Appendix 1
NUMERICAL ILLUSTRATION OF EQUATIONS IN CHAPTER I11
1. Summary
The major equations contained in Chapter 111 will be illustrated here by a numerical example shown in Fig. 1.1 (Fig. 3.1 of Chapter 111). The network equations in the orthogonal network will first be solved employing the contours in Fig. 1.2 (Fig. 3.3 of Chapter 111). Some of the equations will also be illustrated using the contours in Fig. 1.3 (Fig. 3.4 of Chapter I l l ) .
FIG.1.1. Network example. 275
276
Appendix 1
2. Example of Node-to-Datum Case
Consider the primitive network represented by Eq. (1.3) below.
bl
bl
b2
62
b3
b3
:
64
64
b5
b5
b6
66
Let the voltage sources in the primitive network have the numerical values
The open-path contours that will be selected are those in Fig. 1.2. Currents Z', 1 2 , and Z3 specified as in Fig. 1.1 (Fig. 3.1 of Chapter 111) are then numerically equal to those in the orthogonal network (Fig. 3.5 of Chapter 111). Let these currents have the numerical values
The transformation matrices associated with the contours are given in Table 1.1.
277
2. Example of Node-to-Datum Case
b6
‘ E X T R E M I T I E S OF’ OPEN PATHS
FIG.1.2. Open- and closed-path current and voltage contours-node-to-datum
From Eq. (3.46), e, bl
2 -5
-2
=
(3.46)
C:e,
b2 b3
b4
case.
65
66
----~
3
From Eq. (3.47),
e, = cpe, bl
b2
b3
b4
(3.47) b5
b6 bl b2 b3 b4 b5 b6
TABLE 1.1 TRANSFORMATION MATRICES ASSOCIATED WITH CONTOURS I N FIG.1.2 General Form
o
Example Case
1
2
3
cl
c2
c3
bl
b2
b3 b4
b5
b6
1
2
c2
c3
c
1 b
2 3
cl c2 c3
o
Ab'=
3
cl
c
b3
E
1
-1
-1
1
-1
-1
-1
b4 b5 - 1 h6 - I
1 b
2
1
-----1 --I - I -----1 1 ------
3 -1
1 -1 I -----c2 I -1 ------
cl
c3
1
-1
-1
1
2. Example of Node-to-Datum Case
279
From Eq. (2.24),
z,, = c,bz,,cps
(2.24)
As an intermediate step let u s obtain
z,, = c g z b b
Z S b
(2.36)
61
b2
b3
b4
b5
b6
1
2
3
cl
c2
c3
=
Z,, is
1 0 -6 --0 2 4 --3 2 -3 ---
2
5
1
and
From Eq. (3.76),
(3.76)
280
Appendix I
The numerical form of Eq. (3.76) is el 0.016390
____
c2 1.344262 -c3 0.245904
___0.278688 -0.147540 0.180327
c2
I I
I
With all currents J s in the orthogonal network determined, we can illustrate the current relationships given in Chapter 111, Table 3.1.
J b = CPsJs 1 1.360652
bl
b2 -0.229514 0.590166 h3
b2
bl
b4
2.590166
b5
0.344262
--
b6 -0.754096
=
03 b4
2
3
c2
el
c3
-
b5 - 1 b6
-
(3.13)
l b= ChsP
Note that the case considered is one where 1'
-
0 bl 0 b2 h2 b3-I =b3 1 b4 b4 b5 65 - 1 06 b6 -1 bl
-
1
2
3
el
c2
= O',
as stated in Eq. (3.14).
c3 1
2 3 cl
c2 c3
! 0
281
2. Example of Node-to-Datum Case
ib = cbSis
(3.21)
Note that the case considered is one where i"
= 0",
as stated in Eq. (3.22).
0 0 0
-
0.016390 1.344262 -0.245904
J s = Asb J b 61 1
b2
1
_ _ 2 1 -I __--
2 3
-~
63 ~
cl 0.016390
cl
c2
c2
c3 0.245904
c3
b6
-
-I
I --1
-1
--1 ---
I
-I
-I
I" bl
=2
b5
3 -I
-
1
I
b4
(2.9)
b2
b3
=
~p~ J~
b4
1
b5
(3.9) b6
-----1 -I -1 ------
3 -1
1
I
282
Appendix 1
‘i = A:bJb h1
b2
b3
b4
b5
(3.10) b6
t
1
1
2
1
(3.16)
cl3 1 c2 c3
0
0
I”= APblb
1
(3.18)
1
32 1 i
=2
1
-1
3 -1
1
--I
0 ------ b2 -
63 - 1
283
2. Example of Node-to-Datum Case
0' hl
h2
(3.19)
= A!bIb
h3
64
h5
h6
h4
I
h5 - 1 h6 - 1
-
(3.24)
-
1
bl
2
h2
-0.229514
3
h3
1.590166
cl
h4
1.590166
c2
h5
1.344262
c3
h6
0.245904
-
(3.26) 61 1
23
0
0B
1 =2
3
b2
h3
64
b5
h6
---------__-
284
Appendix I
~2 1.344262 = c 2 c3 0.245904 c l r
I:
__-__-__-
__-----
d!
