Inorganica Chimica Acta Reviews, 7 (1973) 11-33 © Inorganica Chimica Acta Publications, Padova - Printed in Switzerland
11
Applications of ll9Sn Chemical Shifts to Structural Tin Chemistry PETER J. SMITH Tin Research Institute, Fraser Road, Greenford, Middlesex UB6 7AQ, U.K. LES SMITH Chemistry Department, Woking County Grammar School for Boys, Woking, Surrey, U.K. Received May 11, 1973
Contents 1. Introduction 2. General Formulae and Nomenclature 3. Measurement of ~gSn Chemical Shifts A. Direct Measurement B. Double Resonance Methods C. Sign Convention 4. Factors Influencing ~19Sn Chemical Shifts A: Coordination Number B. Electronegativity C. Concentration (solvent effects) D. Temperature 5. Survey of ~gSn Chemical Shifts A. Presentation of Tables B. Tables of Data 6. References
30
20
10
]
1. Introduction Elemental tin has the largest number of naturally occurring isotopes of any element, as illustrated in Figure 1. Of these ten isotopes, ~gSn (abundance 8.58%), 117Sn (abundance 7.61%) and laSSn (abundance 0.35%) isotopes, all with spin I = 1/2, are amenable to study by nuclear magnetic resonance spectroscopy. Burke and Lauterbur 1 i.n 1961 reported the first N.M.R, measurements on the 119Sn isotope, using direct observation techniques on a number of inorganic and organic tin compounds. The advent of double resonance 2,a and, more recently, Fourier transform 4,s methods for tin has now made the determination of tin chemical shifts a relatively simple operation. It is common practice in N.M.R. investigations of tin compounds to study the 119Sn isotope. The reasons for this are as follows: (a) 1~9Sn is the most abundant of the three magnetic tin isotopes (Figure 1),
112
114
115
116
117
118
119
120
122
124
Figure 1. Natural abundance of tin isotopes.
(b) it is slightly more sensitive to detection by NMR and (c) unlike the 11SSn and 1175n isotopes, and the other low abundance nuclei which are suitable for study by N.M.R. (e.g. the other isotopes of the Group IV elements shown in Table I), 119Sn has a parent radioisotope (ll9mSn, t l / 2 = 245 d.) which may also be studied by Mrssbauer spectroscopy. The large volume of algsn Mrssbauer (solid-state) information which has accumulated 6 since the original measurements, carried out, coincidentally, around the same period as the la9sn N.M.R. experiments, will
12
Peter J. Smith and Les Smith
TABLE I. N.M.R. data for isotopes of the Group IV elements N.M.R. Isotope
Natural abundance (%)
Spin, I
13C '29Si 7aGe aX9Sn 2°TPb
1.11 4.70 7.61 8.58 8.90
1/2 a/2 9/2 1/2 a/2
Rel. sensitivity" at constant field
0.016 0.078 0.001 0.052 0.009
~pprox. shift range (p.p.m.) 3507 150a 12009 2000 16,000 x°
a xH = 1.000
form a valuable complement to the solution data now being rapidly built up from aa9Sn N.M.R. studies. Although N.M.R. spectroscopy of the low abundance nuclei of the light elements (e.g. aaC, alB and lSN) has been the subject of earlier reviews aa-la, this article is the first comprehensive coverage of aagSn nuclear magnetic resonance.
2. General Formulae and N o m e n c l a t u r e
The majority of tin compounds contain only one tin atom per molecule and may in general be represented as RnSnXm, where R is an unsubstituted or substituted hydrocarbon radical and X can vary widely, being an atom of an element other than carbon, such as -Na, -C1, -Br, or a group, such a s - O H , - C N , - O C ( O ) R , or even a monodentate organic ligand, such as pyridine or dimethylsulphoxide. A bidentate ligand would be denoted by X2. Clearly, in the special case when n = 0, a simple inorganic tin compound results, e.g. SnCl2 or SnF6 z-, or, when m = 0, the compound is purely of the organic type, e.g. Me4Sn. If a compound contains more than one tin atom per molecule, e.g. MeaSn" SnMea, it may still be regarded as belonging to one of the above types. This nomenclature will be adhered to in the discussion which follows.
3. M e a s u r e m e n t of aa9sn Chemical Shifts
A. Direct Measurement The la9Sn isotope compares very unfavourably with the proton with respect to sensitivity (c.a. 5 % of that of aH in the same magnetic field; Table I), natural abundance (low) and relaxation time (long), so that single resonance experiments can suffer extreme limitations. (i) Early techniques The early aagSn N.M.R. measurements l'a' 14,as, were carried out by direct observation of the 1195n resonance in a spectrometer operating at a suitable frequency,
employing large samples, rapid sweep-rates (to minimise saturation effects) and high R.F. power levels. Resulting N.M.R. spectra were often badly resolved and with a low signal-to-noise ratio, so that application of the technique to structural investigations was very limited. a19Sn chemical shifts were obtained either by completely replacing the sample with the standard (usually tetramethyltin) or by immersing a smaller tube containing the standard within the sample. (ii) Fourier transform N.M.R. This new technique is now finding extensive use for a variety of low abundance N.M.R. nuclei, especially aac and aSN. However, at the present time, relatively few results have been published for the aagSn isotope 4,s. Sensitivity enhancement by time averaging techniques, such as the repeated recording of an optimum N.M.R. spectrum and storing the results in a computer ("CAT" or computer of average transients method) can take a considerable time, since the net gain in signal-to-noise ratio is proportional to V'~, where n is the number of scans. However, this time can be reduced by the use of the Fourier transform method 12, where a very short but intense pulse of R.F. power is applied to the sample. The normal spectral information is recorded in the time variation of the decay of the magnetisations produced in the sample by the pulse. The recorded decay signal can now be converted (by means of a computer) into a normal N.M.R. spectrum, since the two are related, by a Fourier transform. The acquisition of a high resolution spectrum by this technique takes only a fraction of the time required by conventional time-averaging methods. Chemical shifts have recently been obtained using pulse techniques for the N.1VI[.R. isotopes of all the Group IV elements, namely aaCa2, 29Sia6, 73Ge9, aXgSn4,S, and 2°7pb4. B. Double Resonance Methods The determination of 11~Snchemical shifts, especially of organotin compounds, has been greatly facilitated by
aagSnchemicalshift in tin chemistry
13
the technique of heteronuclear magnetic double resonance 17, which enables the resonant frequency of any heavy N.M.R. nucleus coupled to a second N.M.R.sensitive nucleus (usually the proton) to be measured. The chemical shift of the desired nucleus can be found by comparison with the resonant frequency of the heavy nucleus in a standard compound. This method is exemplified for methyltin trichloride, MeSnC13, the proton spectrum of which is illustrated in Figure 2.
11"/
"
s-
~ H , - - Sn--
J L__ I 9"0
/ 10. 0
T
Figure 2. The proton spectrum of MeSnC13.
The main proton peak due to protons attached to non-magnetic tin is flanked by two pairs of satellite peaks due to coupling between the methyl protons and the magnetic 119Sn and 1~7Sn isotopes. .1 The recorder pen is placed above one of the 1~9Sn satellite peaks and the sample is now simultaneously irradiated in the 1~9Sn resonant frequency region (c.a. 22.37 MHz at 14.09 G. ~H = 60.00 MHz; or 37.27 MHz at 23.01 G. all = 100.00 MHz) by means of a frequency synthesiser, which can suppl3~ any desired radiofrequency to the modified spectrometer probe. Sweeping through the range of 119Sn resonant frequencies causes partial decoupling of the 1~9Sn nuclei which results in perturbations of the pen recorder set on the proton satellite peak. The error in the observed ~gSn resonant frequency is generally less than j(llgsn...H), which is acceptable in view of the large range of 1~9Sn chemical shifts (Table I). A well-resolved single resonance ~9Sn spectrum would show the spin-spin splitting pattern due to coupling with protons, e.g. methyltin trichloride should show a 1:3:3:1 quartet. In the double resonance experiment it is theoretically possible to locate all four 1~9Sn lines, since the four corresponding frequencies would each cause perturbation of the satellite associated with the CHa-(Sn) protons. The magnitude of this perturbation, which is effectively proportional to the intensity of the line which would be observed in a
direct resonance spectrum, can establish the centre of the tin spectrum. Often the determination of the individual 119Sn lines is not possible because of the presence of other nuclei with quadrupole moments (e.g. 3sc1, lSN) attached to the tin atom and these will cause considerable broadening of the lines. The advantages of the double resonance technique include: (a) sensitivity of the experiment, since the determination of parameters depends on the high sensitivity and favourable relaxation time of the proton, rather than the 119Sn nucleus; (b) accurate determination of spin-spin coupling relationships between proton and tin nuclei; and (c) ease of incorporation into most commercially available N.M.R. spectrometers with relatively little associated expense. Limitations of the method are that the 119Sn satellites must be clearly distinguishable in the proton spectrum, otherwise the resulting operations can often be time-consuming. In addition, the detection of the 'best' decoupling by the method described above requires a subjective judgement to be made and the technique does not lend itself to time averaging procedures for signal enhancement. The last two factors may be overcome by the socalled I N D O R method. In this method 2' is, the main magnetic field and the observing frequency are fixed for a suitable proton satellite. Sweeping the perturbing field.in the region of the ~9Sn resonant frequency causes successive vertical motions of the pen recorder (as the 1~9Sn frequencies are traversed) proportional to the intensity of the 1~9Sn signals. An auxiliary chart recorder can be used to record these movements and provide a trace which closely resembles the spectrum of the 119Sn nucleus. Careful consideration must be given to the exact manner in which the measurements are obtained if a comparison between results for different compounds is to be made. The results of double resonance experiments are obtained in the form of the resonance frequency of the 119Sn nucleus at the particular magnetic field strength used to measure the proton spectrum. Such results should then be related to a common standard, usually the resonant frequency of the nucleus in the field which would be neccessary for a TMS proton resonance of exactly 100 MHz 19.
C. Sign Convention for 119Sn Chemical Shifts All 1~9Sn chemical shifts in this Review are quoted with respect to tetramethyltin as standard and the convention is adopted that a negative value of the 1~9Sn chemical shift refers to a signal whose shift is downfield from Me4Sn. A positive value of the shift refers to a signal which is upfield from tetramethyltin, as illustrated in Figure 3.
14
Peter J. Smith and Les Smith
TABLE II. Selected examples of the effect of coordination number on xagSnchemical shifts Compound
lXgSn chemical a shift (p.p.m.)
