90 ° (see fig. I) is g r e a t e r than 100 MeV/c. T h i s cut r e j e c t s a f r a c t i o n of t r a c k s w h i c h is s m a l l in c o m p a r i s o n with o u r s t a t i s t i c a l e r r o r s , u n l e s s t h e r e is an a n o m a l y in t r a n s v e r s e m o m e n t a in the s e n s e that they a r e a n o m a l o u s ly s m a l l .

Volume36B, number 6

PHYSICS

,

,

pp ~

,

,

relativistic

,

r

18 October 1971

i

1.5

,~ Pp ---- REI_ATIVISTICPARTICLES o) c~ BOOCx-V~ m lab. energy

1.0

~

porticles

1500 GeV equivalent lob

of

LETTERS

energy

I" E

: IOOC >,

I

-- W:~OC4:LaMo~ COSIV~ O 0 C.,x-V

o

~ 5o12

{ t3

t

50" 50" 30" ,.i

L

90 ° eLa b

6~0o ,

Lob

i

i

30 o

I ......

~-__

Fig. 3. Differential r e l a t i v e c r o s s section d(~/d~ for the production of charged r e l a t i v i s t i c s e c o n d a r i e s p r e sented as function of the angle Ola b in the ISR l a b o r a tory system. The e r r o r b a r s indicate the s t a t i s t i c a l e r r o r s only.

very strong anisotropy of the angular distribution. The da/dR drops by almost an order of magnitude between 90° and 35° in the ISR laboratory system. Fig. 4 shows the same data as function of l log tan ~Oc.m., compared with cosmic-ray results at about I000 GeV (fig. 4a) [2]. One observes a pronounced minimum in the angular distribution of secondaries in the neighbourhood of 90° in the c.m. system in agreement with many observations on cosmic-ray jets [3]. Several models (see e.g. the discussion by De Tar [4]) predict a flat distribution in longitudinal rapidity for the pions produced in very-high-energy proton-proton interactions. The variable log tan ½Oc.m. is, to a good approximation, linearly connected with the longitudinal rapidity [4]. As Lyon et al. have shown [5] the assumption of a flat distribution in rapidity leads to a corresponding distribution in log tan ½@c.m. which is a l m o s t f l a t but f a l l s off s l i g h t l y n e a r O c ' m " = 90 °. H o w e v e r , t h e v a l u e of d N / d { l o g t a n ½0 c ' m ' } at 90 ° is m o r e t h a n 80% of t h e p l a t e a u v a l u e e v e n f o r a p± c u t - o f f f u n c t i o n of t h e f o r m e x p ( - 1 5 p 2 ) . O u r d a t a a r e in d i s a g r e m e n t w i t h s u c h a p r e d i c tion. Fig. 4 b s h o w s o u r d a t a c o m p a r e d w i t h a s c a l i n g p r e d i c t i o n at 1500 G e V / c b a s e d on t h e d a t a of t h e S c a n d i n a v i a n C o l l a b o r a t i o n [6] f r o m 1 9 - G e V p p i n t e r a c t i o n s a n d c a l c u l a t e d by M i c h e j d a [7]. T h e d i f f e r e n c e b e t w e e n o u r d a t a and this prediction can be interpreted as an indicat i o n of a v i o l a t i o n of s c a l i n g f o r low v a l u e s of c . m , x = 2p :l / vrs in t h e e n e r g y r a n g e 1 9 - 1 5 0 0 G e V . In t h i s s e n s e t h e p r e s e n t e x p e r i m e n t i s c o m p l e m e n t a r y to t h e o n e d e a l i n g w i t h p a r t i c l e s

.h I

i.

hi.

0.5



angle

,j

E

10" ,

i

.

5" ~ 0¢,, ,

i

i



,





15

1.0

from p+p- ~- + otyU"~g o119GeV/c J C~Wcu~ by V~CHE.~ i

,o 0.5

i~" ,s,o' ~', ....

o's

....

~o"

~"

,!0....

