Application of selected 2-methylbenzothiazoles AS cationic photoreactive crosslinkers for pressure-sensitive adhesives based on acrylics

Application of selected 2-methylbenzothiazoles AS cationic photoreactive crosslinkers for pressure-sensitive adhesives based on acrylics

Author's Accepted Manuscript Application of selected 2methylbenzothiazoles AS cationic photoreactive crosslinkers for pressure-sensitive adhesives ba...

634KB Sizes 0 Downloads 15 Views

Author's Accepted Manuscript

Application of selected 2methylbenzothiazoles AS cationic photoreactive crosslinkers for pressure-sensitive adhesives based on acrylics Z. Czech, J. Kabatc, A. Kowalczyk, D. Sowa, E. Madejska

www.elsevier.com/locate/ijadhadh

PII: DOI: Reference:

S0143-7496(14)00206-1 http://dx.doi.org/10.1016/j.ijadhadh.2014.12.001 JAAD1603

To appear in:

International Journal of Adhesion & Adhesives

Accepted date: 28 November 2014 Cite this article as: Z. Czech, J. Kabatc, A. Kowalczyk, D. Sowa, E. Madejska, Application of selected 2-methylbenzothiazoles AS cationic photoreactive crosslinkers for pressure-sensitive adhesives based on acrylics, International Journal of Adhesion & Adhesives, http://dx.doi.org/10.1016/j.ijadhadh.2014.12.001 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 APPLICATION OF SELECTED 2‐METHYLBENZOTHIAZOLES AS CATIONIC PHOTOREACTIVE CROSSLINKERS  FOR PRESSURE‐SENSITIVE ADHESIVES BASED ON ACRYLICS    Z. Czech1*, J. Kabatc2, A. Kowalczyk1, D. Sowa1, E. Madejska1 

1

Institute of Chemical Organic Technology, West Pomeranian University of Technology,   Pułaskiego 10, 70‐322 Szczecin, Poland  2

University of Technology and Life Sciences, Faculty of Chemical Technology and Engineering, Seminaryjna 3, 85-326 Bydgoszcz, Poland

ABSTRACT   Since their introduction half a century ago, acrylic pressure‐sensitive adhesives have been successfully  applied  in  many  fields.  They  are  used  in  self‐adhesive  tapes,  label  signs,  marking  films  and  protective  films  as  well  as  in  medical  pharmaceutical  applications  for  plaster,  in  dermal  dosage  systems  and  in  a  wide  range  of  biomedical  electrodes.  In  the  last  15  years  or  so,  the  UV  technology,  especially  UV‐ crosslinking,  is  well  established  in  the  market  and  allows  the  production  of  UV‐crosslinkable  pressure‐ sensitive  adhesives  (PSA)  based  on  acrylics  with  interesting  performance.  So  much  so  that  the  larger  manufacturers  of  pressure‐sensitive  adhesive  materials  and  their  suppliers  now  use  very  expensive  equipment to study pressure‐sensitive adhesive behavior: tack, peel adhesion and shear strength. The  balance  between  adhesive  and  cohesive  strength  after  the  crosslinking  process  is  very  important  and  critical  for  properties  of  acrylic  PSA  in  form  of  self‐adhesive  films.  In  this  work  the  cationic  UV‐ crosslinking  of  acrylic  PSA  containing  epoxy  groups  in  their  structure  and  additionally  cationic  photoinitiators  based  on  2‐methylbenzothiazoles  as  photoreactive  crosslinkers  have  been  investigated  using  UV‐lamp  as  ultraviolet  sources.  The  investigated  acrylic  PSA  were  synthesized  from  80  wt.%  of  butyl acrylate, and 20 wt.% of glycidyl methacrylate. The use of selected photoreactive crosslinkers: 1,5‐ bis[N,N’‐(2‐methylbenzothiazolium)]pentane 

diiodide 

and 

1,10‐bis[N,N’‐(2‐

methylbenzothiazolium)]decane  diiodide  allows  manufacturing  of  high  quality  PSA  materials  with  interesting properties, such as high tack, high peel adhesion, and excellent shear strength.  * Corresponding author E‐mail address: [email protected] (Z. Czech); tel.: +48 91 449 4903; fax: +48 91 449 4365 

