Application of homotopy perturbation method for systems of Volterra integral equations of the first kind

Application of homotopy perturbation method for systems of Volterra integral equations of the first kind

Chaos, Solitons and Fractals 42 (2009) 3020–3026 Contents lists available at ScienceDirect Chaos, Solitons and Fractals journal homepage: www.elsevi...

427KB Sizes 3 Downloads 103 Views

Chaos, Solitons and Fractals 42 (2009) 3020–3026

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals journal homepage: www.elsevier.com/locate/chaos

Application of homotopy perturbation method for systems of Volterra integral equations of the first kind J. Biazar a,*, M. Eslami a, H. Aminikhah b a b

Department of Mathematics, Faculty of Sciences, The University of Guilan, P.O. Box 1914, P.C. 41938 Rasht, Iran Department of Mathematics, School of Mathematical Sciences, Shahrood University of Technology, P.O. Box 316, P.C. 3619995161 Shahrood, Iran

a r t i c l e

i n f o

a b s t r a c t

Article history: Accepted 3 April 2009

In this article, an application of He’s homotopy perturbation method is applied to solve systems of Volterra integral equations of the first kind. Some non-linear examples are prepared to illustrate the efficiency and simplicity of the method. Applying the method for linear systems is so easily that it does not worth to have any example. Ó 2009 Elsevier Ltd. All rights reserved.

1. Introduction Homotopy perturbation method has been used by many mathematicians and engineers to solve various functional equations. This method continuously deforms difficult problem, mostly because of non-linearly, into a simple, linear, equation [1–5]. Almost all perturbation methods are based on the assumption of the existence of a small parameter in the equation. But most non-linear problems have no such a small parameter. This method has been proposed to eliminate the small parameter [7,8]. In recent years the application of homotopy perturbation theory has appeared in many researches [9–17]. In this paper we propose homotopy perturbation method to solve systems of Volterra integral equations of the first kind. 2. The homotopy perturbation method applied to systems of Volterra integral equations of the first kind A system of integral equations of the first kind can be presented as the following:

Z

x

ki ðx; tÞg i ðu1 ðtÞ; u2 ðtÞ; . . . ; un ðtÞÞdt ¼ fi ðxÞ;

i ¼ 1; 2; . . . ; n:

ð1Þ

0

If gi(u1, . . . ,un) are linear, the system (1) can be represented as the following:

Z

x

0

n X

ki;j ðx; tÞuj ðtÞdt ¼ fi ðxÞ;

i ¼ 1; 2; . . . ; n:

j¼1

After differentiation we derive: n X j¼1

ki;j ðx; xÞuj ðxÞ þ

Z 0

x

n X @ki;j ðx; tÞ uj ðtÞdt ¼ fi0 ðxÞ: @x j¼1

ð2Þ

* Corresponding author. E-mail addresses: [email protected], [email protected] (J. Biazar), [email protected] (M. Eslami), [email protected], aminikhah@ shahroodut.ac.ir (H. Aminikhah). 0960-0779/$ - see front matter Ó 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.chaos.2009.04.016

J. Biazar et al. / Chaos, Solitons and Fractals 42 (2009) 3020–3026

3021

From ith equation, in (2), we write the ith unknown, ui, in terms of the other unknown, to derive the following linear system of Volterra integral equations of the second kind

ui ðxÞ ¼

n X f 0 ðxÞ ki;j ðx; tÞ  uj ðxÞ  ki;i ðx; xÞ j¼1 ki;i ðx; xÞ

Z

x

0

n X @ki;j ðx; tÞ=@x uj ðtÞdt: ki;i ðx; xÞ j¼1

ð3Þ

j–i

To illustrate the homotopy perturbation method, we consider (3) as

F i ðui Þ ¼ ui ðxÞ 

n X ki;j ðx; tÞ f 0 ðxÞ þ uj ðxÞ þ ki;i ðx; xÞ j¼1 ki;i ðx; xÞ

Z 0

x

n X @ki;j ðx; tÞ=@x uj ðtÞdt ¼ 0: ki;i ðx; xÞ j¼1

ð4Þ

j–i

With the solution ui(x). We can define homotopy H(ui,p) by

Hðui ; pÞ ¼ ð1  pÞLi ðui Þ þ pF i ðui Þ ¼ 0;

ð5Þ

where Li(ui) is a functional operator with known solution ui 0, which can be obtained easily. Obviously, from Eq. (5) we have:

Hðui ; 0Þ ¼ Li ðui Þ;

Hðui ; 1Þ ¼ F i ðui Þ:

ð6Þ

The changing process of p from zero to unity is just that of H(ui,p) from a starting point H(ui,0) to a solution function H(ui,1). Applying the perturbation technique [6], due to the fact that, 0 6 p 6 1, being considered as a small parameter. We can assume that the solution of (5) can be expressed as a series in p, as follows:

ui ¼ ui;0 þ pui;1 þ p2 ui;2 þ   

ð7Þ

Substituting (7) into (5) and equating the coefficients of p with the same power leads to f 0 ðxÞ

p0 : ui;0 ðtÞ ¼ k i ðx;xÞ ;

i ¼ 1; 2; . . . n;

i;i

p1 : ui;1 ðtÞ ¼ 

n P j¼1 j–i

p2 : ui;2 ðtÞ ¼ 

n P j¼1 j–i

ki;j ðx;tÞ u ðxÞ ki;i ðx;xÞ j;0



ki;j ðx;tÞ u ðxÞ ki;i ðx;xÞ j;1



n Rx P 0

j¼1

n Rx P 0

j¼1

@ki;j ðx;tÞ=@x uj;0 ðtÞdt; ki;i ðx;xÞ

i ¼ 1; 2; . . . n;

@ki;j ðx;tÞ=@x uj;1 ðtÞdt; ki;i ðx;xÞ

i ¼ 1; 2; . . . n;

.. . As p ? 1, (5) tends to Eqs. (4) and (7) to the solution of (4) in practice some terms of this series will serve as an approximaPm tion solution i.e., um j¼0 ui;j is a m + 1 terms approximated solution. This series is convergent for most cases, and the rate i ¼ of convergence depends on Fi(ui) [2].

3. Numerical example In this part three examples are provided. These examples are considered to illustrate ability and reliability of the method. Applying the method for linear systems is so easily that it does not worth to have any example. Example 1. Consider the following non-linear system of Volterra integral equations of the first kind

(Rx 0

1 4 f ðtÞ þ ðx  tÞf ðtÞgðtÞdt ¼  34 þ 12 x þ 12 x2 þ 12 x þ ex  14 e2x ;

0

1 4 gðtÞ þ ðx  tÞf ðtÞgðtÞdt ¼ 54 þ 12 x þ 12 x2 þ 12 x  ex  14 e2x :

Rx

With the exact solutions f(x) = x + ex, g(x) = x  ex. We change the system of integral equations to the second kind by differentiation

(

f ðxÞ þ

Rx

gðxÞ þ

Rx

0

f ðtÞgðtÞdt ¼ 12 þ x þ 13 x3 þ ex  12 e2x ;

0

f ðtÞgðtÞdt ¼ 12 þ x þ 13 x3  ex  12 e2x :

Corresponding homotopies can be readily constructed as follows:

Hðf ; pÞ ¼ f ðxÞ þ p

Rx

Hðg; pÞ ¼ gðxÞ þ p

0

Rx 0

f ðtÞgðtÞdt  12  x  13 x3  ex þ 12 e2x ¼ 0; f ðtÞgðtÞdt  12  x  13 x3 þ ex þ 12 e2x ¼ 0:

3022

J. Biazar et al. / Chaos, Solitons and Fractals 42 (2009) 3020–3026

Equating the coefficients of the terms with identical powers of p, we have

( p0 : .. .

pnþ1 :

f0 ðxÞ ¼  12 e2x þ ex þ 13 x3 þ x þ 12 ; g 0 ðxÞ ¼  12 e2x  ex þ 13 x3 þ x þ 12 ; 8 n Rx P > > fk ðtÞg nk ðtÞdt; > < fnþ1 ðxÞ ¼  0 k¼0

n Rx P > > > fk ðtÞg nk ðtÞdt: : g nþ1 ðxÞ ¼  0 k¼0

Therefore the approximations to the solutions of Example 1 can be readily obtained by

fm ¼

m X i¼0

fi ; g m ¼

m X

gi :

i¼0

The results corresponding absolute errors are presented in Table 1 and Fig. 1. Example 2. Consider the following non-linear system of Volterra integral equations of the first kind, with exact solutions, f ðxÞ ¼ 14 x2 þ 1, gðxÞ ¼ 13 x2 þ 32 ; hðxÞ ¼ 12 x þ 23.