Geometry of tin atom
% s-Character in Sn-C bond
Me2SnCh Me2Sn(SCSNEh)CI Me2Sn(SCSNEt2)2 MeaSnC1 MeaSnCl, D.M.S.O. BuSnCla BuSnox2C1
- 1372 +2042 +3362 - 155.1 +8620 -6.023 +395
tetrahedral R2SnX2 trig. bipyr, c/s-R2SnXa2x octahedral trans-RzSnX422 tetrahedral RaSnX trig. bipyr. RaSnX2 tetrahedral RSnX3 octahedral RSnXs
25 33 50 25 33 25 50
a solvent CH2C12in all cases except BuSnCI3 (CCh).
Me4Sn
el
Increasing field
i
/
Sn.
~ .... oc.,
|
-200
High field I
-100
0
I
t
*100
*200
!
*300
I
p.p.m.
Tin-119 chemical shift
Figure 3. Chemical shift convention employed in this work.
4. Factors Influencing 119Sn Chemical Shifts A. Coordination Number It has been observed by various workers 2's'2° that five- and six-coordinate tin compounds usually show 119Sn chemical shifts which are well upfield from those of the four-coordinate derivatives. This is illustrated in Table II for some organotin compounds whose structures in the solid state are well-defined by X-ray ~ystallography, or by other techniques where X-ray studies have not yet been carried out. The probable explanation for .this increase in shift is the greater proportion of 5s-character in the S n - C bonds of the five- and six-coordinate derivatives (as shown by a parallel increase in the M6ssbauer isomer shift parameters 24'2s) and a concomitant increase in shielding of the tin nucleus. Davies and co-workers found 26 that a dilute solution of dimethyltin methoxide chloride, Me2Sn(OMe)Cl, showed two 119Sn N.M.R. signals, one at low field of tetramethyltin (-126 p.p.m.) ~lnd the other at much higher field ( + 9 0 p.p.m.). This was ascribed to an equilibrium between the tetrahedral monomer (IA) and the symmetrical alkoxy-bridged dimer (IB) containing five-coordinate trigonal bipyramidal c/s-R2SnX3 tin atoms
~----
CHj.. I CH ~ ' S n - . ~ - O C H s ' t ; . . . . CH,
e.p
sn;S
~1 " " CHz
CI
CH s LOw Field
lls
la
Ib
The 1,3-difunctional tetraorganodistannoxanes, X ' R 2 S n O S n R 2 . X , which have long been known to dimerise over a wide range of concentrations in many organic solvents at room temperature, are found 14' 1s,27 to show two separate or partially resolved 119Sn N.M.R. signals which are both at high field of tetramethyltin. The dimeric structure (IIA) 14 would be expected to show a 119Sn signal to high field of tetramethyltin for the five-coordinate tin atoms and one to low field for the four-coordinate tin. The 'ladder' or, more precisely, 'staircase' structure (IIB), in which all four tin atoms are pentacoordinate and occupying a trigonal bipyramidal cis-R2SnXa configuration, is thus likely to exist in solution.
n X
1O ~ S nt, ~-"- , R
" L Ila
\s0,,x
X
R
"--:.s~--o
'x---l"'. R
f ~
"R
X
'~ ..-m
\X
lib
A similar structure (IIb) in the solid state has been confirmed for three distannoxanes of this type by recent X-ray crystallographic studies 2a-3°. A study of trimethyltin formate, Me3SnOCHO, in deuterochloroform solution 31 showed a low field 119Sn chemical shift ( - 1 5 0 p.p.m.) in dilute solutions (0.05M), where four-coordinate species are believed to exist. In more concentrated solutions (3M) the tin signal was found to have moved well upfield (-2.5 p.p.m.). This was ascribed to an equilibrium between monomeric ( I l i A ) and polymeric (IIIB) species
a19Snchemicalshift in tin chemistry X
T
Xa
c.,
15 CH s
H
,/
I
oo.o Ilia
CHs I|lb
Many trialkyltin carboxylates are known 2a'a2 to exist as the chain polymer (IIIB) in the solid state. A neat liquid sample of dibutyltin dimethoxide, Bu2Sn(OMe)2, shows a 119Sn signal which is c.a. 130 p.p.m, to high field of that shown by a pure liquid sample of dibutyltin di-tert-butoxide, Bu2Sn(OtBu)2. aa The dimethoxide is believed to exist as the alkoxybridged dimer (IVA) in the pure liquid, whereas the bulky alkoxide groups prevent association from taking place in the di-tert-butoxide (IVB) RO
C~-H~t~.S! ~
c,~ : IVa
0R
~ Ht
,
OR
IVb
Other examples in the literature of compounds containing suspected five- or six-coordinate tin atoms which have been found to show high field a19Sn chemical shifts are listed in the Tables of data in Section 5B.
B. Electronegativity
/
In a series of unassociated tin compounds, R,_nSnX, (n = 0 - 4 ) , it is of interest to examine the effect of changing R, X and n in turn on the la9Sn chemical shift.
(i) Effect of changing the organic group R As the electron releasing power of the organic group increases, the tin atom should become progressively more shielded and the ~gSn chemical shift should thus move to higher field. This is illustrated in Table III for a series of triorganotin chlorides, RaSnC1. The Taft o* constants for the organic groups 34, which are a better guide to polar effects than electronegativity, are also included in the table. TABLE III. Effect of organic groups on ll9Sn chemical shifts for RaSnCI compounds R
119Sn chemical shift (p.p.m.) a
Ref.
o*
Me Et Bu PhCH2 Ph
-164 -155 -141 -43 +48
35 36 23 23 2
0.000 -0.100 -0.130 +0.215 +0.600
"Solvent CCl4 in all cases, except when R = Ph (CH2C12).
The high field shifts shown by triphenyl- and tribenzyl-tin chloride are inconsistent with the known greater electron withdrawing capability of these groups. This effect is general for other phenyltin compounds 2 and also for compounds containing electronegative aryl 2°, benzyl ar, vinyla'a6 or ethyny136 substituents bonded to the tin atom. Attempts have been made to explain this upfield shift in terms of l~--d~ bonding between the at-electrons of the electronegative groups and the unfilled 5d-orbitals of the tin atom. There is, however, very little evidence for back-bonding of this type in tin compounds 37~°. Indeed, a very recent determination 41 of the sign of the electric field gradient at the tin nucleus in triphenyltin chloride (from lagmSn Mrssbauer measurements in an applied magnetic field) has shown that o-bonding effects are dominant here and that there is little evidence of a l~-d~ bonding contribution from the phenyl groups to tin. Two possible explanations which may be advanced for these high field shifts and which do not invoke at-bonding are: (a) A ring current effect by the at-electrons42, and (b) A finite contribution to the shift from the diamagnetic term 4a.
O0 Effect of changing the electronegative group X In a series of compounds R3SnX, the lagSn chemical shift should move downfield with increased inductive withdrawing power of X. a This is clearly illustrated in Figure 4 for a series of trimethyltin compounds, MeaSnX (X = C1, Br, I, Me, H, SnMe3 and SiPh3), where a plot of the 119Sn chemical shift against the Pauling electronegativity of X results in a good linear correlation.
3-0
X,
/ ~O~pphj OSnMet
•t
o
-loo p.pm.
Figure 4. Dependence of shifts upon Pauling electronegativity of substituent for some Me3Sn-X compounds.
16
Peter J. Smith and Les Smith
(iii) Effect of changing n; dependence of chemical shifts on multiple substitution Increasing substitution of four-coordinate tin compounds, R,*--nSnXn (n = 0---*4) produces a decrease in shielding after the first substitution and then a progressive increase. This is illustrated in Figure 5 for the butyltin chlorides 1, diethylamides 66 and tert-butorddes 44.
I
the tin atom. This has been reported previously for Mec-nSnXn (X = Vinyl s'sl and phsl), Eh-.,SnX. (X -- Ph 36, PhCH2 36, Vinyl a6 and Ethynyl a6) and is illustrated in Figure 6 for the series Bu,_.SnPhn and
BU4_nSn(C6H4CF3-3)n.67 p.P.m .150
X:
/-o o
11p.m. .200
~
s''/
*100 -150
*10o
•50
/ O
.50
0
-50 0 -I00
I I
I
I
2
3
I &
I1
Figure 6. Tin chemical shifts for Bu4_,SnX. compounds. -150
n
t
Figure 5. 119Sn chemical shifts for unassociated organotin compounds, Bu~_.SnX,. Similar curves have been reported for a wide range of X groups, including compounds of the type Me4_~ SnX, (X = C12,4s,46, Br 46, 146, SR 46,47, SeMe47); Eh__,SnX~ (X = C1at'4s, Br36); Bua__~SnXn (X = C18'4s); R4_nSnfln (R = PhCH242, Ph2). It has been suggested 2's'46 that this anomalous behaviour may be due to lh-d~ bonding from X-->Sn, although there is very little ,evidence ~or this in the literature 4°'4a-s°. In addition,~similar trends are found 43 for ~3C chemical shifts in substituted methanes where there is no possibility for th-d~ bonding to take place. A possible explanation which does not require the use of ~t-bonding is that used by Mason 43 for 13C chemical shifts, namely that there is a finite contribution to the 119Sn chemical shift from the diamagnetic term. Alternatively, increasing the number of electronegative X groups bound to tin will increase the effective electronegativity of the tin atom. This could produce a decrease in the p-electron imbalance in each bond and result in the tin atom experiencing an increased shielding 36. When X = aryl, vinyl, ethynyl or benzyl, there is a steady increase in shift with progressive substitution at
A value of the 1198n chemical shift for Ph4Sn, which is too insoluble for N.M.R. measurements, may be obtained from this plot by extrapolation (+140 + 10 p.p.m.). A similar value for this compound has also been reported by other workers 2'36. The factors influencing the high field shifts shown by these compounds have been discussed in detail in Section 4B (i).