2   Keywords:  photoreactive  crosslinkers  based  on  2‐methylbenzothiazoles,  UV‐crosslinkable  acrylic  PSA,  epoxies groups, tack, peel adhesion, shear strength    INTRODUTION    Modern  pressure‐sensitive  adhesive  (PSA)  technologies  are  growing  in  so  many  different  directions,  such as new applications, new materials, new techniques, new specialties‐that a technology seeking to  design new products or to improve a process may sometimes overlook one of the new technologies in  photoreactive PSA systems that yield improved bonding and aging properties‐ e.g. initiated crosslinking.  The term ‘pressure‐sensitive adhesives’ refers to a permanently tacky composition, which will adhere to  a variety of surfaces merely by application of light hand pressure. Ultraviolet (UV) is the most popular of  the new crosslinking technologies and is applied using common industrial lamps range from 200 to 400  nm.  PSA  properties  are  determined  by  the  nature  of  the  monomers  used  during  synthesis,  molecular  weight, glass transition temperature Tg, thickness of PSA layer, UV‐crosslinking time and UV‐dose. New  types of photoreactive acrylic PSAs are synthesized using typical alkylacrylate monomers and monomers  containing  oxirane  groups.  New  synthesized  cationic  photoinitiators  based  on  2‐methylbenzothiazole  have  been  used  as  efficient  photoreactive  crosslinking  agents.  These  photoreactive  acrylic  PSAs  are  characterized  after  UV‐crosslinking  by  high  tack,  high  peel  adhesion  and  excellent  shear  strength,  especially at high temperatures [1,2].    UV‐RADIATION, UV‐POLYMERIZATION AND UV‐CROSSINKING    The interaction of electromagnetic radiation with organic substrates is of widespread interest and has  broad  commercial  applications.  The  use  of  UV  radiation  to  alter  the  physical  and  chemical  nature  of  materials is sometimes termed UV‐ crosslinking technology. Ultraviolet radiation sources are based on  mercury‐vapor lamps. The mercury is enclosed in a quartz tube and a potential is applied to electrodes  at either end of the tube. The electrodes can be of mercury, iron, tungsten, or other metals. In making a  PSA by this process, a formulated acrylic PSA in the form of a solvent‐based composition or solvent‐free  formulation  are  applied  to  an  appropriate  substrate  and  crosslinked  using  UV  radiation  emitted  from  conventional  UV  lamps  or  a  UV  excimer  laser.  Acrylic  systems  that  are  to  be  photocrosslinked  also  require photoinitiator or photosensitizer incorporated directly into polymer chain by polymerization or 

3 by modification of side acrylic polymer chain after polymerization. These photoreactive systems that are  to  be  photocrosslinked  also  require  a  photoinitiator  or  photosensitizer  to  absorb  UV  radiation  and  induce UV crosslinking process [3].  The  UV  radiation  spectrum  comprises  wavelengths  in  the  area  between  200  and  400  nm.  The  UV  spectrum  is  subdivided  into  UV‐A  (320‐400  nm),  UV‐B  (280‐320  nm)  and  UV‐C  (200‐280  nm)  as  indicated.  UV‐A  is  transmitted  by  ordinary  glass  and  plastic.  Glass  and  plastic  pass  wavelengths  above  320  nm  and  strongly  attenuate  below  320  nm.  If  pure  quartz  is  used  in  the  radiation  path  all  wavelengths from 200 to 400 nm are passed. However, quartz is more expensive [4].  Photoinitiated polymerization is typically a process that transforms a monomer into polymer by a chain  reaction  initiated  by  reactive  species  (free  radicals  or  ions),  which  are  generated  from  photosensitive  compounds,  namely  photoinitiators  and/or  photosensitizers,  by  ultraviolet  irradiation  [5‐7].  It  offers  high rate of polymerization at ambient temperatures, lower cost energy, and solvent free formulations,  thus  eliminating  issues  relating  to  air  and  water  pollution  [8,9].  It  also  devotes  temporal  and  spatial  control of the polymerization when high initiation rate is reached [10]. For photoinitiated polymerization  radical or cationic photoinitiators are employed.   Cationic  polymerization  overcomes  volatile  emissions,  limitations  due  to  molecular  oxygen  inhibition,  toxicity,  and  problems  associated  with  high  viscosity.  General  scheme  for  photoinduced  cationic  polymerization is depicted in Figure 1. 