8Rx 1 6 19 5 þ x  tÞf ðtÞ þ ð12 x2 þ tÞgðtÞhðtÞÞdt ¼ 48 x þ 270 x þ 19 x4 þ 76 x3 þ x2 þ 5x; > 72 < R0 ðð5   x 1 2 2 1 2 1 5 35 4 x þ t f ðtÞ þ ð3 þ x  tÞgðtÞ þ 4 ðx  t ÞhðtÞ dt ¼ 24 x þ 288 x þ 17 x3 þ 54 x2 þ 92 x; 0 2 18 > :Rx 1 7 1 6 ðtf ðtÞgðtÞ  xtg 2 ðtÞ  5hðtÞÞdt ¼  54 x þ 72 x  14 x5 þ 17 x4  98 x3  12 x2  10 x: 0 96 3

By differentiation we derive,

  Rx 8 ðxÞ þ 12 x2 þ x gðxÞhðxÞ þ 0 ðf ðtÞ þ xgðtÞhðtÞÞdt ¼ 18 x5 þ 19 x4 þ 19 x3 þ 72 x2 þ 2x þ 5; > 54 18 < 5f 1 2  Rx 5 4 x þ x f ðxÞ þ 3gðxÞ þ 0 ðxf ðtÞ þ gðtÞ þ 12 xhðtÞÞdt ¼ 24 x þ 35 x3 þ 17 x2 þ 52 x þ 92 ; 2 72 6 > Rx 2 : 2 2 7 6 1 5 5 4 17 3 xf ðxÞgðxÞ  x g ðxÞ  5hðxÞ  0 ðtg ðtÞÞdt ¼  54 x þ 12 x  4 x þ 24 x  27 x2  x  10 : 8 3 Corresponding homotopies can be readily constructed as follows:

  Z x 1 2 1 1 1 5 19 4 19 3 7 2 2 Hðf ; pÞ ¼ f ðxÞ þ p ðf ðtÞ þ xgðtÞhðtÞÞdt  x þ x gðxÞhðxÞ þ p x  x  x  x  x  1 ¼ 0; 10 5 5 0 40 270 90 10 5    Z x 1 2 1 1 1 5 4 35 3 17 2 5 3 xf ðtÞ þ gðtÞ þ xhðtÞ dt  x  x  x  x  ¼ 0; Hðg; pÞ ¼ gðxÞ þ p x þ x f ðxÞ þ p 6 3 3 0 2 72 216 18 6 2 Z x 1 1 2 2 1 7 1 1 17 27 1 2 ðtg 2 ðtÞÞdt  x6 þ x5  x4 þ x3  x2  x  ¼ 0: Hðh; pÞ ¼ hðxÞ  pxf ðxÞgðxÞ þ px g ðxÞ þ p 5 5 5 0 270 60 4 120 40 5 3 Equating the coefficients of the terms with identical powers of p, we have

8 1 5 19 4 19 3 7 2 2 > < f0 ðxÞ ¼ 40 x þ 270 x þ 90 x þ 10 x þ 5 x þ 1; 0 5 4 35 3 p : g 0 ðxÞ ¼ 72 x þ 216 x þ 17 x2 þ 56 x þ 32 ; 18 > : 7 6 1 5 1 4 17 3 ðxÞ ¼ x  x þ x  120 x þ 27 x2 þ 15 x þ 23 ; h0 270 60 4 40 ...   8 n n 1 2 1  P Rx P > > fnþ1 ðxÞ ¼  10 x þ 5x g k ðxÞhnk ðxÞ  15 0 fn ðxÞ þ x g k ðtÞhnk ðtÞ dt; > > > k¼0 k¼0 <    R  nþ1 p : g nþ1 ðxÞ ¼  16 x2 þ 13 x fn ðxÞ  13 0x xfn ðtÞ þ g n ðtÞ þ 12 xhn ðtÞ dt; > > > n n n Rx P P P > > : hnþ1 ðxÞ ¼ 15 x fk ðxÞg nk ðxÞ  15 x2 g k ðxÞg nk ðxÞ þ 15 0 t fk ðtÞg nk ðtÞdt: k¼0

k¼0

k¼0

Table 1 The six terms approximations to the solution of Example 1 and their corresponding error. x

f 6(x)

g6(x)

e(f(xi))

e(g(xi))

0 0.1 0.2 0.3 0.4 0.5

1 1.205204395 1.421379286 1.649894364 1.891893287 2.148280450

1 1.005135605 1.021420714 1.049805636 1.091706713 1.149119550

0 2.6241  105 2.8069  105 4.2428  105 4.4465  105 2.29049  104

0 2.8077  105 2.2553  105 4.0044  105 5.3861  105 1.86507  104

3023

J. Biazar et al. / Chaos, Solitons and Fractals 42 (2009) 3020–3026

Fig. 1. The numerical results and exact solutions of Example 1.