C. Concentration (solvent effects) The choice of solvents in preparing samples for N.M.R. measurements may affect the value of the observed 119Sn chemical shift. Non-coordinating organic solvents, such as carbon tetrachloride, benzene or dichloromethane, act essentially as diluents and produce no marked changes in shift as the concentration is varied. Coordinating solvents, however, such as acetone, dimethylsulphoxide or pyridine, can produce large variations in the 119Sn chemical shift, dependent on the concentration. In these solvents, the formation of solvated species or adducts with the tin compound often occurs. Similar results are found using alcohols or water as solvents and ionisation of the solute may take place here. The addition of coordinating solvents to solutions of tin compounds in inert organic solvents usually results in displacement of the 119Sn chemical shift to high field. An example of this is the addition of pyridine to
119Sn chemical shift in tin chemistry
17
a solution of trimethyltin chloride in carbon tetrachloride 3s. The taOSn chemical shift moves upfield from - 1 5 9 p.p.m, to + 9 p.p.m, as the mole ratio of organotin halide:pyridine varies from 1:0 to 1:12. The greatest change in shift occurs over the range of mole ratios from 1:0 to 1:1; further increases take place slowly as more pyridine is added. This is consistent with the formation of a pentacoordinate trigonal bipyramidal 1:1 adduct (V), which is known from X - r a y studies s2 to exist in the solid state
gates containing five- or six-coordinate tin species, such as those illustrated in Figure 8. Su
mu
.-°~--.
...
I
°so ° . ° o - " O " - - . . .
a
..
R OR
)R
Bu
mu
ell,
--0
Tin species with coordination number greater than four may be formed even in inert organic solvents if autoassociation occurs, e.g. as in the dimeric molecule Bu2Sn(OMe)2, described in Section 4A. This is particularly true for organotin compounds containing two or more S n - O bonds, where intermolecular Sn... O coordination can take place. In.the case of the dibutyltin dialkoxides, Bu2Sn(OR)2, the tendency towards dimerisation increases as the size of R diminishes. Dilution of the associated molecules with non-coordinating solvents usually produces a down-field movement of the 1~98n chemical shift as the proportion of monomeric species increases 33. This is illustrated in Figure 7. The shifts of the corresponding trialkoxides, BuSn (OR)3, behave similarly on dilution 44. In this case intex-molecular association in the pure liquids (when R is small) leads to the formation of polymeric aggre-.
~'"--"--"
S
x ~ ° " - - - - o
R Me
TABLE IV. Effect of temperature on t19Sn chemical shifts for four-coordinate organotin compounds
EtSnC13s3
BuSn(OtBu)a 44
R:l-Pr
° ~
m
•
Temperature scale
-5 25 50 25 60 98 136
tlgSn chemical shifta (p.p.m.) -2.0 -3.0 -2.0 +200 +208 +208 +204
"As neat liquids.
R=l-Pr
+5(
R=t'Bu
50 Mole~ BulSn(OR)e In CCI 4 loin.
Temperature (° C)
....
Content rat ion scale
~_
100
OR
D. Temperature The 119Sn chemical sl~ifts of tin compounds which are unassociated in the pure liquids remain invariant to changes in temperature. This is illustrated in Table IV for two compounds, ethyltin trichloride, EtSnCI3, and butyltin tri-tert-butoxide, BuSn(OtBu)s, which are believed to contain four-coordinate tin species in the pure liquid state 4+' s3.
•
E
RO/
O---
Figure 8. Associated forms of organotin trialkoxides.
R:n-Bu
~1oo
R O" . . . . . .
.o/\.
150
+15(
t
.......
Compound
Temperature ('C) 100
R
0
Figure 7. Effect of difution and temperature on tin-119 chemical shifts of Bu2Sn[OR-]2 compounds.
On the other hand, tin compounds which are autoassociated in the pure liquids often show a steady decrease in shift as the temperature is raised, corresponding to an increase in the proportion of monomeric species present, e.g. the dibutyltin dialkoxides (Fig. 7). Calculation of equilibrium constants over a range of temperature has led to the determination of thermodynamic parameters for several systems a3'44,s4
18
Peter J. Smith and Les Smith
5. Survey of llgsn Chemical Shifts A. Presentation o f Tables o f Data
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.
23.
"24.
Tin u compounds, SnX2 and SnX. Ionic tin TM compounds, SnX6--. Covalent tin TM compounds, SnX4. Mixed tin tv tetrahalides. Methyltin compounds, MeSnXa. Dimethyltin compounds, Me2SnX2 and Me2SnXX'. Trimethyltin compounds, MeaSnX. Ethyltin compounds, EtSnX3. Diethyltin compounds, Et2SnX2. Triethyltin compounds, EtaSnX. n-Butyltin compounds, BuSnXa. Di-n-Butyltin compounds, Bu2SnX2. Tri-n-butyltin compounds, BuaSnX. n-Octyltin compounds, OctnSnX4_n. Benzyltin compounds, (PhCH2)nSnXa-n and (Y--C6H4CH2)nSnX4_n. Neophyltin compounds, (PhMe2CCH2)aSnX. Phenyltin compounds, PhSnX3. Diphenyltin compounds, Ph2SnX2. Triphenyltin compounds, Ph3SnX. Other compounds, RnSnX4-~. Symmetrical tetraorganotin compounds, R4Sn. Unsymmetrical tetraorganotin compounds, RnSnR'4_n. Organotin hydrides, R,SnH4_n. Compounds containing tin-metal bonds:
Compound
25.
26. 27. 28. 29. 30.
(a) Sn-Sn, Sn-Si and Sn-Li bonds, (b) Tin-transition metal bonds. Organofin oxides (containing an S n - O - S n bond): (a) Unsubstituted organotin oxides, (b) 1,3-disubstituted distannoxanes, X- R2Sn- O- R2Sn" X. Stannasiloxanes (containing an Sn-O-Si bond). Organotin sulphides (containing an Sn-S-Sn bond). Organotin derivatives of carboranes. Covalent organotin halide complexes. Ionic organotin halide complexes.
B. Tables o f Data
~
The above classification of tin compounds closely follows that used by the author in an earlier review 6. The formula of each compound is followed by: (a) The solution conditions. The measurement refers to that at room temperature (ca. 25 ° C) unless otherwise indicated. If the same compound has been run at different dilutions, the relevant values of the 119Sn chemical shifts are normally included if these are quoted relative to tetramethyltin. (b) The value of the aaaSn chemical shift in p.p.m. relative to tetramethyltin, together with the error (shown in brackets) if quoted. (c) The literature references. If a compound has been examined by more than one group of workers, all the appropriate shift values are listed. The literature is covered up to the end of 1972. (See note o n p . 33)
Solution
Shift
Ref.
satd. H20 satd. T.H.F. 12.17N HCI 4.8M H20 satd. H20
no signal obsvd. +236 (1) +341.2 (0.5) +521.3 (0.3) +909 (2)
satd. H20 satd. H20 H20 1-1.56 mmol Snkh in HSO3F (-78 °)
+592 +590 +888 +186
neat liquid various solns in H20/Me2CO ? neat liquid I:IM SnBrjSnCh 3:1M SnBr4/SnCh 3:lM SnBr4/SnL 1:2:1M SnI4/SnBr4/SnCh satd. CS2 1:1M SnI4/SnCh I:IM SnL/SnBr4 + CS2
+ 150 (2) not quoted rel. to Me4Sn not quoted rel. to Me4Sn +638 (1) +635 (2) +634 (2) +638 (2) +629 (2) +1701 (2) + 1712 (2) +1698 (2)
1. Tin n compounds, SnX2 and SnX
SnF2 SnC12 SnC12, 2H20 SnCI2, 2H20 SnSO4
1 J 1 1 1
2. lonic tin TM compounds
Na2Sn(OH)6 K2Sn(OH)6 SnF6-H3Sn÷SO3-
(2) (2) (0.8) (20)
1 1 2 57
3. Covalent tin TM compounds, SnX4
SnCh SnCh SnCh SnBr4 SnBr4 SnBr4 SnBr4 SnBr4 Snl4 SnI4 SnL,
1 63 68 1 1 1 1 1 1 1 1
xlgsn chemical shift in tin chemistry
19 i
Compound
Solution
Shift
Ref.
SnI4 Sn(SMe)4 Sn(NMe2)4 Sn(NEt2)4
2:1 : 1M SnI4/SnBr4/SnC14 3-20 % in Phil or CHCIa CH2CI2 neat liquid
+ 1696 (2) -165 +121.8 + 122 (2)
1 46 23 66
2:1:1M SnIa/SnBr4/SnCh 1:2:1M Snla/SnBr4/SnC14 1:1:2M SnI4/SnBr4/SnCh I : I M SnI4/SnBr4 + few drops of CS2 1:3M SnlJSnBr4 + few drops of CS2 2:1:1M SnI4/SnBr4/SnCl4 1:2:1M SnL/SnBr4/SnCI4 1:3M SnI4/SnCl4 1:1M SnI4/SnCl4 2:1:1M SnI4/SnBr4/SnCl4 1:1:2M SnI4/SnBr4/SnCl4 I : I M SnI4/SnBr4 + few drops CS2 1:3M SnI4/SnBr4 + few drops CS2 2:1 :IM SnIJSnBr4/SnCl4 1:2:1M SnI4/SnBr4/SnCl4 1:3M SnI4/SnCl4 1:1M SnL,/SnC14 2:1:1M SnI4/SnBr4/SnCl4 1:1M SnIjSnBr4 + few drops CS2 2:1:1M SnI4/S nBr4/SnCl4 2:1:1M SnI4/SnBr4/SnCl4 l : 2 : l M SnI4/SnBr4/SnCI4 1:1:2M SnI4/SnBr4/SnCI4 1:1M SnBr4/SnCI4 l:3M SnBr4/SnC14 l : l : 2 M SnL/SnBr4/SnCI4 3:1M SnBr4/SnC14 1 :IM SnBr4/SnCI4 l:3M SnBr4/SnCI4 3:1M SnBr4/SnCI4 1 :IM SnBr4/SnCI4 1:2:1M SnI4/SnBrJSnCI4 1:3M SnI4/SnCI4 1 :IM SnL/SnCI4 1:1:2M SnI4/SnBr4/SnCI4 2:1:1M SnI4/SnBr4/SnCI4 1:2:1M SnL/SnBr4/SnCI4 1:1:2M SnI4/SnBr4/SnC14
+796 + 789 +783 +916
4. Mixed tin w tetrahalides SnCIBr2I SnCIBr21 SnCIBr2I SnBral SnBr3I SnBraI SnBraI SnC1212 SnCl212 SNC1212 SnCl212 SnBr212 SnBr212 SnBr212 SnBr212 SnClIa SnClIa SnClI3 SnBrI3 SnBrI3 SnCIBrI2 SnC1BrI2 SnCIBrI2 SnCI3Br SnCI3Br SnCI3Br SnCI2Br2 SnC12Br2 SnCI2Br2 SnC1Br3 SnCIBra SnCIBr3 SnC13I SnCI3I SnCI3I SnCI2Brl SnCI2BrI SnC12BrI
5. Compounds of the type MeSnX3 MeSnC13 3-20 % in Phil or CHCI3 MeSnC13 +10% Phil MeSnCla 3 mole % in Phil MeSnCI3 8 mole % in Phil MeSnCI3 satd. Phil MeSnCI3 satd. Phil (60 °) MeSnCI3 neat liquid (74 °) MeSnCI3 various solns in Me2CO MeSnC13 various solns in H20
(2) (2) (2) (2)
1 1 1 1
+919 (2)
1
+919 (2) +913 (2) +951 (2) +955 (2) +947 (2) +937 (2) +1187 (2)
1 1 1 1 1 1 1
+1192 (2)
1
+1189 + 1195 + 1347 + 1342 + 1330 + 1447
(2) (2) (2~ (2) (2) (2)
1 1 1 1 1 1
+ 1449 (2) + 1068 (2) +1063 (2) + 1060 (2) +265 (2) +260 (2) +267 (2) +384 (2) +387 (2) +386 (2) + 509 (2) +509 (2) + 508 (2) +551 (2) +557 (2) +543 (2) + 672 (2) +666 (2) +663 (2)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- 21 - 1 9 (0.3) -20.03 (0.47) -16.23 (0.09) -18.73 (0.04) -8.67 (2.0) -6.03 (1.2) + 103.6 to + 151.2 +474 to +481
46 2 53 53 53 35 53 8 8
Peter J. Smith and Les Smith
20 Compound
Solution
Shift
Ref.