PI



PI *

R

+

R

+

M

Polymer

H

+

M

Polymer

Other products

  Figure 1 General scheme of photoinitiated cationic polymerization    A  photosensitive  compound,  namely,  photoinitiator  (PI)  absorbs  incident  light  and  undergoes  decomposition  leading  to  the  production  of  initiating  species.  Active  species,  namely,  a  radical  cation  (R•+),  in  turn  react  with  cationic  polymerizable  monomers  (M),  and  yield  polymer.  Since  the  most  significant element of photoinitiated  cationic polymerization (PCP) is the cationic photoinitiators, their  synthesis  and  initiation  mechanism  is  one  of  the  most  important  research  areas  for  polymer  science.  Additionally, the reactivity of the initiating species is an important issue for an efficient photoinitiator.   

4 The  UV‐crosslinking  of  various  coatings  is  based  on  the  photoinitiation  of  radical  and  cationic  crosslinking  reactions.  The  ultraviolet  crosslinking  technique  calls  for  the  use  of  a  photoinitiator  to  be  added  to  the  pressure‐sensitive  adhesive  system.  The  photoinitiator  is  therefore  one  of  the  key  components in UV‐crosslinking, and the outcome of such a polymerization is critically dependent on the  choice  of  the  photoinitiator,  including  its  chemical  nature  and  the  amount  employed.  As  it  was  previously  mentioned,  a  photoinitiator  is  one  of  the  important  and  necessary  constituents  in  UV  crosslinking of pressure‐sensitive adhesives. For this reason, the activity of a photoinitiator is one of the  most  important  properties  that  must  be  considered  when  choosing  a  photoinitiator  [9,10].  In  recent  years,  there  have  been  many  new  developments  in  the  synthesis  and  photochemical  studies  of  novel  photoinitiator  molecules  with  more  desirable  properties  such  as  higher  activity  coupled  with  greater  reaction  velocity  coupled  with  low  migration  rate  to  the  surface  of  the  cured  coating,  in  order  to  ameliorate  shear  strength  and  minimize  toxicity  where  food  contact  is  important.  The  concentration  depends  on  the  type  of  photoinitiator,  but  is  typically  1  to  3 %  by  weight  of  the  monomer.  The  photoinitiator  breaks  down  under  UV  light  to  yield  free  radicals,  which  act  as  the  trigger  for  the  crosslinking mechanism. The selection of a particular photoinitiator for use in a composition is generally  made  on  the  basis  of  the  solubility,  rate  of  reaction,  activating  wavelength,  and  intended  use  of  the  photoinitiator [11].    In order to induce the photocrosslinking of an acrylic system, two types of photoinitiators are available.  The first one induces a free radical process in which low molecular weight polymers with photoreactive  chains are converted by the absorption of UV light into highly crosslinked, pressure‐sensitive adhesive  acrylic films. In contrast with free radical‐type photoinitiators the second type of photoinitiator has been  developed  more  recently  for  ring  opening  reactions  of  epoxy‐  and  vinyl  ether‐based  monomers  and  polymers. The second type of photoinitiator are cationic photoinitiators, which can be characterized in  the following ways:  •

Onium  salts  (N‐alkoxypyridinium  [12],  allylic  onium  [13,14],  trialkyl  phenacyl  ammonium  [15],  dialkyl  phenacyl  sulfonium  [16,17],  N‐methyl‐2‐alkylthiobenzothiazolium  [18],  aryldiazonium,  diaryliodonium,  triarylsulfonium,  and  tetraalkylphosphonium  salts)  –  the  most  widely  used  cationic  photoinitiators.  They  contain  chromophoric  groups  as  a  light  sensitive  body  with  heteroatoms  as  cationic  centers  in  the  structure.  Onium  salts  undergo  direct  photolysis  and  generate  initiating  species  upon  irradiation  at  appropriate  wavelengths.  The  cationic  polymerization of suitable monomers is initiated by both radical cation and/or protonic acid. 