Therefore the approximations to the solutions of Example 2 can be readily obtained by

fm ¼

m X

fi ;

gm ¼

i¼0

m X

gi;

m

h ¼

i¼0

m X

hi :

i¼0

The results corresponding absolute errors are presented in Table 2 and Fig. 2. Example 3. Consider the following non-linear system of Volterra integral equations of the first kind, with exact solutions, f1 ðxÞ ¼ x2  x þ 12 ; f 2 ðxÞ ¼ x; f 3 ðxÞ ¼ x þ 15 ; f 4 ðxÞ ¼ x3  14 :

8Rx 9 4 ðð5 þ x2  t2 Þf1 ðtÞ  x2 f2 ðtÞf4 ðtÞ þ t2 f32 ðtÞÞdt ¼  15 x7 þ 13 x5  40 x þ 151 x3  52 x2 þ 52 x; > 0 75 > > R > x < ðxtf ðtÞf ðtÞ þ x2 f ðtÞf ðtÞ þ 2f ðtÞ þ ðt  xÞf ðtÞÞdt ¼  1 x7 þ 1 x6  1 x5 þ 7 x4 þ 7 x3 þ 9 x2 ; 1 2 4 3 3 2 0 5 4 4 24 60 10 Rx 1 2 1 7 1 5 1 4 1 3 2 2 > ðf ðtÞÞð2  x Þ þ xtðf ðtÞ þ f ðtÞf ðtÞ þ f ðtÞÞdt ¼ x þ x þ x þ x  x þ x; > 3 1 2 4 2 0 4 6 4 24 5 5 > > :Rx 7 5 7 4 7 3 xððx2  t2 Þðf22 ðtÞ þ f32 ðtÞÞ þ ðt  2 þ xÞf4 ðtÞ  t 2 f1 ðtÞÞdt ¼ 60 x  20 x  50 x  18 x2 þ 12 : 0 By differentiation we get, Z

x

7 5 9 3 151 2 5 2xf1 ðtÞ  2xf2 ðtÞf4 ðtÞdt ¼  x6 þ x4  x þ x  5x þ ; 5 3 10 25 2 Z x 7 6 3 5 5 4 7 3 7 2 9 2 2 ðtf1 ðtÞf2 ðtÞ þ 2xf4 ðtÞf3 ðtÞ  f3 ðtÞÞdt ¼  x þ x  x þ x þ x f1 ðxÞf2 ðxÞ þ x f4 ðxÞf3 ðxÞ þ 2f 2 ðxÞ þ x þ x; 5 2 4 6 20 5 0    Z x 1 2 1 7 6 5 41 3 3 2 2 2  xf3 ðtÞ þ tðf1 ðtÞ þ f2 ðtÞf3 ðtÞ þ f2 ðtÞÞ dt ¼ x þ x x þ x  2x þ ; 2  x f3 ðxÞ þ x ðf1 ðxÞ þ f2 ðxÞf4 ðxÞ þ f2 ðxÞÞ þ 4 2 6 4 6 5 5 0 Z x 7 7 21 1 1 x4  x3  x2  x þ : ð2xðf22 ðtÞ þ f32 ðtÞÞ þ f4 ðtÞÞdt ¼  2f 4 ðxÞ  x2 f1 ðxÞ þ 12 5 50 4 2 0 5f 1 ðxÞ  x2 f2 ðxÞf4 ðxÞ þ x2 f32 ðxÞ þ

0

Corresponding homotopies can be readily constructed as the following:

Table 2 The six terms approximations to the solution of Example 2 and their corresponding error. x

f 6(x)

g6(x)

h6(x)

e(f(xi))

e(g(xi))

e(h(xi))

0 0.1 0.2 0.3 0.4 0.5

1 1.002500008 1.010000779 1.022513450 1.040106812 1.063027966

1.5 1.503333358 1.513334992 1.530019156 1.553423083 1.583465931

0.6666666667 0.7166666173 0.7666635824 0.8166363465 0.8665574676 0.9166774932

0 9  109 7.77  108 1.3450  105 1.06813  104 5.27965  104

0 2.5  109 1.658  106 1.9156  105 8.9751  105 1.32599  104

0 4.94  108 3.0843  106 3.03201  105 1.091990  104 1.08264  105

3024

J. Biazar et al. / Chaos, Solitons and Fractals 42 (2009) 3020–3026

Fig. 2. The numerical results and exact solutions of Example 2.

