Antiviral evaluation of plants from Brazilian Atlantic Tropical Forest

Antiviral evaluation of plants from Brazilian Atlantic Tropical Forest

Fitoterapia 76 (2005) 374 – 378 www.elsevier.com/locate/fitote Short report Antiviral evaluation of plants from Brazilian Atlantic Tropical Forest C...

79KB Sizes 2 Downloads 181 Views

Fitoterapia 76 (2005) 374 – 378 www.elsevier.com/locate/fitote

Short report

Antiviral evaluation of plants from Brazilian Atlantic Tropical Forest C.R. Andrighetti-Fro¨hnera,c, T.C.M. Sinceroa,d, A.C. da Silvaa,c, L.A. Savia,d, C.M. Gaidoa,d, J.M.R. Bettegaa,d, M. Mancinib,c, M.T.R. de Almeidab,c, R.A. Barbosab,c, M.R. Fariasb,c, C.R.M. Barardia,d, C.M.O. Simo˜esa,b,c,* a

Laborato´rio de Virologia Aplicada, Universidade Federal de Santa Catarina, UFSC, Campus Universita´rio, Trindade, Floriano´polis, SC, Brazil b Laborato´rio de Farmacognosia Universidade Federal de Santa Catarina, UFSC, Campus Universita´rio Trindade, Floriano´polis, SC, Brazil c Departamento de Cieˆncias Farmaceˆuticas, Universidade Federal de Santa Catarina, UFSC, Campus Universita´rio Trindade, Floriano´polis, SC, Brazil d Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Catarina, UFSC, Campus, Universita´rio Trindade, Floriano´polis, SC, Brazil Received 9 December 2003; accepted 8 March 2005

Abstract The antiviral activity of six medicinal plants from Brazilian Atlantic Tropical Forest was investigated against two viruses: Herpes simplex virus type 1 (HSV-1) and poliovirus type 2 (PV-2). Cuphea carthagenensis and Tillandsia usneoides extracts showed the best antiherpes activity. T. usneoides dichloromethane, ethyl acetate and n-butanol extracts, and Lippia alba n-butanol extract showed inhibition of HSV-1, strain 29R/acyclovir resistant. In addition, only L. alba ethyl acetate extract showed antipoliovirus activity. These results corroborate that medicinal plants can be a rich source of potential antiviral compounds. D 2005 Elsevier B.V. All rights reserved. Keywords: Antiviral; Herpes simplex virus type 1; Poliovirus type 2; Brazilian medicinal plants

* Corresponding author. Laborato´rio de Virologia Aplicada, Universidade Federal de Santa Catarina, UFSC, Campus Universita´rio, Trindade, Floriano´polis, SC, Brazil. E-mail address: [email protected] (C.M.O. Simo˜es). 0367-326X/$ - see front matter D 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.fitote.2005.03.010

C.R. Andrighetti-Fro¨hner et al. / Fitoterapia 76 (2005) 374–378

375

1. Plants Cuphea carthagenensis aerial parts(Jacq.) MacBride (Lythraceae) and Lippia alba leaves Miller) N.E. Brown (Verbenaceae), collected in Floriano´polis, Santa Catarina State, Brazil, were identified by Dr. Daniel de Barcellos Falkenberg (Department of Botany, CCB, UFSC). Tillandsia usneoides aerial parts (L.) L. and Bromelia antiacantha Bert., (Bromeliaceae), fruits collected in Floriano´polis, leaves of Araucaria angustifolia (Bert.) O. Kuntze (Araucariaceae) leaves collected in Urubici, Santa Catarina State, Brazil were identified by Dr. Maurı´cio Sedrez dos Reis (Department of Plant Sciences, CCA, UFSC). Voucher specimens were deposited in the Herbarium of Botany Department (FLOR 26), CCB, UFSC, under the numbers FLOR no. 26364, 26361, 5060, 4964 and 15444, respectively. Wilbrandia ebracteata Cogn. (Cucurbitaceae), underground part collected in Nova Petro´polis, Rio Grande do Sul State, Brazil was identified by Dr. Sergio Bordignon and a voucher specimen was deposited in the Herbarium ICN (UFRGS, Porto Alegre, Rio Grande do Sul State) under the number ICN 95292. All plants were collected in 1998–1999.