~cm~'~ ,'5 . . . .

log ton(Ocm12)

Fig. 4. Differential relative c r o s s section do'/d {log tan 21-Oc.m.}. a) Ideogram shows the c o s m i c ray data at about 1000 GeV [2]. (b) Continuous line shows the scaling prediction according to Michejda [7]. e m i t t e d at a n g l e s b e t w e e n 5 ° and 17 ° w h e r e t h e x v a l u e s a r e l a r g e r t h a n a b o u t 0.08 [8]. W e a r e v e r y g r a t e f u l to P r o f e s s o r s B. P. G r e g o r y a n d W. J e n t s c h k e and to t h e s t a f f of t h e ISR D i v i s i o n f o r m a k i n g t h i s e x p e r i m e n t p o s s i b l e . We very much appreciate the help and hospitality e x t e n d e d t o u s by P r o f e s s o r H. S c h o p p e r , a n d we s h o u l d l i k e to t h a n k P r o f e s s o r G. C o c c o n i f o r discussions and his support. We are particularly i n d e b t e d to D r . H. BC~ggild f o r h i s h e l p in t h e i n t e r p r e t a t i o n of t h e d a t a . T h e i n s t a l l a t i o n of t h e e x p e r i m e n t w a s f a c i l i t a t e d g r e a t l y by t h e u n d e r s t a n d i n g c o o p e r a t i o n of M e s s r s . F. B o n a u d i a n d B. C o u c h m a n . M u c h of t h e m e c h a n i c a l e q u i p m e n t w a s p r e p a r e d in C r a c o w b y M e s s r s . W. K u b i c a , J. K n a p i k a n d W. J a n c z u r , a n d we s h o u l d l i k e t o thank them and the Cracow scanning team for t h e i r s k i l f u l w o r k . T h e h e l p of M e s s r s . U. B r o t s c h i , R. L o r e n z i a n d O. M e n d o l a at C E R N i s h i g h l y a p p r e c i a t e d . T h a n k s a r e d u e to D r . J . P e r n e g r f o r h i s v a l u a b l e c o m m e n t s on t h e m a n uscript.

613

Volume 36B, n u m b e r 6

PHYSICS

LETTERS

References [1] R. P. F e y n m a n , Phys. Rev. L e t t e r s 23 (1969) 1415; J. Benecke, T. T. Chou, C.N. Yang and E. Yen, Phys. Rev. 188 (1969) 2159. [2] J. Gierula and W. Wolter, Acta P h y s i c a Polonica B2 (1971) 95. The i d e o g r a m in fig. 4a is the r e s u l t of the folding of the i d e o g r a m p r e s e n t e d in fig. 14 of this r e f e r e n c e . [3] P. Ciok, T. Coghen, J. Gierula, R. HotTnski, A. J u r a k , M. Micsowicz, T. Saniewska, O. Stanish and J. P e r n e g r , N u o v o C i m e n t o 8 (1958) 166; 10 (1958) 741; G. Cocconi, Phys. Rev. 111 (1958) 1699; J. Gierula, M. Miesowicz and P. Zielinski, Nuovo Cimento 18 (1960) 102;

614

[4] [5] [6] [7] [8]

18 October 1971

J. Gierula, D.M. Haskin and E. L o h r m a n n , Phys. Rev. 122 (1961) 626; F. A b r a h a m , J. Gierula, R. Levi Setti, K. Rybicki, C. H. Tsao, W. Wolter, R. L. F r i c k e n and R. W. Huggett, P r o c . Dubna Conf. on High e n e r g y p h y s i c s , 1964, p. 163; Phys. Rev. 159 (1967) 1110. C. De T a r , Phys. Rev. D3 (1971) 128. D. E. Lyon, C. Risk and D. Tow, Phys. Rev. 3D (1971) 104. H. B~ggild, K. H. J a n s e n and M. Suk, Nuel. Phys. B27 (1971) 1. L. Michejda, F u r t h e r t e s t of s c a l i n g p÷p--* ~'- + anything, paper p r e s e n t e d to the A m s t e r d a m Conf e r e n c e (1971). Nucl. P h y s . , to be published. L. G. Ratner, R . J . Ellis, G. Vannini, B . P . Babcock, A. D. K r i s c h and J. B. R o b e r t s , Phys. Rev. L e t t e r s 27 (1971) 68.