MeSnBr3 MeSnBr3 MeSnI3 MeSn(SMe)a (MeSnCI.NEt)3
3 - 2 0 % in Phil or CHC13 CH2C12 3 - 2 0 % in Phil or CHCI3 3-20 % in Phil or CHCI3 Phil
+165 + 170 (0.05) +600 (extrap.) -167 +156 (1.5)
46 2 46 46 2
1.5 mole % in Phil 3.5 mole % in Phil 5 mole % in CH2C12 6 mole % in Phil 20% in CH2C12 3-20 % in Phil or CHCt3 satd. P h i l Me2CO neat liquid at m.p. dil. CH2C12 CHC13 3-20 % in Phil or CHC13 20 % in CH2C12 3-20 % in Phil or CHCIa 3 - 2 0 % in Phil or CHCI3
-140.1 (0.04) - 1 3 6 . 7 (0.04) - 1 3 7 . 5 (0.5) - 1 3 6 . 8 (0.04~ - 1 3 7 (0.3) -140 - 134.2 (2.0) - 3 6 (2.0) -132.5 (0.8) - 1 2 6 and +90 -74.3 -70 + 157 (0.5) + 159 -144
35 35 42, 60 35 2 46 65 1 65 26 8 46 20 46 46
10% in CDCIa
- 1 9 4 (0.9)
36
20 % in CH2C12 CH2C12 CH2C12 CH2C12 CH2Cl2 + 50 % Phil +10% Phil
- 194 (0.05) +336 (0.05) +204 (0.05) +233 (0.05) +292 (0.05) - 4 1 (0.05) - 7 6 (0.1)
20 2 2 2 2 2 2
5 mole % in CS2 5 mole % in D.M.S.O. 5 mole % in cyclo-C~H12 various solns in cyclo-C6H12 14.6 mole % in CDC13 33.7 mole % in CDC13 67.3 mole % in CDC13 +5 % CH2C12 5 mole % in CH2C12 12.1 mole % in CH2C12 32.2 mole % in CH2C12 73 ffaole % in CH2C12 3 - 2 0 % in Phil or CHCI3 2.4 mole % in Phil 5.0 mole % in Phil 6.5 mole % in Phil 16.4 mole % in Phil 35.9 mole % in Phil / 76.5 mole % in Phil 5.0 mole % in CC14 10.0 mole % in CC14 30.6 mole % in CCh 74.5 mole % in CC14 1: 0.64M Me3SnCl/Pyrid. + CCI4 1 :l.3M Me3SnC1/Pyrid. + CC14 1:2.5M MeaSnCl/Pyrid. + CC14 1:4.5M Me3SnCl/Pyrid. + CC14
-152.7 -179.3 -153.5 -155.7 to - 1 5 8 . 6 - 1 7 1 . 2 (0.23) - 1 6 5 . 7 (0.12) -159.5 (0.09) - 1 6 6 (0.3) -168.9 - 1 6 5 . 6 (0,23) -161.8 (0.23) -155.1 (0.09) -164.2 - 1 5 9 . 0 (2.2) -161.6 - 1 5 9 . 3 (0.47) - 1 5 9 . 7 (0.23) -159.5 (0.09) - 1 5 6 . 4 (0.04) -158.0 - 1 6 5 . 8 (0.47) - 1 6 4 . 0 (0.23) - 1 6 1 . 9 (0.04) -55.07 (0.04) - 3 6 . 5 2 (0.09) - 13.05 (0.23) +0.45 (0.09)
45 45 45 8 35 35 35 2 45 35 35 35 46 35 45 35 35 35 35 45 35 35 35 35 35 35 35
6. Compounds of the type Me2SnX2 and Me~nX'X Me2SnCI2 Me2SnC12 Me2SnC12 Me,zSnCl2 Me2SnCI2 Me2SnC12 Me2SnCI2 Me2SnC12 Me2SnCI2 Me2Sn(OMe)C1 Me2SnBr2 Me2SnBr2 Me2SnI2 Me2SnI2 Me2Sn(SMe)2 !
1
Me2SnSCH2CH2S !
I
Me2SnSCH2CH2S Me2Sn(SCSNEt2)2 Me2Sn(SCSNEt2)C1 Me2Sn(SCSNEt2)Br Me2Sn(SCSNEt2)I Me2Sn(NEt2)2 (M~SnNEt)3
7. Compounds of the type MeaSnX Me3SnCI MeaSnCl MeaSnC1 MeaSnCl Me3SnC1 MeaSnC1 Me3SnCI Me3SnC1 Me3SnCI Me3SnC1 MeaSnC1 MeaSnCI Me3SnCI MeaSnC1 Me3SnCI Me3SnCI MeaSnC1 MeaSnCl Me3SnC1 MeaSnC1 MeaSnCI Me3SnC1 Me3SnCI Me3SnCI MeaSnC1 MeaSnCl Me3SnCI
lagSn chemical shift in tin chemistry Compound Me3SnCI MeaSnCl MeaSnCl MeaSnCl MeaSnC! MeaSnC1 MeaSnCl MeaSnCl MeaSnC1 MeaSnC1 MeaSnCI Me3SnCI Me3SnCI MeaSnC! MeaSnCi Me3SnCI MeaSnC1 Me3SnCI Me3SnCI Me3SnC1 Me3SnC1 MeaSnCi Me3SnCI Me3SnCI Me3SnCi Me3SnC1 Me3SnCI Me3SnCI Me3SnC! MeaSnC1 Me3SnC1 Me3SnCI Me3SnCI MeaSnC1 MeaSnC1 Me3SnCI Me3SnCI Me3SnC1 Me~SnC! Me3SnC! Me3SnC1 Me3SnCI MeaSnCl Me3SnCi MeaSnC1 MeaSnC1 Me3SnCI MeaSnC1 Me3SnCI MeaSnC1 Me3SnC1 Me3SnCI Me3SnCI Me3SnCI Me3SnC1 MeaSnCI Me3SnCI MeaSnCI MeaSnC1 MeaSnCl
21 Solution
~
1:12.7M MeaSnC1/Pyrid. + CCk 3 mole % in MeCN ( - 2 0 °) 3 mole % in MeCN ( - 5 °) 3 mole % in MeCN 3 mole % in MeCN (40 °) 3 mole % in MeCN (60 °) 3 mole % in MeCN (70 °) 5 mole % in MeCN ( - 2 0 °) 5 mole % in MeCN ( - 5 °) 5 mole % in MeCN 5 mole % in MeCN (40 °) 5 mole % in MeCN (60 °) 5 mole % in MeCN (70°), 10 mole % in MeCN ( - 2 0 °) 10 mole % in MeCN ( - 5 °) 10 mole % in MeCN 10 mole % in MeCN (40 °) 10 mole % in MeCN (60 °) 10 mole % in MeCN (70 °) 20 mole % in MeCN ( - 2 0 °) 20 mole % in MeCN ( - 5 o) 20 mole % in MeCN 20 mole % in MeCN (40 °) 20 mole % in MeCN (60 °) 20 mole % in MeCN (70 °) 40 mole % in MeCN ( - 2 0 °) 40 mole % in MeCN ( - 5 °) 40 mole % in MeCN 40 mole % in MeCN (40 °) 40 mole % in MeCN (60 °) 40 mole % in MeCN (70 °) 2 mole % in dioxan 2 mole % in dioxan (37 °) 2 mole % in dioxan (50 °) 2 mole % in dioxan (68 °) 2 mole % in dioxan (82 °) 5 mole % in dioxan 5 mole % in dioxan (37 °) 5 mole % in dioxan (50 °) 5 mole % in dioxan (68 °) 5 mole % in dioxan (82 °) 10 mole % in dioxan 10 mole % in dioxan (37 °) 10 mole % in dioxan (50 °) 10 mole % in dioxan (68 °) 10 mole % in dioxan (82 °) 15 mole % in dioxan 15 mole % in dioxan (37 °) 15 mole % in dioxan (50 °) 15 mole % in dioxan (68 °) 15 mole % in dioxan (82 °) 20 mole % in dioxan 20 mole % in dioxan (37 °) 20 mole % in dioxan (50 °) 20 mole % in dioxan (68 o) 84.5 mole % in dioxan 2 mole % in Me2CO ( - 5 5 °) 2 mole % in M ~ C O ( - 3 4 °) 2 mole % in Me2CO ( - 2 °) 2 mole % in Me, CO
Shift +9.52 (0.12) -92.7 -101.6 -110.8 -119.5 -126.4 -129.0 -95.2 -103.4 - 111.5 -120.4 -127.1 -129.6 -98.2 -105.0 -113.2 -123.6 -128.7 -131.1 -101.7 -108.7 -116.2 -126.1 -130.9 -133.5 -107.3 -114.7 -118.9 -129.3 -135.6 -137.5 - 120.4 -125.5 -131.6 -136.4 -140.1 -121.5 -126.3 -132.5 -136.9 -140.7 -123.8 -127.6 -133.7 -137.9 -141.4 -124.3 -128.0 -134.1 -138.3 -141.9 -125.3 -129.1 -135.2 -139.6 -137.1 (0.23) -77.8 -87.5 -98.4 - 108.5
Ref. 35 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 35 54 54 54 54
22
Peter J. Smith and Les Smith
Compound
Solution
Shift
Ref.