5 •

Iron  arene  complex‐based  photoinitiators  or  those  based  upon  ferrocenium.  Upon  irradiation,  ferrocenium  salts  lose  arene  ligands  leading  to  generation  of  iron‐based  Lewis  acids  that  coordinate with epoxide monomers. 



Nonsalt  photoinitiators  (nitrobenzyl  esters  [19],  sulfonyl  ketones  [20],  phenacyl  sulfones  and  phenyl  disulfones  [21],  selenide  [22]  and  organosilanes  [23].  This  type  of  initiator  does  not  contain  metal  atoms  or  show  the  types  of  ionic  character  that  are  common  with  most  conventional cationic photoinitiators. 

  EXPERIMENTAL    Synthesis of cationic photoreactive acrylic PSA        The  cationic  photoreactive  solvent‐borne  acrylic  PSAs  studied  were  based  on  a  monomer  mixture  comprising 80 wt% of butyl acrylate and 20 wt% glycidyl methacrylate. This system was synthesised in  ethyl acetate at a combined monomer concentration of 50% with 0.1% wt of free radical initiator (AIBN)  at  a  temperature  of  78°C  for  2  hours.  Following  this  initial  polymerization,  the  resulting  compounds  were formulated with two photoreactive initiators i.e. 1,5‐bis[N,N’‐(2‐methylbenzothiazolium)]pentane  diiodide  (SS5)  and  1,10‐bis[N,N’‐  (methylbenzothiazolium)]decane  diiodide  (SS10)  in  concentrations  of  0.1 and 2 wt % (Figure 2). Both monomers, ethyl acetate and AIBN were sourced from BASF (Germany).      S

S CH3

N

CH3 N

I (CH2)1

I (CH2)6

N

I

N CH3

S

SS5   

I CH3

S

  SS10 

 

6 Figure 2 Chemical structures of photoreactive crosslinkers 1,5‐bis[N,N’‐(2‐methylbenzo‐ thiazolium)]pentane diiodide (SS5) and 1,10‐bis[N,N’‐(2‐methylbenzothiazolium)]decane diiodide (SS10)    Preparing of PSA samples in form of self‐adhesive layers    The  final  pressure‐sensitive  adhesive  properties  in  the  form  of  self‐adhesive  layers  with  60  g/m²  standard  coating  weight  were  coated  on  polyester  film  using  a  specially  constructed  coating  machine  from PSAT (Germany) (Fig. 3) and dried for 10 min at 105°C in a drying canal. 

  Figure 3 Coating machine for adhesive with coating weights between 5 and 2000 g/m²    The UV‐crosslinking of dried self‐adhesive layers was achieved using UV‐lamp Aktiprint‐mini 18‐2 from  Technigraf (Germany) with UV dosage of 800 mJ/cm² at exposure times of 4, 8 and 12 s.  

7

  Figure 4 UV‐lamp Aktiprint‐mini 18‐2 

Investigated properties of cationic UV‐crosslinked acrylic PSA   

The investigated solvent-based photoreactive acrylic pressure-sensitive adhesives having epoxy groups in the structure connected to the polymer chain were tested for typical PSA properties, such as tack, peel adhesion and shear strength as determined by standard A.F.E.R.A. (Association des Fabricants Europeens de Rubans Auto-Adhesifs) procedures. Exact details can be found in AFERA 4015 (tack), AFERA 4001 (peel adhesion) and AFERA 4012 (shear strength). Administrative address: 60, rue Auber-94408 Vitry Sur Seine Cedex, France. Those tests were conducted with the use of testing machine Zwick/Roell Z-25.  

RESULTS AND DISCUSSION   CATIONIC PHOTOINITIATORS BASED ON 2‐METHYLBENZOTHIAZOLES   

Two-cationic quaternary ammonium 2-methylbenzothiazole derivatives can be used as a substrate for the synthesis of well-known polymethine dyes, these being popular sensitizers in dyeing photoinitiating systems for free radical polymerization of acrylates. On the other hand, these compounds can be also applied as photoinitiators for cationic polymerization of epoxides.