-
1
1
(3.27) 1.360652 b2 -0.229514 bl b3
1.590166
This completes the current relationships in Table 3.1. Now to the voltages. From Eq. (1.3),
bl
1
b2
0.131138
b2
b3
0.950818
b3
b4
9.672140
b4
-----2
1
-----1 __-----
2
----____
b5 -4.491808
65
b6 -6.491784
66 -2
4
-2
-2
2
__-~__--
From Eq. (1.4),
b bl
21.360652 1 7
b3
0.590166
b4
2.590166
b5
0.344262
b6 -0.754096
=b bl
25 1
0.666667 -03.33334; - 0.333334
b6
2
0.666667
!:
--b4 --b5 ---
9.672140 -4.491808
b6 -6.491784
-~
285
2. Example of Node-to-Datum Case
Eb = Vb - eb 2.868844 0.131138 0.950818 9.672140 -4.491808 - 6.491 784
(2.15) bl
b2
b3
b4
b5
b6
I
1 4.491808
1
bl
2 5.540966
2
b21
3 9.672140 cl 2.999982
-
I 0.131 138 I 2.868844
3 cl 65 1-4.491808 b61-6.491784
I
I (3.53)
bl 1 4.491808
2 5.540966 = 2 3 9.672140
3
b2
b3
b4
b5
b6
Appendix I
286 e , = cfvb bl
b2
b3
b4
(3.54) b5
b6
cl
bl
c2
b2
c3
b3
b4
9.672140
b5 -4.491808 b6 - 6.491 784
(3.33) bl 8.491808
1
2 10.540966
2
1 3
8.672140
-
b2
b3
b4 -1 --1 --
3
cl -0.000018
cl
~2 -0.000006
~2
-
I -
c3
0.000036
1
c3
1-11
1 1 1
-I
(3.37)
E , = C:E, bl
b2
b3
b4
b5
b6
- 1 b2 - 1.868862 63 -2.049182 64
8.672140
b5 -8.491808 b6 -8.491784
287
2. Example of Node-to-Datum Case
(3.39) cl
c2
-----__
b2
----__-1
c3
- 1.868862
b3 -2.049182
1
(3.34)
e, = C; heh
1 -4 -
cl
3
c2 9 c3
4 -
b4
b5
b6
2
-
1 -
b3
1
2 -5 3
b2
bl
-
3 cl
c2 c3
In the inverse relationships, the same numerical vectors will be employed as those obtained previously above.
(2.16) 1
2
3
cl
c2
c3
bl
2.868844
bl
1 4.491 808
b2
0.131138
b2
2 5.540966
b3
0.950818
b3
3 9.672140
b4
9.672140
b4
Cl 2.999982
-
c2 8.999994 c3 4.000036
288
E,
61
1.868544
h2
- 1.868862
63 -2.049182 b4
I
8.672140
b5 -8.491808 b6)-8.491808
= AbsE,
-
1-
Appendix I
(3.41) c2
c3 1
2 10.540966 3
--
II eb = Ace,
bl
h2
-I
2
3 -11
1l-1i-!l
2
I
h2I
4
I
1-1-1' -I-I-I
cl
1-11
1
I
I
c2
b5 66
-1
~2 -0.000006
e;k
I
I
I
I
I
I
1-11
I
I
]
2 -5
c2
9
c3
(2.23)
V , = Z,, J s 1
2
3
cl
c2
c3
1 4.491808
I
1
2 5.540966
2
1
3 9.672140
3
1
cl 2.999982 c2 8.999994 c3 4.000036
c2
0
0
--
(3.48)
1 -4
I I I I I
h51-11
0.000036
-
c3
b3 h4
8.672140
cl -0.000018
c3
1
8.491808
289
3. Example of Not of the Node-to-Datum Type
(2.27)
J" = YSSVS 2
1
1
1
1
2
1
2
1
3
3
-=
cl 0.016390
cl
c2 1.344262
c2
1-1
c3 0.245904
c3
2.6'
I -2.3 I
1 1
1.6 -2.3
3
1.161 -3.6
c2
c3
.-.
1.6 -3.3
1 4.491808
--
-2.3 1.6 2 5.540966 -~ 1.6 -1.3 3 9.612140
1 11 I1 -3.6
1.6 1-3.6
---3.1
cl
7.6 -1.3
10.3 cl 2.999982
1.6 -3.3
--
10.3 -3.3
c2 8.999994
10.6 c3 4.000036
Overbar indicates that number repeats for a total of six decimal places; Le., for 2.6 read 2.666666, for 6.16 read 6.166666.