Me3SnCI Me3SnC1 Me3SnCI Me3SnCI Me3SnCI Me3SnC1 MeaSnC1 MeaSnCI Me3SnC1 Me3SnC1 Me3SnC1 Me3SnCl MeaSnC1 Me3SnC1 Me3SnC1 MeaSnCI MeaSnCl Me3SnCl MeaSnCl Me3SnCl MeaSnCi MeaSnC1 MeaSnCl Me3SnC1 Me3SnCI Me3SnC1 Me3SnCI Me3SnC1 MeaSnC1 MeaSnC1 Me3SnCI Me3SnCI Me3SnC1 Me3SnC1 Me3SnCl Me3SnCl MeaSnC1 MeaSnC1 MeaSnCl Me3SnCl Me3SnC! MeaSnCI MeaSnC1 MeaSnC1 Me3SnC1 MeaSnCl MeaSnCl Me3SnCl Me3SnCI MeaSnC1 Me3SnCl MeaSnCl MeaSnCI MeaSnCI MeaSnCI Me~SnC1 Me3SnCl Me3SnCl MeaSnCl MeaSnCi
2 mole % in Me2CO (37 °) 2 mole % in MezCO (50 °) 5 mole % in Me2CO ( - 5 5 °) 5 mole % in Me2CO ( - 3 4 °) 5 mole % in Me2CO ( - 2 °) 5 mole % in Me2CO 5 mole % in Me2CO (37 °) 5 mole % in Me2CO (50 °) 10 mole % in Me2CO ( - 5 5 °) 10 mole % in Me2CO ( - 3 4 °) 10 mole % in Me2CO ( - 2 °) 10 mole % in Me2CO 10 mole % in MezCO (37 °) 10 mole % in Me2CO (50 °) 15 mole % in Me2CO ( - 5 5 °) 15 mole % in Me2CO ( - 3 4 °) 15 mole % in Me2CO ( - 2 °) 15 mole % in MezCO 15 mole % in Me2CO (37 °) 15 mole % in Me2CO (50 °) 20 mole % in Me2CO ( - 5 5 °) 20 mole % in Me2CO ( - 3 4 °) 20 mole % in Me2CO ( - 2 °) 20 mole % in Me2CO 20 mole % in MeaCO (37 °) 20 mole % in Me2CO (50 °) 30.5 mole % in Me2CO 71.9 mole % in Me2CO 10-28 mole % in Me2CO/H20 2-14 mole % in H20 10-22 mole % in MeOH 2 mole % in MeOH ( - 1 3 °) 2 mole % in MeOH (1°) 2 mole % in MeOH 2 mole % in MeOH (33 °) 2 mole % in MeOH (56 °) 4 mole % in MeOH ( - 13 o) 4 mole % in MeOH (1 °) 4 mole % in MeOH 4 mole % in MeOH (33 °) 4 mole % in MeOH (56 °) 7 mole % in MeOH ( - 1 3 °) 7 mole % in MeOH (1 °) 7 mole % in MeOH 7 mole % in MeOH (33 °) 7 mole % in MeOH (56 °) 12 mole % in MeOH ( - 1 3 °) 12 mole % in MeOH (1 °) 12 mole % in MeOH 12 mole % in MeOH (33 °) 12 mole % in MeOH (56 °) 20 mole % in MeOH ( - 13 °) 20 mole % in MeOH (1 °) 20 mole % in MeOH 20 mole % in MeOH (33 °) 20 mole % in MeOH (56 °) 2 mole % in EtOH ( - 3 5 °) 2 mole % in EtOH (0 °) 2 mole % in EtOH 2 mole % in EtOH (30 °)
-116.4 -121.0 -79.0 -89.0 -100.4 -109.3 -117.4 -121.7 -80.8 -90.4 -101.5~ -110.3 -118.5 -122.9 -82.5 -91.3 -102.7 -111.8 -119.8 -124.1 -84.8 -92.7 -104.3 -113.2 -121.3 -125.5 -119.8 (0.04) -136.6 (0.12) range of ca. 25 range of ca. 23 range of ca. 10 -28.6 -34.0 -40.9 -43.9 -51.9 -29.3 -34.6 -41.7 -44.4 -52.8 -30.3 -35.9 -43.0 -45.5 -54.1 -34.1 -39.9 . -48.2 -52.1 -61 2 -36.6 -42.3 -51.1 -54.4 -64.4 -21.4 -35.7 -43.7 -51.7
54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 35 35 8 8 .8 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54
x~gsn chemical shift in tin chemistry
23
i
Compound
Solution
MeaSnCI Me3SnCI Me3SnCI MeaSnCI MeaSnC1 MeaSnCl MeaSnC1 MeaSnCI Me3SnC1 MeaSnCl MeaSnCl MeaSnCl MeaSnC1 MeaSnC1 MeaSnCl MeaSnC1 Me3SnCl MeaSnC1 MeaSnC1 MeaSnC! MeaSnCl MeaSnBr Me3SnBr MeaSnBr Me3SnBr MeaSnBr Me3SnI Me3SnOH MeaSnOH
MeaSnON:C(cyclo-C6Hll)2 MeaSnON:Cd-I10 (MeaSnO)aPO Me3SnOPH.Ph Me3SnSMe MeaSnNEt2 MeaSnNEt2 Me3SnNPh.SiMe3 Me3SnPH.Ph MeaSnPPh2 Me3SnPPh2 Me3SnNCS Me3SnOCHO MeaSnOCHO MeaSnOCOMe
2 mole % in EtOH (50 °) 5 mole % in EtOH ( - 3 5 °) 5 mole % in EtOH (0 °) 5 mole % in~EtOH 5 mole % in EtOH (30 °) 5-mole % in EtOH (50 °) 10 mole % in EtOH ( - 3 5 o) 10 mole % in EtOH (0 °) 10 mole % in EtOH 10 mole % in EtOH (30 °) 10 mole % in EtOH (50 °) 15 mole % in EtOH ( - 3 5 °) 15 mole % in EtOH (0 °) 15 mole % in EtOH 15 mole % in EtOH (30 °) 15 mole % in EtOH (50 °) 20 mole % in EtOH ( - 3 5 °) 20 mole % in EtOH (0 o) 20 mole % in EtOH 20 mole % in EtOH (30 °) 20 mole % in EtOH (50 °) Phil 3-20% in Phil or CHCI3 3-5 mole % in H20 9-34 mole % in H20/Me2CO neat liquid 3-20% in Phil or CHCl3 satd. CDCI3 MeOH 50% in Phil 20% in CH2CI 2 neat liquid 10% in Phil 3-20 % in Phil or CHCI3 neat liquid + 50% Phil
Shift
Ref.
50 % in Phil 10% in Phil neat liquid + 25 mole % dioxan 50% in Phil satd. CC14 3M CDCI3 0.05M CDC13 satd. CDCI3
-62.3 -22.7 -35.8 -44.6 -52.6 -63.5 -24.9 -37.1 -47.9 -54.0 -65.2 -26.7 -40.1 -50.7 -57.5 -68.5 -27.7 -42.2 -51.8 -60.2 -69.4 -128 (0.3) -128 range of ca. 6 range of ca. 30 - 130.7 -38.6 -76.7 (0.04) -51.8 - 2 0 (0.1) - 1 3 2 (0.9) -24.9 - 1 3 (0.3) -90 - 5 8 (0.1) -50.1 - 6 4 (0.05) - 1 8 (0.4) +4 +3 (0.1) -59.4 (0.04) -2.5 - 150 - 129
54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 2 46 8 8 8 46 35 8 20 20 8 20 46 2 23 20 20, 55 3 20, 55 35 31 31 35
CCI4 CCh 30% in CCh neat liq + 3 drops CH2C12 ( - 5 °) neat liq + 3 drops CH2C] 2 neat liq + 3 drops CH2C12 (50 °) 50% in CCh
- 6 . 5 (1.2) -4.2 - 6 . 0 (0.5) -2.0 (1.5) - 3 . 0 (2.0) - 2 . 0 (2.0) +141 (0.3)
60 451 ~" 36 53 53 53 36
CH2C12 30% in CC14 + CH2C12 CCh CCh Me2CO
-125 (0.8) -121 (1.3) - 126.3 -122.5 (2.0) - 6 2 (1.0)
2 36 45 65 1
cyclo-C6H12
8. Compounds of the type, EtSnX3 EtSnCl3 EtSnCla EtSnCI3 EtSnQI3 EtSnCi3 EtSnCI3 EtSnBra
~
9. Compounds of the type Et2SnX2 Et2SnCI2 Et2SnCl2 Et2SnCl2 Et2SnCi2 Et2SnCl2
24
Peter J. Smith and Les Smith
Compound
Solution
Shift
Ref.