8 The cationic photoinitiators based on 2-methylbenzothiazole were synthesized by the bisquaternization reaction of heterocyclic compound with α,ω-dihalogenalkane in dioxane as a solvent [24] (Fig. 5). S CH3 N

S 2

CH3 N

X +

X (CH2)n

(CH2)n N X

X

CH3 S

 

Figure 5 Synthesis of cationic photoinitiators based on 2‐methylbenzotiazole    The  two‐cationic  ammonium  salts,  1,5‐bis[N,N’‐(2‐methylbenzothiazolium)]pentane  diiodide  (SS5)  and  1,10‐bis[N,N’‐(2‐methylbenzothiazolium)]decane  diiodide  (SS10)  studied,  absorb  light  in  a  range  from  300 to 500 nm that thus make them preferable for cationic polymerization. As can be seen form Figure  6,  the  spectral  response  of  1,5‐bis[N,N’‐(2‐methylbenzothiazolium)]pentane  diiodide  (SS5)  is  in  the  range  350  to  450  nm.  Therefore,  for  practical  applications,  where  polymerization  or  radiation  crosslinking  needs  to  be  performed    at  low  energies,  since  the  commercially  available  high  pressure  mercury lamps emit light with wavelengths longer than 350 nm (Fig. 6), these compounds are very good  candidates  as  cationic  photoinitiators  for  industrial  applications.  Moreover,  for  industrial  radiation  curing  applications,  the  use  of  one‐component  photoinitiators  that  have  long  wavelength  absorption  characteristics may still be advantageous because of the additional problems associated with co‐initiator  systems, such as solubility, compatibility, migration, and cost problems. 

9

Absorbance [a.u.]

3

2

1

0 300

400

500

600

700

800

Wavelength [nm]

Figure 6 The absorption spectra of 1,5‐bis[N,N’‐(2‐methylbenzothiazolium)]decane diiodide (SS5) in  tetrahydrofuran as a solvent at room temperature    As shown in Figure 7 1,10‐bis[N,N’‐(2‐methylbenzothiazolium)]decane diiodide (SS10)  undergoes a very  slow photobleaching process. In other words, they are photochemically stable and may be significantly  attractive for photoinduced cationic polymerization. 

(A0-At)/A0 [%]

0,08

Absorbance [a.u.]

2

0,04

0,00 0

1

320

1000

1500

2000

Time [min]

0 15 min 10 h 15 h 30 h

0

500

400

480

560

Wavelength [nm]

Figure 7 The photobleaching process of 1,10‐bis[N,N’‐(2‐methylbenzothiazolium)]decane diiodide (SS10)  under irradiation with visible light in THF solution at room temperature 

10

The irradiation of new photoinitiators with suitable wavelengths leads to the formation of active species, which readily initiate polymerization of appropriate monomers. The photoinitiation of polymerization or crosslinking of epoxies or acrylic pressure-sensitive adhesives containing epoxy groups by new cationic photoinitiators 2-methylbenzothiazole derivatives is presented in Figure 8. S CH3

CH3

CH3 N

*

S

S

N

X hν

(CH2)n

N

X Intramolecular electron transfer

(CH2)n

(CH2)n N X

N X

N X

CH3

CH3

CH3 S

X

S

S R

S

S

CH3

CH3 N

O

N

X

X

O

O

(CH2)n

(CH2)n R

N X

N X

R

CH3

CH3 S

S

  Figure 8 Crosslinking mechanisms of acrylic PSA containing oxirane groups using cationic photoinitiators  based on 2‐methylbenzothiazole derivatives   

Tack and peel adhesion of cationic UV-crosslinked acrylic PSA   Important  properties  of  UV‐crosslinked  acrylic  pressure‐sensitive  adhesives  as  a  function  of  cationic  photoinitiator concentration and UV‐crosslinking time are illustrated in Figs. 9‐12.  Figure 9 presents tack and Figure 10 peel adhesion of acrylic PSA containing between 0.1 and 2.0 wt.%  of  cationic  photoreactive  crosslinkers  1,5‐bis[N,N’‐(2‐methylbenzo‐thiazolium)]pentane  diiodide  (SS5)  and 1,10‐bis[N,N’‐(2‐methylbenzothiazolium)]decane diiodide (SS10) after 4, 8 and 12 s UV radiation at  800 mJ/cm² UV dose. 