Z x 1 1 1 7 6 1 4 9 3 151 2 1 x  x þ x  x þ x  ¼ 0; Hðf1 ; pÞ ¼ f1 ðxÞ  px2 f2 ðxÞf4 ðxÞ þ px2 f32 ðxÞ þ p ð2xf1 ðtÞ  2xf2 ðtÞf4 ðtÞÞdt þ 5 5 5 0 25 5 50 125 2 Z x 1 2 1 2 1 7 6 3 5 5 4 x  x þ x Hðf2 ; pÞ ¼ f2 ðxÞ þ px f1 ðxÞf2 ðxÞ þ px f4 ðxÞf3 ðxÞ þ p ðtf1 ðtÞf2 ðtÞ þ 2xf4 ðtÞf3 ðtÞ  f3 ðtÞÞdt þ 2 2 2 0 10 4 8 7 3 7 2 9 x  x  x ¼ 0;  12 40 10  Z x 1 1 1 1 Hðf3 ; pÞ ¼ f3 ðxÞ  px2 f3 ðxÞ þ px2 ðf1 ðxÞ þ f2 ðxÞf4 ðxÞ þ f2 ðxÞÞ þ p  xf3 ðtÞ þ tðf1 ðtÞÞ þ f2 ðtÞf4 ðtÞ þ f2 ðtÞ dt 8 2 2 0 2 7 6 5 4 1 3 3 2 1 x  x  x  x þ x  ¼ 0;  12 8 12 5 Z 10 x 1 2 1 7 4 7 3 21 2 1 1 2 Hðf4 ; pÞ ¼ f4 ðxÞ þ px f1 ðxÞ  p x  x  x  x þ ¼ 0: ð2xðf2 ðtÞ þ f32 ðtÞÞ þ f4 ðtÞÞdt þ 2 2 0 24 10 100 8 4 Equating the coefficients of the terms with identical powers of p, we derive

8 7 6 9 3 f1;0 ðxÞ ¼  25 x þ 13 x4  50 x þ 151 x2  x þ 12 ; > 125 > > < 7 6 3 5 5 4 7 3 7 2 9 x þ 10 x; f2;0 ðxÞ ¼  10 x þ 4 x  8 x þ 12 x þ 40 p0 : 7 5 1 3 1 6 4 3 2 > ðxÞ ¼ þ x þ x þ x þ x  x þ ; f 3;0 > 12 8 12 10 5 > : 7 4 7 3 21 2 x þ 10 x þ 100 x þ 18 x  14 ; f4;0 ðxÞ ¼  24 .. .  n   n  8 P P > 1 2 > f1;nþ1 ðxÞ ¼ 15 x2 f ðxÞf ðxÞ  x f ðxÞf ðxÞ 2;k 4;nk 3;k 3;nk > 5 > > k¼0 k¼0 > >   n  > > R P > x 1 > > f2;k ðtÞf4;nk ðtÞ dt; >  5 0 2xf1;n ðtÞ  2x > > k¼0 > >    n  > n > P P > 1 2 1 2 > > f ðxÞ ¼  x f ðxÞf ðxÞ  x f ðxÞf ðxÞ 2;nþ1 1;k 2;nk 4;k 3;nk > 2 2 > > k¼0 k¼0 > >  n   n   < R P P 1 x nþ1 2 0 t f1;k ðtÞf2;nk ðtÞ þ 2x f3;k ðtÞf3;nk ðtÞ  f4;n ðtÞ dt; p : > k¼0 k¼0 > > > > n P > > 1 2 1 2 > f3;nþ1 ðxÞ ¼ 8 x f3;n ðxÞ  2 x ðf1;n ðxÞ þ f2;k ðxÞf4;nk ðxÞ þ f2;n ðxÞÞ > > > k¼0 > >   > > n R P > > 1 x 1 >  xf ðtÞ þ tf ðtÞ þ tf ðtÞf ðtÞ þ f ðtÞ dt;  3;n 1;n 2;n 2;k 4;nk > 2 0 2 > > k¼0 > >     > n n > Rx P P > > : f4;nþ1 ðxÞ ¼  12 x2 f1;n ðxÞ þ 12 0 2x f2;k ðtÞf2;nk ðtÞ þ f3;k ðtÞf3;nk ðtÞ þ f4;n ðtÞ dt: k¼0

k¼0

The following approximations to the solution of Example 3 are considered as the following

f1m ¼

m X i¼0

f1;i ;

f2m ¼

m X i¼0

f2;i ;

f3m ¼

m X i¼0

f3;i ;

f4m ¼

m X

f4;i :

i¼0

Some values of the solutions and there corresponding errors are presented in Table 3 and Figs. 3 and 4.