Et2SnBr2 Et2SnBr2 Et2SnBr2 Et2Snl2 Et2Sn(OMe)2 Et2Sn(OMe)2 Et2Sn(OtBu)2
CH2 C12 20 % in CCk CCk 15% in CCh neat liquid 10 % in Phil neat liquid
- 9 9 (3.0) - 9 6 (0.5) -92.5 (4.0) - 5 3 (1.1~ +181 (1.1) + 165 (1.1) +31 (1.3)
2 36 65 36 36 36 36
25 % in CDCla 25 % in CH2C12 20% in CCh
+ 177 (1.3) +264 (3.0) -140(0.8 )
36 36 36
20% in CH2C12 + CDCI3 20% in CCh neat liquid dil. x 8 with Phil
- 199 (0.1) +67 (1.3) - 2 1 (1.1) - 2 1 (1.1)
36 36 36 36
- 153.4 - 155 (0.5) -150.5 (1.2) -111.6 -120.2 -124.8 -127.4 -130.1 -115.5 -124.0 -127.6 -130.7 -133.2 -127.2 -134.8 -137.2 -139.7 -141.9 -139.7 -141.8 -145.4 -147.9 -149.0 -146.8 - 148.6 -151.8 -153.1 -154.7 -108.0 -111.7 -121.3. -127.7 -129.2 -112.2 -115.9 - 125.5 -131.6 -133.7 -125.0 -128.3 -134.8 -140.0 -142.3
45 36 60 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54 54
I
I
Et2SnOCH2CH20 Et2Snox2 Et2Sn(SMe)2 I'
I
Et2SnSCH2CH2S Et2Sn(NMe2)2 Et2Sn(NEt2)2 Et2Sn(NEt2)2
10. Compounds of the type EtaSnX EtaSnCI CH2CI2 EtaSnC1 30 % in CCi4 Et3SnC1 CCI4 EtaSnCl 10 mole % in MeCN ( - 9 °) EtaSnCi 10 mole % in MeCN EtaSnC1 10 mole % in MeCN (35 °) Et3SnCI 10 mole % in MeCN (48 °) Et3SnC1 10 mole % in MeCN (63 °) Et3SnC1 25 mole % in MeCN ( - 9 °) Et3SnCI 25 mole % in MeCN Et3SnCI 25 mole % in MeCN (35 °) Et3SnC1 25 mole % in MeCN (48 °) EtaSnCI 25 mole % in MeCN (63 °) Et3SnC1 50 mole % in MeCN ( - 9 °) Et3SnC1 50 mole % in MeCN Et3SnC1 50 mole % in MeCN (35 °) Et3SnC1 50 mole % in MeCN (48 °) Et3SnC1 50 mole % in MeCN (63 °) Et3SnCI 75 mole % in MeCN ( - 9 °) EtaSnC! 75 mole % in MeCN Et3SnC! 75 mole % in MeCN (35 °) Et3SnCI 75 mole % in MeCN (48 °) EtaSnCI 75 mole % in MeCN (63 °) Et3SnC1 90 mole % in MeCN ( - 9 °) Et3SnCI 90 mole % in MeCN Et3SnC1 90 mole % in MeCN (35 °) Et3SnC1 90 mole % in MeCN (48 °) Et3SnC1 90 mole % in MeCN (63 °) Et3SnCI 10 mole % in Me2CO ( - 2 0 °) Et3SnC1 10 mole % in Me2CO ( - 1 0 °) Et3SnC! 10 mole % in Me2CO EtaSnCI 10 mole % in Me2CO (35 °) Et3SnC! 10 mole % in Me2CO (48 °) Et3SnC1 25 mole % in Me2CO ( - 2 0 °) Et3SnCI 25 mole % in Me2CO ( - 1 0 °) EtaSnCI 25 mole % in Me2CO Et3SnC1 25 mole % in Me2CO (35 °) Et3SnCi 25 mole % in Me2CO (48 °) EtaSnCl 50 mole % in Me2CO ( - 2 0 °) EtaSnCl 50 mole % in Me2CO ( - 1 0 °) EtaSnC1 50 mole % in Me2CO EtaSnCl 50 mole % in Me2CO (35 °) EtaSnCI 50 mole % in Me2CO (48 °)
119Sn chemical shift in tin chemistry
25
Compound
Solution
Shift
Ref.
EhSnC1 Et3SnC1 EhSnCI Et3SnCI EhSnCI EhSnCi EtaSnCl Et3SnCl Et3SnC1 Et3SnC1 Et3SnCl EhSnCI Et3SnBr EhSnOMe Et3SnOCOMe
75 mole % in Me2CO ( - 2 0 °) 75 mole % in MezCO ( - 1 0 °) 75 m01e % in Me2CO 75 mole % in Me2CO (35 °) 75 mole % in Me2CO (48 °) 90 mole % in Me2CO ( - 2 0 °) 90 mole % in Me2CO ( - 1 0 °) 90 mole % in Me2CO 90 mole % in Me2CO (35 °) 90 mole % in Me2CO (48 °) neat liquid neat liquid neat liquid CH2C12 CH2CI2
-136.8 -139.7 -147.5 -147.8 -149.4 -146.2 -147.5 -149.0 -150.9 -152.7 - 151 (2) - 155.9 -148 (0.5) - 100.3 - 102.4
54 54 54 54 54 54 54 54 54 54 1 8 36 23 23
11. Compounds of the type BuSnX3 BuSnC13 CCh BuSnCl3 neat liquid BuSnCl3 neat liquid BuSnox2C1 satd. CH2CI2 BuSn(OEt)3 16 mole % in Phil BuSn(OEt)3 33 mole % in Phil BuSn(OEt)3 48 mole % in Phil BuSn(OEt)3 neat liquid BuSn(OEt)3 neat liquid (60 °) BuSn(OEt)3 neat liquid (100 °) BuSn(OEt)a neat liquid (138 °) BuSn(O*Pr)3 18 mole % in Phil BuSn(OnPr)3 23 mole % in Phil BuSn(Onpr)3 32 mole % in Phil BuSn(OnPr)a neat liquid BuSn(Onpr)3 neat liquid (47 o) BuSn(O~Pr)3 neat liquid (71 °) B uSn(Onpr)3 neat liquid (99 ° ) BuSn(O~Pr)3 neat liquid (122 o) BuSn(Oipr)3 10 mole % in Phil BuSn(OIPr)3 20 mole % in Phil BuSn(OIPr)3 46 mole % in Phil BuSn(Oipr)a 76 mole % in Phil BuSn(OIPr)a ~neat liquid (40 °) BuSn(OiPr)3 neat liquid (76 °) BuSn(Oipr)3 neat liquid (97 °) BuSn(OIPr)3 neat liquid (122 °) BuSn(OiPr)3 neat liquid (154 °) BuSn(OnBu)a 12 mole % in Phil BuSn(O~Bu)3 22 mole % in Phil BuSn(OnBu)3 38 mole % in Phil BuSn(O~Bu)3 neat liquid (38 o) BuSn(OnBu)a neat liquid (65 °) BuSn(OnBu)3 neat liquid (100 °) BuSn(OnBu)3 neat liquid (138 °) BuSn(OiBu)3 16 mole % in Phil BuSn(OtBu)3 27 mole % in Phil BuSn(OiBu)3 44 mole % in Phil BuSn(OiBu)3 neat liquid (66 °) BuSn(OtBu)a neat liquid (100 °) BuSn(OiBu)3 neat liquid (120 °) BuSn(OIBu)3 neat liquid (143 °) BuSn(OSBu)a 19 mole % in Phil
-6.0 + 1.4 (0.2) +3.0 (1) +395 (5) +432 (9) +432 (9) +432 (9) +428 (14) +423 (5) +412 (5) +405 (5) +387 (9) +387 (5) +396 (9) +414 (10) +415 (9) - +417 (5) +412 (5) +405 (5) +307 (10) +323 (5) +327 (5) +330 (5) +327 (2) +311 (5) +284 (2) + 240 (5) +222 (9) +387 (9) +405 (9) +418 (9) +428 (14) +423 (9) +406 (9) +405 (5) +392 (14) +397 (10) +397 (10) +401 (5) +378 (5) +360 (5) +347 (5) +275 (5)
L
23, 45 53 1 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 4zl• . 4el 44 44 44 44 44 44 44 44 44 44 44
26
Peter J. Smith and Les Smith
Compound
Solution
Shift
Ref.
BuSn(OSBu)a BuSn(OSBu)a BuSn(O'Bu)a BuSn(OSBu)a BuSn(OSBu)a BuSn(O'Bu)a BuSn(O"Bu)a BuSn(OSBu)a BuSn(O'Bu)a BuSn(O"Bu)a BuSn(OtBu)a BuSn(OtBu)a BuSn(OtBu)a BuSn(OtBu)a BuSn(OtBu)a BuSn(OtBu)a BuSn(OtBu)a BuSn(O"e°Pent)a BuSn(O"~°Pent)a BuSn(On'~Pent)3 BuSn(O"~°Pent)a BuSn(O"*°Pent)a BuSn(NEq)a BuSn(NEq)a BuSn(NEt2)a
25 mole % in Phil 32 mole % in Phil 41 mole % in Phil neat liquid neat liquid (45 °) neat liquid (62 °) neat liquid (80 °) neat liquid (100 °) neat liquid (120 °) neat liquid (140 °) 12 mole % in Phil 18 mole % in Phil 33 mole % in Phil neat liquid neat liquid (60 °) neat liquid (98 °) neat liquid (136 °) neat liquid (92 °) neat liquid ( 108 °) neat liquid (122 °) neat liquid (131 °) neat liquid (153 °) neat liquid 50 % v/v in Phil 25 % v/v in Phil
+284 (5) +298 (5) +312 (5) +325 (5) +298 (5) +280 (2) +240 (14) +217 (2) +209 (5) +206 (5) + 199 (5) + 199 (5) + 199 (5) +200 (5) +208 (5) +208 (5) +204 (5) +289 (2) + 259 (2) +236 (5) + 227 (2) +212 (2) +44 (2) +44 (2) +44 (2)
44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 66 66 66
CCh CH2CI2 + 10 % Phil CS2 Me2CO Me2CO 18.9 mole % in CCh 27.3 mole % in CCh 45.2 mole % in CCh neat liquid neat liquid (70 °) neat liquid (120 °) neat liquid (160 °) 50% in CC14 neat liquid neat liquid 10.2 mole % in CCL, 12.2 mole % in CC14 15.4 mole % in CC14 21 mole % in CCI4 30 mole % in CCh 52 mole % in CCI4 62 mole % in CC14 neat liquid neat liquid (41 o) neat liquid (50 °) neat liquid (59 °) neat liquid (80 °) neat liquid (93 °) neat liquid neat liquid (80 °) neat liquid (99 °) neat liquid ( 118 °)
- 123.1 - 123.4 - 122 (0.3) - 114 (2.0) - 7 1 (2.0) -56 +159 (2) +161 (2) +163 (2) + 165 (2) + 165 (2) + 159 (2) +147 (2) +154 (4) + 161 (2) + 159 (5) +31 (5) +29 (5) +31 (5) +29 (5) +40 (5). +71 (5) +76 (5) +90 (5) +65 (5) +38 (5) +33 (5) +27 (5) +27 (5) + 161 (5) + 146 (5) + 126 (5) + 115 (5)
45 23 2 1 1 8 35 35 35 33 35 35 35 69 33 33 35 35 35 69 69 69 69 33 69 69 69 69 69 33 69 69 69
12. Compounds o f the type Bu2SnX2
Bu2SnCI2 Bu2SnCI2 Bu2SnCI2 Bu2SnC12 Bu2SnCl2 Bu2SnC12 Bu2Sn(OMe)2 Bu2Sn(OMe)2 Bu2Sn(OMe)2 Bu2Sn(OMe)2 Bu2Sn(OMe)2 Bu2Sn(OMe)2 Bu2Sn(OMe)2 Bu2Sn(OEt)2 Bu2Sn(OEt)2 Bu2Sn(O"Pr)2 Bu2Sn(OiPr)2 BuaSn(Oipr)2 Bu2Sn(Oipr)2 Bu2Sn(OIPr)2 Bu2Sn(Oipr)2 Bu2Sn(Oipr)2 Bu2Sn(Oipr)2 Bu2Sn(Oipr)2 Bu2Sn(OIPr)2 Bu2Sn(OiPr)2 Bu2Sn(OtPr)2 Bu2Sn(O~Pr)2 BuzSn(Oipr)2 Bu2Sn(O"Bu)2 Bu2Sn(O"Bu)2 Bu2Sn(O"Bu)2 Bu2Sn(O"Bu)~
lXgSn chemical shift in tin chemistry
27
Compound
Solution
Shift
Ref.