11

14 12

Tack [N/2.5 cm]

10 8 SS10-800 mJ/cm²- 4 s SS10-800 mJ/cm²- 8 s SS10-800 mJ/cm²- 12 s SS5- 800 mJ/cm²- 4 s SS5- 800 mJ/cm²- 8 s SS5- 800 mJ/cm²- 12 s

6 4 2 0 0.0

0.5

1.0

1.5

2.0

Photoinitiator concentration [wt.%]

  Figure 9 Tack of acrylic PSA containing photoreactive crosslinkers SS5 and SS10 

14

Peel adhesion [N/2.5 cm]

12 10 8 6 4

SS10 SS10 SS10 SS5 SS5 SS5

800 mJ/cm²- 4 s 800 mJ/cm²- 8 s 800 mJ/cm²- 12 s 800 mJ/cm²- 4 s 800 mJ/cm²- 8 s 800 mJ/cm²- 12 s

1.0

1.5

2 0 0.0

0.5

2.0

Photoinitiator concentration [wt.%]

  Figure 10 Peel adhesion of acrylic PSA containing photoreactive crosslinkers SS5 and SS10 

UV-crosslinked acrylic pressure-sensitive adhesives containing photoreactive crosslinkers 1,5bis[N,N’-(2-methylbenzothiazolium)]pentane

diiodide

(SS5)

and

1,10-bis[N,N’-(2-

12 methylbenzothiazolium)]decane diiodide (S10) show similar tack (Fig. 9) and peel adhesion (Fig. 10) profiles depending on both the concentration and the crosslinking time. Figs. 9 and 10 give typical examples with maximum of tack and peel adhesion values for small amount of cationic photoinitiator ranging between 0.8 and 1.3 wt.%. The tack and peel adhesion results reveal that for about 1.0 wt.% photoreactive crosslinkers based on 2-methylbenzothiazole the maximum of tack and peel adhesion was observed. The higher tack and peel adhesion values by applications of 1,10-bis[N,N’-(2-methylbenzothiazolium)]decane diiodide (SS10) were noticed. It is also clear that the use of photoreactive crosslinkers with longer organic spacer moieties between the reactive 2-methylbenzothiazole groups promotes increasing bond properties when incorporated into the current photoreactive pressure-sensitive adhesives.  

Shear strength of cationic UV-crosslinked acrylic PSA   The shear strength of UV‐crosslinked acrylic PSAs containing epoxies groups and the additional cationic  photoinitiators SS5 and SS10 as photoreactive crosslinkers measured at 20°C and 70°C as a function of  photoinitiator concentration and UV‐crosslinking time are presented in Figs. 11 and 12. 

Shear strength at 20°C [N/6,25 cm²]

100 90 80 70 60

SS10-800 mJ/cm²- 4 s SS10-800 mJ/cm²- 8 s SS10-800 mJ/cm²- 12 s SS5- 800 mJ/cm²- 4 s SS5- 800 mJ/cm²- 8 s SS5- 800 mJ/cm²- 12 s

50 40 30 20 10 0 0.0

0.5

1.0

1.5

2.0

Photoinitiator concentration [wt.%]

  Figure 11 Shear strength at 20°C of acrylic PSA containing photoreactive crosslinkers SS5 and SS10   

13

Shear strength at 70°C [N/6,25 cm²]

40 35 30 25 SS10-800 mJ/cm²SS10-800 mJ/cm²SS10-800 mJ/cm²SS5- 800 mJ/cm²SS5- 800 mJ/cm²SS5- 800 mJ/cm²-

20 15 10

4s 8s 12 s 4s 8s 12 s

5 0 0.0

0.5

1.0

1.5

2.0

Photoinitiator concentration [wt.%]

  Figure 12 Shear strength at 70°C of acrylic PSA containing photoreactive crosslinkers SS5 and SS10   