2. Uses in traditional medicine Vernacular names and local uses are reported in Table 1.

3. Previously isolated classes of constituents From C. carthagenensis: flavonoids, triterpenoids, sterols and polyphenolic compounds [1,2]; T. usneoides: alkaloids, flavonoids and coumarins [3–6]; L. alba: volatile oil and flavonoids [7]; W. ebracteata: triterpenes and C-glycosylflavones [8,9]; B. antiacantha: saponins, flavonoids and tannins [10,11]; A. angustifolia: volatile oil [12], lignans [13– 15], phenylpropanoid derivatives and biflavones [16]. Table 1 Plants selected for antiviral screening Plants A. angustifolia

Local name

Traditional uses

Pinheiro-do-parana´ Leaves: emollient, antiseptic and for respiratory infections and rheumatism B. antiacantha Gravata´, caraguata´ Fruits: emollient, expectorant in respiratory infections, for asthma and bronchitis C. carthagenensis Sete-sangrias Whole plant: antihypertensive, cardiovascular diseases, for fever, laxative, diuretic and diaphoretic L. alba Falsa-melissa, Leaves: sedative, spasmolytic, expectorant, antiseptic erva-cideira, and in respiratory infections sa´lvia-da-gripe T. usneoides Barba-de-velho Whole plant: for hypertension, rheumatism, hemorrhoids, cholagogue, diuretic, renal and ophthalmic illnesses W. ebractaeata Taiuia´ Roots: digestive, laxative, for rheumatism and kidney illnesses; externally for skin diseases[20,24]

References [19] [20,21] [20] [20,22]

[20,23]

376

C.R. Andrighetti-Fro¨hner et al. / Fitoterapia 76 (2005) 374–378

4. Tested material Air-dried materials were macerated with EtOH aq. at r.t. The crude hydroethanolic (HE) extracts, filtered and concentrated in vacuo, were submitted to a sequential liquid–liquid extraction with solvents of increased polarity (Table 2). A phytochemical screening was performed with HE extracts according to World Health Organization (WHO) methods [17].

5. Studied activity Antiviral activity was investigated by using cytopathogenicity inhibition assay as reported in the Ref. [18]. Acyclovir (Sigma) was used as an antiherpes positive reference.

6. Used microorganisms Herpes Simplex Virus type 1 (HSV-1), strains KOS and 29-R/acyclovir resistant, were obtained from the Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Rennes, France. Poliovirus type 2 (PV-2), a vaccinal strain Sabin II, was obtained from Adolpho Lutz Institute, Brazil. Both viruses were propagated on Vero cell line (ATCC CCL81).

7. Results Phytochemical screening was reported in Table 3 and antiviral assay in Table 4.

8. Conclusions Of the extracts tested, 13 showed some kind of antiviral activity. C. carthagenensis and T. usneoides EtOAc extracts showed the best selectivity indices (SI = 90 and 65, Table 2 Extract preparation conditions and yields of plants from Brazilian Atlantic Tropical Forest Plant material

Solvent (v/v)

A. angustifolia (leaves—1200 g) B. antiacantha (fruits—1600 g) C. carthagenensis (aerial parts—1575 g) L. alba (leaves—840 g) T. usneoides (aerial parts—60 g) W. ebracteata (underground parts—3000 g)

HE (70:30) HE (70:30) HE (70:30) HE (80:20) HE (70:30) MeOH

Extract yield (%) HE

DM

EA

BU

11 0.8 3 10 5 10

0.7 0.2 0.09 0.3 0.4 2.5

0.8 0.4 0.1 0.3 0.3 0.8

1.1 1.5 0.4 1.3 1.2 3.0

HE: hydroethanolic extract; DM: dichloromethane; EA: ethyl acetate; BU: n-butanol.

C.R. Andrighetti-Fro¨hner et al. / Fitoterapia 76 (2005) 374–378

377

Table 3 Phytochemical screening of hydroethanolic extracts of Brazilian Atlantic Tropical Forest plants Plant material A. angustifolia (leaves) B. antiacantha (fruits)a C. carthagenensis (aerial parts) L. alba (leaves) T. usneoides (aerial parts) W. ebracteata (underground parts) a

Saponins

Polyphenolic compounds

Flavonoids

Tannins

+ + + + + +

+ +

+

+ + + + + +

Results according to Ref. [21]; (+): presence detection.

respectively) against HSV-1 (strain KOS) indicating promising antiherpes activity when compared with acyclovir (SI N 200). L. alba n-BuOH extract, T. usneoides dichloromethane, EtOAc and n-BuOH extracts and W. ebracteata EtOH and n-BuOH extracts showed inhibition of HSV-1, strain 29R/acyclovir resistant, suggesting that the compound(s) present in these extracts act(s) by a different mechanism of that of acyclovir. In addition, only L. alba EtOAc extract showed antipoliovirus activity. The results presented here indicate that the cited above extracts possess anti-HSV-1 properties, and these effects might be due to their content of flavonoids, specially biflavones and CTable 4 Antiviral activity of extracts of Brazilian Atlantic Tropical Forest plants Plant material

A. angustifolia (leaves)

B. antiacantha (fruits)

C. carthagenensis (aerial parts) L. alba (leaves)

T. usneoides (aerial parts)

W. ebracteata (underground parts) Acyclovir

Plant extracts

CC50 (Ag/ml)

HSV-1

CE50 (Ag/ml)

SI

CE50 (Ag/ml)