Bu2Sn(OiBu)2 Bu2Sn(OiBu)2 Bu2Sn(OiBu)2 Bu2Sn(OIBu)2 Bu2Sn(O'Bu)2 Bu2Sn(OtBu)2 Bu2Sn(OtBu)2 Bu2Sn(OPh)2 Bu2Sn(OPh)2
7 mole % in CC14 9 mole % in CC14 17 mole % in CCI4 neat liquid neat liquid 4-100 mole % in CCI4 neat liquid satd. CCh or Phil neat liquid (49 °)
+ 105 (2) +114 (2) +132 (2) + 150 (2) +34 (2) +34 (5) +34 (5) + 138 (2) + 120 (2)
69 69 69 33 33 33, 35 33 33 33
satd. CDCla
+ 189 (5)
33
Satd. CDCla
+ 164 (5)
33
satd. CDCla
+ 155 (5)
33
satd. CDCI3
+228 (10)
33
neat liquid (96 °)
+228 (2)
33
neat liquid (120 °)
+213 (5)
33
I
I
Bu2SnOCH2CH20 |
I
Bu2SnOCHMeCH20 l
I
Bu2SnOCHMeCHMeO I
I
Bu2SnOCH2CH2CH20 I"
I
Bu2SnOCH~CH2CH20 !
i
Bu2SnOCH2CMe2CH20 I
I
Bu2SnOCH2CMenPrCH20 !
I
+233 (5)
33
50% in CC14
+ 154 (5)
69
satd. CC14
+154 (5)
33
I
Bu2SnO(CH2)40 I
satd. CC14
w
Bu2SnO(CH2)40 !
Bu2SnO(CH2)40
neat liquid
+ 161 (2)
33
50% in CDCI3
+30 (5)
69
satd. CDCla
+32 (2)
33
satd. Phil
+28 (5)
69
neat liquid (100 °)
+24 (5)
69
neat liquid (128 °) 25 % in Phil 25 % in Phil (60 °) neat liquid neat liquid (60 °) neat liquid (100 °) ~CCl4
+24 (5) - 123 (2) -123 (2) - 123 (2) -123 (2) - 123 (2) -127 (2)
33 69 69 33 69 69 23
Bu2SnSCH2CH2S Bu2Sn(NEt2)2 Bu2Sn(OCOMe)2
25 % in CDCIa neat liquid neat liquid
-193 (0.8) - 1 8 (2) + 195 (1)
36 66 1
13. Compounds of the type BuaSnX BuaSnCl BuaSnCl BuaSnCl BuaSnBr BuaSnOMe BuaSnOEt BuaSnOCH2CFa BuaSnOCH2Ph BuaSnOnPr BuaSnOCH2CF2CF2H BuaSnOipr BuaSnOnBu BuaSnOiBu BuaSnOSBu BuaSnOtBu BuaSnOPh
CHzCI2 or CCl4 neat liquid neat liquid +10% Phil neat liquid neat liquid +20% Phil +20 % Phi1 neat liquid neat liquid neat liquid neat liquid neat liquid neat liquid neat liquid neat liquid
-141.2 - 1 4 3 (2) - 139 - 1 3 4 (0.8) - 8 3 (7) - 8 6 (5) - 1 2 2 (0.5) - 100 (0.5) - 8 7 (2) - 119 (7) - 7 6 (2) - 9 1 (5) - 8 2 (5) - 8 0 (2) - 6 0 (2) - 105 (7)
23, 45 1 8 2 ~. 33 • 33 2 2 33 65 33 33 33 33 33 33
I
|
Bu2SnOCH2CH2S I
I
Bu2SnOCH2CH2S I
1
Bu2SnOCH2CH2S I
I
Bu2SnOCH2CH2S I
I
Bu2SnOCH2CH2S Bu2Sn(SEt)2 Bu2Sn(SEt)2 Bu2Sn(SEt)2 Bu2Sn(SEt)2 Bu2Sn(SEt)2 Bu2Sn(SBu)2 |
!
28
Peter J. Smith and Les Smith
Compound
Solution
Shift
Ref.
BuaSnOPh Bu3SnOPh Bu3SnOOtBu Bu3SnNEt2 Bu3SnCN BuaSnCN Bu3SnCN Bu3SnCN BuaSnCN Bu3SnCN BuaSnCN BuaSnOCOMe BuaSnOCOCtI-I4OCOMe-2
neat liquid (50 °) neat liquid (85 °) CH2C12 neat liquid CH2C12 satd. CH2C12 dil. x 2 in Phil satd. Phil satd. CHCI3 till. x 3 in Pyr. satd. Pyr. CH2C12 CH2CI2
- 1 0 7 (2) - 1 0 5 (2) - 105 (1.1) - 3 6 (2.0) +48 (1.3) +~8 (5.0) +74 (5.0) +83 (2.0) +42 (2.0) +85 (2.0) +91 (~2.0) - 9 6 (0.8) - 115 (1.3)
69 69
neat liquid CCh
-0.5 (2.0) -114
53 65
satd. CDC13
+30 (5.0)
33
-35 -53 -43 - 5 2 (2) -53 -50
42 42 23 67 42 42
conc. CDCI3 less than 0.5M soln. less than 0.5M soln. less than 0.5M soln. less than 0.5M soln. less than 0.5M soln. less than 0.5M soln. less than 0.5M soln.
- 1 3 8 (0.5) -139 -118 -161 -98 -79 -131 -146
58 31 31 31 31 31 31 31
CH2CI2 CDCIa neat liquid
+63 +64 (2) +60.5
2 67 53
CH2C12 CHCIa
+32 (0.8) +101.2
2 8
CH2C12 neat liquid CCh less than 0.5M soln. CH2Ci2 CH2C12 less than 0.5M soln. less than 0.5M soln. less than 0.5M soln. less than 0.5M soln. less than 0.5M soln. less than 0.5M soln. CHCh CHCIa
+48 (0.8) +46 . + 114.5 +86 +95 (1.3) +91 (1.3) +121 +90 +95 +79 +80 +121 +115.3 +94.5
2 8 23 31 2 2 31 31 31 31 31 31 8 8
2
66 2 35 35 35 35 35 35 2 2
14. Compounds of the type Oct~SnX4._, OctSnCl3 Oct2SnCl2 t
I
Oct2SnOCH2CH2S
15. Benzyltin compounds, (PhCHz) ~SnX4-n and (Y- C6H4CHz)~SnX4-n (PhCH2)2SnCI2 (PhCH2)aSnCi (PhCH2)aSnC1 (PhCH2)aSnC1 (p-FCtH4CH2)aS nCl (p-CICeI-14CH2)3SnCi
satd. CH2C12 satd. CH2C12 CCI4 CDCla satd. CH2CI2 satd. CH2Ci2
16. Neophyltin Compounds, (PhMe2CCHz)3SnX X F F CI OH OCHO OCOMe OCOCHCI2 OCOCF3
17. Compounds of the type PhSnX3 PhSnCl3 PhSnCla PhSnCl3
18. Compounds of the type Ph2SnX2 Ph2SnCl2 Ph2Sn(S.CO.Ph)2
19. Compounds of the type Ph3SnX PhaSnCl PhaSnCI PhaSnI PhaSnOH PhaSnOOtBu PhaSnOOCMe2Ph PhaSnOCOMe PhaSnOCOCH2F Ph3SnOCOCH2C1 PhaSnOCOCHCI2 PhaSnOC,OCCla PhaSnOCOEt PhaSnOCOCHEt(CH2)3Me PhaSnSCSNMe2
119Sn chemical shift in tin chemistry Compound
29 Solution
Shift
Ref.
(C6H4CFa-3)SnCI3 BuPhSnC12 (CH2:CH)2SnC12 (MeCH:CH)2SnBrz
neat liquid CCI4 neat liquid neat liquid
+69 (2) -22.2 +40.9 + 16.8
67 23 8 23
( ~ - ~ ) , s, ra,
CCI4
+38.4
23
Me2Sn(CH2C1)CI
CC14 CHzCI2 10% in CHzC12
-113.5 (0.15) - 1 2 2 (0.50) + 17 (0.30)
23, 60 2 2
+1.4 (0.5) +5.97 (0.3) - 1 . 0 (0.3) + 6.7 + 16.8 +43.9 + 12.0 (1) +6.6 +36 + 120 (20) + 140 (10) + 128 (2) + 139 (2) + 157.4 + 119 + 165.1 + 147.9 + 147.5 + 279 (0.8) +25.89 (0.15)
36 23, 60 20 8 8 8 1 23, 45 42 2, 36 67 67 67 23 61 8 23 23 36 60
+20% CH2Ch 20% in CC14 +20% Phil neat liquid neat liquid 10 % in CH2Ch 5 % in CH2C12 Ct,I-Ilz C6I-It2 C6Ht2 C6H12 neat liquid
+93 (0.5) - 7 (1.0) +2 (0.5) -0.4 +59.8 +31 (0.8) +4 (0.8) +56.3 +53.2 +53.2 +54.5 +79.4
2 36 2 8 8 20 20 23 23 23 23 8
satd. CH2C12
- 5 2 (0.3)
20
CCh CCh Phil Phil + 10% PfiH Phil Phil + 10 % Phil CCl4 30% in Phil
-4.8 -4.95 (0.15) - 4 . 0 (0.3) - 3 3 (0.3) - 8 5 (0.05) - 6 (0.1) - 4 2 (0.1) - 101 (0.05) - 3 . 0 (0.1) - 3 . 0 (0.5)
23 60 2 2 2 2 2 2 2 36
20. Other compounds RnSnX4_.
Meipr(cyclo-C6Hll)SnBr EhSn(C2Fs)I
21. Symmetrical tetraorganotin compounds, R4Sn Et4Sn Et4Sn EhSn Et4Sn Pr+Sn iPr+Sn Bu4Sn Bu4Sn (PhCH2)4Sn Ph4Sn Ph4Sn (C6H4CF3-3)4Sn (Cc,H4CFa-3)4Sn (CH2 :CH)4Sn (CH2 :CH)4Sn (CH2 :CH),Sn (MeCH :CH)4Sn (MeCH:CH)4Sn (CH !C)4Sn (CsHs)4Sn
20% in CC14 CCh 50% in Phil neat liquid neat liquid neat liquid neat liquid CCh satd. CH2C12 estimated value estimated value satd. CDCi3 satd. D. M. S.O. CCh neat liq. + 30 % T. M.S. neat liquid neat liquid CCh 20 % in Et20 I CCh (50 °)
22. Unsymmetrical tetraorganotin compounds, R~SnR'4_, MeSnPha Me2SnEh Me2SnEtnpr Me2SnBu2 MezSnPhz Me2SnPh[PhCr(CO)3 ] MezSn[PhCr(CO)3]2 MezSnPh(C6H4F-4) Me2Sn(C6H4F-4)2 Me2Sn(Cd-I4F-4)Cd-hCI-4 MezS n(C6H4F-4 ) C6I-I40Me-4 Me2Sn(CH :CH2)2
NelSn
..~
Ph
MeaSnCH2CI MeaSnCH2CI MeaSnCH2CI MeaSnCHCI2 MeaSnCCl3 MeaSnCH2Br MeaSnCHBr2 MeaSnCBr3 MeaSnEt Me3SnEt
30
Peter J. Smith and Les Smith
Compound
Solution
Shift
Ref.