As indicated the shear strength of the acrylic PSA after UV-crosslinking is directly proportional to the concentration of the cationic photoreactive crosslinkers employed (Figs. 11 and 12). During the UV-crosslinking reaction, the elastomeric acrylic PSA chains react in the presence of photoreactive crosslinkers to form a chemical crosslinked network. At a certain stage in the cure process, after application of 1,5-bis[N,N’-(2-methylbenzothiazolium)]pentane diiodide (SS5) or 1,10-bis[N,N’-(2-methylbenzothiazolium)]decane diiodide (SS10) into the base polymer results in a very strong chemical 3-dimensional network. For all of the UV-crosslinking times investigated, the measured temperature resistance shows very high level of 90 N at 20°C and 40 N at 70°C. Using of 1,5-bis[N,N’-(2-methylbenzo-thiazolium)pentane diiodide (SS5) the higher cohesion measured at 20°C and at 70°C are evaluated. The differences in reactivity of both photoinitiators may be due to different redox properties (Fig. 13).  From  the  cyclovoltamperometric  measurements  it  is  seen  that  the  length  of  the  polymethylene  chain  connecting  both  heterocyclic  moieties  affects  the  redox  potentials  of  the  co‐initiators.  The  salt  possessing  the  ten‐carbon  atom  linkage  between  two  chromophores  has  lower  reduction  potential  values than that of the co‐initiator with the shorter polymethylene chain. Based on this, the co‐initiator  SS10  is  more  difficult  to  reduce.  Therefore,  the  nucleophilic  attack  on  the  quaternary  nitrogen  atom  occurs more easily in the case of co‐initiators possessing longer polymethylene chains. 

14

Ered = -1,29 eV 0

Ered = -1,34 eV E red = -1,23 eV 0

-100

Current [μA]

Current [μA]

-50

-50

E red = -1,29 eV

-150 -100 -2000

-1000

0

1000

2000

Potential [mv]

-2000

-1000

0

1000

2000

Potential [mv]

 

Figure 13 Cyclic voltammograms of 1,10-bis[N,N’-(2-methylbenzothiazolium)]decane diiodide

(SS10) in acetonitrile. Inset: Cyclic voltammograms of 1,5-bis[N,N’-(2methylbenzothiazolium)]pentane diiodide (SS5) in acetonitrile   SUMMARY AND OUTLOOK   

Cationic 2-methylbenzothiazoles are efficient UV initiated crosslinking agents for pressure – sensitive adhesives containing epoxy groups in the chemical structure.

In the absorption range between 300 and 450nm, both thermal and photochemical stabilities together with simple methods of synthesis, make new bisbenzothiazole-based cationic photoinitiators good candidates for UV-crosslinkable acrylic pressure-sensitive adhesives having high tack together with high levels of peel adhesion and shear strength over a range of temperatures.

The cationic UV-crosslinkable acrylic pressure sensitive adhesives developed, can be crosslinked under mild conditions in an air atmosphere. The presence of an inert gas during the cure process is not necessary to achieve UV-initiated crosslinking.

15   ACKNOWLEDGEMENT  This work was supported by The National Science Centre (NCN) Grant No. 2013/11/B/ST5/01281.    REFERENCES    [1] 

Z. Czech, A. Butwin A, New Developments in the Area of Solvent‐Borne Acrylic Pressure‐Sensitive  Adhesives, Journal of Adhesion Science and Technology C 23 (2009)1689‐1707. 

[2] 

Z.  Czech,  A.  Butwin,  Uv‐initiated  crosslinking  of  acrylic  pressuresensitive  adhesives  using  ultraviolet Excimer‐laser, Adv. Mater. Sci. 23 (2010)14‐34. 

[3] 

R.  Milker,  Z.  Czech,  A.  Butwin,  New  development  in  the  area  of  solvent‐free  UV‐crosslinkable  Acrylic PSAs, 5th Afera Technical Seminar, Brussels, 12‐13 April, (2011). 

[4] 

M.  Visconti,  Novel  Cationic  Photoinitiator”,  RadTech  Europe2005  Conference  &  Exhibition,  Barcelona, Spain, 269‐277 (2005). 