3. Example of Not of the Node-to-Datum Type Some of the equations in Tables 3.1 and 3.2 will be illustrated for the contours in Fig. 1.3, the corresponding transformation matrices being given in Table 1.2.
bl
\ E X T R E M I T I E S OF/ OPEN PATHS
FIG.1.3. Open- and closed-path current and voltage contours-not case.
node-to-datum
Let Z', 12, and I 3 in Fig. 1.1 be unity; l 4 correspondingly is minus three. The elements of the open-path current vector I" ( I t , Zz,1 3 ) are no longer numerically equal to those specified in Fig. 1.1 , but can be obtained from those in Fig. 1.1 by equating the sum of the respective currents in Fig. 1.3 at each
290
Appendix I
bus to the values specified; in Chapter VIIl this procedure is shown to be equivalent to establishing a transformation matrix between one set of openpath currents and another. By following this procedure, current vector I" is
Z,, and voltage vector eb will be taken to be the same as those in the previous example. With eb and I" established, the solution can be obtained as outlined for the previous case. The orthogonal network appears in chapter 111(Fig. 3.6.)
J" = AsbJb b6
1 2 31
2
I
-
3
1
----I - 1 -1 -_ ---
cl c2
0.590166
-I --1
b4
2.590166
-1
h6 -0.154096
--I
b2 -0.229514 b3
-1 I ---
-
c3
-1
(3.16)
1
1
2
1
3
2
:Ij
c3
I
I
b31 b4 b6)
-1
I
3. Example of Not of the Node-to-Datum Type
TRANSFORMATION
0
29 1
TABLE 1.2 MATRICES ASSOCIATED WITH
c
Cf, =t Cb, Cbc
CONTOURS I N
FIG.1.3
I
2
3
cl
c2
c3
bl
62
h3
b4
b5
b6
I
2
3
cl
c2
c3
bl
b2
b3
b4
b5
b6
bl 62 b3
b4 h5 bt
1
b
2 3 cl
c2 c3
bl O
C
h2 03
b4 b5 66
b
292
Appendix I
(3.24) b2
bl
b3
b4
05
h6
1
2
62 -0.229514
3
b3
1.590166
b4
1.590166
1
-1
1
-I
65
1.344262
-1
1
h6
0.245904
J h = CbsJs 1
2
3
cl
c2
c3
61
1
b2
2
b3
3
1
I
-2
b4
Cl 0.016390
65
c2 1.344262
b6
c3 0.245904
(3.13)
bll
O
I
1
1
2
1
1 3
2
293
3. Example of Not of the Node-to-DatumType
(3.21) 2
1
bl
1.360652
bl
b2
- 0.229514
b2
b3
1 S90166
b4
1.5901 66
-
3
c2
cl
c3
b3 b4
b5
1.344262
b5
b6
0.245904
b6
(2.15) bl
1
b2
b4 b5
b6
I I bl I
2.868844
1-1
0.131138
l~-----4.491808
2 -4.131174 3
9.672140
cl
2.999982
1
21
1-1I-1I-1-I
1-1 1-1
8.999994 ___-4.000036 c3
I
b21 I
I
E,
I
I
8.491808
2
I .868826
2
3
8.672140
3
-0.00001 8
cl
-ITG~T
I
-1
1 -I-I11 -1 -
c2
cl
b3
1
c2 -0.000006
c2
c3
c3
=
(3.33)
C,bE,
-1
------1 __----__
-1
-1
bl
1.868844
b2
- 1.868862
1 63 ------
I 1 --__--1
b4
1
1
1
1
1
------1
I
b5
-2.049182 8.672140 -8.491808
b6 -8.491784
294
Appendix I
e, = C,be, bl
b2 63
(3.34)
b4 b5
b6 61
1
62
2
3
b3
3 1
3
1
Cl
3
cl
64
c2
9
c2
b5
c3
4
c3
-
4 ___b6 2
-
(2.16)
V, = A: V,
bl
2.868844
b2
0.131138
b3
0.950818
64
9.672140
I I
2
3
cl
c2
bl b2
-1
c3 I
1
4.491808
-1
2
-4.131 I74 9.672140
64
--
-b5 - 1
b5 -4.491 808
66 -6.491784
1
I
cl
2.999982
c2
8.999994
66 -1
4.000036
(3.41)
E , = A:E, 1
2
3
cl
c2
c3
1.868844
8.491808 2
63 -2.049182 b4
~3
8.672140
cl
b5 -8.491808
1.868826 8.672140 -0.00001 8
c2 -0.000006
66 -8.491784
c3 I
0.000036
I
3. Example of Not of the Node-to-Datum Type
295
(3.48)
eb = A:e, 2
1
b3
cl
c2
c3
3
b3
I
b4
4
b5
c2
ILI b6
c3
- =
b4
__
b5 b6
3
__
(2.23)
V, = Z,, J s 2
1
1
4.491808
1
2 -4.131174 3
9.672140
-
3
2
3
cl
c2
c3
- 2 2
__-
2
- 4 4
0
1
-
cl
2.999982
c2
8.999994
c3
4.000036
cl
(2.27)
JS = YSSV, I 1 -=
2
3
c2
Cl
c3
5.6
2 -2.3
2
0.016390 1.344262 0.245904
I
I
I
I
I
I