3025

J. Biazar et al. / Chaos, Solitons and Fractals 42 (2009) 3020–3026 Table 3 The six terms approximations to the solution of Example 3 and their corresponding error. x

f16 ðxÞ

f26 ðxÞ

f36 ðxÞ

f46 ðxÞ

e(f1(xi))

e(f2(xi))

e(f3(xi))

e(f4(xi))

0 0.1 0.2 0.3 0.4 0.5

0.5 0.4100000000 0.3399999999 0.2900000001 0.2600001937 0.2500031735

0 0.1000000000 0.1999999996 0.2999999953 0.4000001658 0.5000033509

0.2 0.1000000001 0.0000000007 0.0999999603 0.1999995543 .02999991608

0.25 0.2489999999 0.2419999996 0.2229999823 0.1859997117 0.1249965911

0 0 0 2  1010 1.937  107 3.1736  106

0 1  1010 3  1010 4.7  1010 1.652  107 3.3511  106

0 0 6  1010 3.963  108 4.459  107 8.392  107

0 0 5  1010 1.75  108 2.881  107 3.4086  106

Fig. 3. The numerical results and exact solutions of Example 3.

Fig. 4. The numerical results and exact solutions of Example 3.

4. Conclusion In this work we had used homotopy perturbation method for solving linear and non-linear systems of Volterra integral equations of the first kind. For the sake of simplicity in explanation of the method the linear integral equations are considered, but examples are illustrated for non-linear systems. The results have been approved the efficiency of this method for solving these problems. The solution obtained by homotopy perturbation method is valid for not only weakly non-linear equations but also strong ones.

3026

J. Biazar et al. / Chaos, Solitons and Fractals 42 (2009) 3020–3026

References [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17]

He JH. A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int J Nonlinear Mech 2000;35(1):37–43. He JH. Homotopy perturbation technique. Comput Meth Appl Mech Eng 1999;178:257–62. He JH. Homotopy perturbation method: a new nonlinear analytical technique. Appl Math Comput 2003;135:73–9. He JH. Homotopy perturbation method for bifurcation for nonlinear problems. Int J Nonlinear Sci Numer Simul 2005;6(2):207–8. He JH. The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl Math Comput 2004;151:287–92. Nayfeh AH. Problems in perturbation. New York: Wiley; 1985. Laio SJ. An approximate solution technique not depending on small parameter: a special example. Int J Nonlinear Mech 1995;30(3):371–80. Laio SJ. Boundary element method for general non-linear differential operators. Eng Anal Boundary Elem 1997;20(2):91–9. He JH. Comparison of homotopy perturbation method and homotopy analysis method. Appl Math Comput 2004;156:527–39. He JH. Application of homotopy perturbation method to nonlinear wave equation. Chaos, Solitons & Fractals 2005;26:695–700. Cveticanin L. Homotopy-perturbation method for pure nonlinear differential equation. Chaos, Solitons & Fractals 2006;30:1221–30. Siddiqui AM, Zeb A, Ghori QK, Benharbit AM. Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates. Chaos, Solitons & Fractals 2008;36(1):182–92. Wang Qi. Homotopy perturbation method for fractional KdV-Burgers equation. Chaos, Solitons & Fractals 2008;35(5):843–50. Siddiqui AM, Mahmood R, Ghori QK. Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane. Chaos, Solitons & Fractals 2008;35(1):140–7. Ozis Turgut, Yıldırım Ahmet. A note on He’s homotopy perturbation method for van der Pol oscillator with very strong nonlinearity. Chaos, Solitons & Fractals 2007;34(3):989–91. Siddiqui AM, Zeb A, Ghori QK. Homotopy perturbation method for thin film flow of a fourth grade fluid down a vertical cylinder. Phys Lett A 2006;352:404–10. Abbasbandy S. Application of He’s homotopy perturbation method to functional integral equations. Chaos, Solitons & Fractals 2007;31(5):1243–7.