[5]

C. Decker, Kinetic Study and New Applications of UV Radiation Curing, Macromol. Rapid Communication 23 (2002) 1067-1093.

[6]

Y. Yagci, Photoinitiated cationic polymerization of unconventional monomers, Macromol. Symp. 240 (2006) 93-101.

[7]

J.D. Cho, J.W. Chong, Curing kinetics of UV-initiated cationic photopolymerization of divinyl ether photosensitized by thioxanthone, J. Appl. Polym. Sci. 97 (2005) 1345-1351.

[8] 

C. Decker, Polymers in the Third Millennium, Polym. Int. 51 (2002) 1141‐1150. 

[9] 

Z.  Czech,  Development  in  the  area  of  UV‐crosslinkable  solvent‐based  pressure‐sensitive  adhesives with excellent shrinkage resistance, Eur. Polym. J. 40 (2004) 2221‐2227.  

[10] 

Z.  Czech, R.  Milker,    Haftung  eingeschlossen  Herstellung  UV‐vernetzbarer  Acrylathaftklebstoffe  im Extruder, Farbe und Lack 110 (2004) 8‐20. 

[11]

G. Babu, S. Heilmann, (1994) WO 95/10552.

[12] 

Y.  Yagci,  N‐alkoxy‐pyridinium  and  N‐alkoxy‐quinolinium  salts  as  initiators  for  cationic  photopolymerizations, J. Polym. Sci. A Polym. Chem. 30 (1992) 1987‐1991. 

[13]

S. Danizligil, Y. Yagci, C. McArdle, Photochemically and thermally induced radical promoted cationic polymerization using an allylic sulfonium salt, Polymer 36 (1995) 3093-3098.

16 [14]

S. Denizligil, Photosensitized cationic polymerization using allyl sulfonium salt, Macromol. Chem. Phys. 197 (1996) 1233-1240.

[15]

F. Kasapoglu, Photoinitiated Cationic Polymerization Using a Novel Phenacylanilinium Salt Polymer 43 (2002) 2575-2579.

[16]

J.V. Crivello, S.Q. Kong, Photoinduced and thermally induced cationic polymerizations using dialkylphenacylsulfonium salts, Macromolecules 33 (2002) 825-832.

[17]

J.V. Crivello, S.Q. Kong, Long-wavelength-absorbing dialkylphenacylsulfonium salt photoinitiators: Synthesis and photoinduced cationic polymerization, J. Polym. Sci. A Polym. Chem. 38 (2000) 1433-1442.

[18] 

E.  Takahashi,  Novel  N‐methylbenzothiazolium  salts  as  hardeners  for  epoxy  and  acrylate  monomers, J. Polym. Sci. A Polym. Chem. 41 (2003) 3828‐2837.  

[19]

F.M. Houlihan, Nitrobenzyl Ester Chemistry for Polymer Processes Involving Chemical Amplification, Macromolecules 21 (1998) 2001-2006.

[20] 

D. Ruhlmann, J.P. Fouassier, Structure‐property relationship in photoinitiators of polymerization.  Sulfonyl ketone derivatives, Eur. Polym. J. 29 (1993) 1079‐1088.  

[21] 

T. Tsunooka, S. Tanaka, M. Tanaka, A novel “inorganic salt‐polymer salt” hybrid system as a solid  state electrolyte, Macromol. Chem. Rapid. Communication 19 (1998) 539‐542. 

[22]

M.K. Gupta, R.P. Singh, Diphenyldiselenide As Novel Non–salt Photoinitiator for Photosensitized Cationic Polymerization of N-Vinyl Carbazole, Macromol. Symp. 240 (2006) 186-193.

[23]

S. Hayase, Polymerization of cyclohexene oxide with Al(acac)3- silanol catalyst, J. Polym. Sci. A Polym. Chem. 19 (1981) 2185-2194.

[24] 

J. Kabatc, A. Celmer, An argon laser induced polymerization photoinitiated by both mono‐ and  bichromophoric  hemicyanine  dye‐borate  salt  ion  pairs.  The  synthesis,  spectroscopic,  electrochemical and kinetic studies, Polymer 50 (2009) 57–67.