SI

CE50 (Ag/ml)

SI

DM EA BU DM EA BU DM EA BU DM EA BU DM EA BU EA BU

140 315 140 N 1000 N 1000 N 1000 190 180 375 250 500 16 187 187 23 250 125 N 200

I 35 13 I I I 4 2 31 I I I 10 3 3 62 125 b1

– 9 11 – – – 49 90 12 – – – 18 65 8 4 1 N 200

NE NE NE I I I I I I I I 2 26 23 12 25 12 I

– – – – – – – – – – –

I I I NE NE NE I I I 250 125 I I I I NE NE –

– – – – – – – – – 1 4 – – – – – – –

PV-2

KOS strain

29-R strain

DM: dichloromethane; EA: ethyl acetate; BU: n-butanol. CC50: 50% cytotoxic concentration (Ag/ml). EC50: concentration required to inhibit viral cytopathic effect by 50% (Ag/ml). SI: selectivity index (= CC50/EC50). I: inactive; NE: not evaluated; (–): not calculated.

8 7 8 2 10 10 –

378

C.R. Andrighetti-Fro¨hner et al. / Fitoterapia 76 (2005) 374–378

glycosylflavones, for which antiviral activity was already described [16,25]. In conclusion, these results corroborate that Brazilian biodiversity can be are a rich source of potential antiviral compounds, even if their folk uses are not related to viral diseases.

Acknowledgments This work received financial support from PADCT III/CNPq/MCT, CNPq/Edital Universal 001/2000 and CAPES/MEC, Brazil. We also thank Dr. Daniel de Barcellos Falkenberg, Dr. Maurı´cio Sedrez dos Reis and Dr. Sergio Bordignon for their helpful advice on plants identification.

References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25]

Gonzalez AG, Valencia E, Expo´sito TS, Barrera JB, Gupta MP. Planta Med 1994;60:593. Schuldt EZ, Ckless K, Simas ME, Farias MR, Ribeiro-Do-Valle RMJ. Cardiovasc Pharmacol 2000;35:234. Lewis DS, Mabry TJ. Phytochemistry 1997;16:1114. Williams CA. Phytochemisty 1978;17:729. Witherup KM, McLaughlin JL, Judd RL, Ziegler MH, Medon PJ, Keller WJ. J Nat Prod 1995;58:1285. Adrian-Romero M, Blunden G. Biochem Syst Ecol 2001;29:305. Zetola M, De Lima TC, Sonaglio D, Gonzalez-Ortega G, Limberger RP, Petrovick PR, et al. J Ethnopharmacol 2002;82:207. Schenkel EP, Farias MR, Mayer R, Breitmaier E, Rucker G. Phytochemistry 1992;31:1329. Dos Santos RI, Dos Santos MA, Schenkel EP. Int J Pharmacogn 1996;34:300. Gibbs RD. Chemotaxonomy of flowering plants. Montreal7 McGill-Queen’s; 1974. Wasicky R, Hoehne W. An Fac Farm Odontol Univ Sa˜o Paulo 1951;9:17. Brophy JJ, Goldsack RJ, Wu MZ, Fookes CJR, Forster PI. Biochem Syst Ecol 2000;28:563. Fonseca SF, Nielsen LT, Ru´veda EA. Phytochemistry 1979;18:1703. Ohashi H, Kawai S, Sakurai Y, Yasue M. Phytochemistry 1992;31:1371. Castro MA, Gordaliza M, Del Corral JMM, San Feliciano A. Phytochemistry 1996;41:995. Lin Y-M, Flavin MT, Schure R, Chen F-C, Sidwell R, Barnard DL, et al. Planta Med 1999;65:120. Akerele O. WHO Chron 1984;38:76. Simo˜es CMO, Amoros M, Girre L, Gleye J, Fauvel MT. J Nat Prod 1990;53:990. Pio Correˆa M. Diciona´rio de plantas u´teis do Brasil e das plantas exo´ticas cultivadas. Rio de Janeiro7 Imprensa Nacional; 1926. Mors WB, Rizzini CT, Pereira NA. Medicinal plants of Brazil. Algonac7 Reference Publications; 2000. Jorge LIF, Ferro VO. Rev Farm Bioquı´m USP 1993;29:69. Di Stasi LC, Oliveira JP, Carvalhaes MA, Queiroz-Junior M, Tien OS, Kakinami SH, et al. Fitoterapia 2002;73:69. Reitz R. Plantas medicinais de Santa Catarina. Itajai7 Herba´rio Barbosa Rodrigues; 1954. Simo˜es CMO, Schenkel EP, Mentz LA, Irgang BE, Stehmann JR. Plantas na medicina popular do Rio Grande do Sul. 4 ed. Porto Alegre7 Editora da Universidade UFRGS; 1995. Li YL, Ma SC, Yang YT, Ye SM, But PP. J Ethnopharmacol 2002;793:65.