MeaSnEt Me3SnCH2CH:CH2 MeaSnnpr Me3Sn(CH2)2CH:CH2 MeaSnlPr MeaSnnBu MeaSn(CH2)aCH:CH2 MeaSntBu MeaSn(cyclo-Cd-Ill) MeaSn(cyclo-C6Hll) MeaSnCH2Ph MeaSnCH2Ph.Cr(CO)a MeaSnCsI-Is MeaSnPh Me.~SnPh.Cr(CO)3 MeaSnC6CIs MeaSnCt,I-I4F-4 MeaSnCeH4NMe2-4 1,4-(MeaSn)2CeI-I4 1,4-(MeaSn)zCd-I4.Cr(CO)a MeaSnCd-I4Me-2 MeaSnC6I-IaMe2-2,3 MeaSnC6I-I2Mea-2,4,6 MeaSnCH:CH2 MeaSnCH :CH2 Me3SnCiCPh
neat liquid ? neat liquid ? neat liquid +10% Phil ? neat liquid neat liquid + 10 % CH2CI2 50 % in CH2C12 10 % in CH2CI2 CCI4 neat liquid 5% in CH2C12 satd. CH2C12 C6Hx2 C6I-I12 20% in CH2C12 5 % in CH2CI2 20 % in CH2C12 50% in CH2CI2 50 % in CHzCI2 neat liquid neat liquid 50 % in Phil
-5.9 +5.4 (0.4) +2.9 - 1.6 (0.2) -9.9 +2 (0.3) +0.5 (0.2) - 17.5 + 1.7 +5.0 (0.5) - 4 (0x8) - 8 (0.1) -23.3 +30.3 - 3 (1.0) -123 (0.3) +25.9 +30.0 +29.0 (0.8) - 4 (1.3) +33 (0.8) +34 (0.8) +50 (0.8) +35.4 +40 +69 (0.08)
8 59 8 59 8 2 59 8 8 2 20 20 23 8 20 20 23 23 20 20 20 20 20 8 56 20
~
neat liquid
-31.3
23
40% in CH2C12 30% in CCl4 C6Hxz 50 % in CCk 10% in CH2C12 40% in Phil 30% in CCI4 50 % in CH2C12 30% in CCI4 30 % in CCI4 30 % in CCL, 20 % in CCI4 30% in CCh 20 % in CCh CH2C12 Phil satd. CCi4 25% in CCl4 50% in CCI4 CC14 30 % in CCh CCI4 C~H12 neat liquid neat liquid neat liquid neat liquid neat liquid CCI4 neat liquid neat liquid
+23 (0.5) +98 (0.5) + 111.1 + 124 (1.3) +65 (0.3) + 13 (0.8) + 19 (0.5) +66 (1.0) +63 (0.5) +63 (0.5) +63 (0.5) +81 (1.0) +141 (0.8) - 9 (0.5) -90 +2.8 +6 (1.3) +34 (0.5) +42 (1..0) +37.6 +52 (0.8) +50.6 + 110.5 +95 (2) +34.3 +65.9 +68 (2) +86.4 + 14.6 +45 (2) +41.7
36 36 23 36 20 36 36 36 36 36 36 36 36 36 23 23 36 36 36 23 36 23 23 67 23 8 67 8 23 67 8
e It
EtSn(CH2Ph)3 EtSnPha EtSnPh3 EtSn(CH:CH2)3 Et2Sn(C2Fs)2 Et2Sn(CH2Ph)2 Et2SntBu2 Et2SnPh2 Et2Sn(C6I-I4Me-2)2 Et2Sn(C6H4Me-3)2 Et2Sn(C~H4Me-4)2 Et2Sn(CH :CH2)2 Et2Sn(C]CH)2 EtaSnMe EtaSnCH2CONMe2 EtaSnCHzCHuSiMe2CH: CHMe EtaSnCH2Ph EtaSnPh EtaSnCH:CH2 EtaSnCH:CH2 EtaSnC~CH Pr3SnCH:CHOBu BuSnPh3 BuSn(C6H4CF3-3)3 BuSn(CH:CHMe)3 Bu2SnPh2 Bu2Sn(C6H4CFa-3)2 Bu2Sn(CH:CH2)2 BuaSnCH2CH2OEt BuaSnPh BuaSnPh
119Sn chemical shift in tin chemistry
31
Compound
Solution
Bu3SnCc,I-I4CFa-2 BuaSnC6I-I4CF3-3
neat liquid neat liquid CHCh CHCla CHCIa
+25 (2) +38 (2) + 102.5 + 106.5 + 113.7
67 67 8 8 8
10% in C6H12 ( - 2 0 °) Phil 50% in Bu20 80% in Phi1 50% in Phil CCl4 20 % in T. M. S. (30 °)
+225 +104.5 +282 (1.3) +231 (0.3) +40 (0.4) +91.4 "t:234
62 23 20 20 20 23 62
+ 10% Phil neat liquid neat liquid 40% in CDCIa + 20 mole % dioxan 20% in T.H.F.
+113 (0.03) + 109 +79.5 +149 +183 (0.1)
2 8 8 3 20
Ct,H 32 Phil Phil Phil
-66.3 -161 -121 -43
8 64 64 64
-86.15 (0.4) - 8 7 . 0 (1.3) -77.8 (4.7) - 8 2 (0.8) -84.5 -77.8 (2.3) - 6 4 (0.5) +80.6 +109 (1.3)
23, 60 20 35 2 23 35 2 8 2
+130 +137 +168 +145 +141 +141
15 27 27 27 65 27-.
PhSn(cycio-C6HlOa Ph2Sn(cyclo- Ct,I-It 02 Ph3Sn(cyclo-Cd-I~ 1)
Shift
Ref.
23. Organotin hydrides, RnSnH4--. Me2SnH2 MeaSnH EtSnI-I3 Et2SnH2 EtaSnH BuaSnH Ph2SnI-I2
24. Compounds containing a tin-metal bond (a) Sn---Sn, Sn,--Si and Sn-Li bonds MeaSnSnMea Me3SnSnMe3 Bu3SnSnBu3 Me3SnSiPh3 MeaSnLi
(b) Tin-transition metal bonds Me3SnMn(CO)s MeaSnCr(CO)3 (~t-CsHs) MeaSnMo(CO)3(~-CsHs) Me3SnW(CO)3(~t-CsHs)
25. Organotin oxides (containing an Sn-O-Sn bond) (a) Unsubstituted organotin oxides Et3SnOSnEt3 Et3SnOSnEt3 npr3SnOSn~Pr3 *BuaSnOSn"Bua "BuaSnOSnnBu3 nBu3SnOSnnBu3
CCI4 90 % in CH2Ci2 neat liquid + 10% Phil CC14 neat liquid
(Me.lpr.cyclo-CeHlO2SnO
CH2C12
PhaSnOSnPh3 Ph2Sn(OSnPh3)2
CHC13 CH2CI2
(b) 1,3-disubstituted distannoxanes, (R2SnX)20 (Me2SnOSiMe3)20 (Me2SnOSiMe3)20
(Bu2SnF)20 (Bu2SnCI)20 (Bu2SrtBr)20 (Bu2SnBr)20 (Bu2SnNCS)20 (Bu2SnOSiMe3)20
(Bu2SnOCOMe)20 (Bu2SnOCOCTHIs)20
(Bu2SnOPh)20 (Bu2SnOC~I-I4Me-4)20 (Bu2SnOC6H4OMe-4)20 (Bu2SnOC6I-I4CI-4)20
satd. CC'14 satd. CCh satd. CCI4 satd. CCh satd. CCh satd. Phil satd. Phil satd. Phil satd. Phil neat liquid satd. Phil satd. Phil satd. Phil satd. Phil
and +156 (2) and +153 (2) (broad) (14) and +94 (5) and +92 (5) and q-87 (5) +159 (broad) (9) + 163 (5) +221 (broad) (5) 1 broad peak + 181 (broad)(5) + 181 (2) +188 (2) +177 (broad)(5)
27 27 14 27 27 27 27
- 1 2 1 (1) - 2 (0.1)
65 2
2 7
26. Stannasiloxanes (containing an Sn--O-Si bond) MeaSnOSiPh3 Me2Sn(OSiPh3)2
satd. CC!4 CH2C12
-
32
Peter J. Smith and Les Smith
Compound
Solution
Shift
Ref.
Bu3SnOSiPh3 BuaSnOSiMe3 BuaSn(OSiPh3)2 Bu2Sn(OSiPII3)2 Ph3SnOSiPh3 Ph2Sn(OSiPha)2
neat liquid neat liquid satd. CC14 or Phil neat liquid (82 °) CH2C12 satd. CDC13
- 8 9 (2) -71 (2) +36 (2) +45 (2) +103 (0.8) + 188 (5)
33 33 33 33 2 65
-125.6 -128 (0.1) -131~(0.05) -144 (0.08) -123 (0.5)
8 2 20 20 20
- 8 8 (0.1) -100 (0.1) -114 (0.1) -109 (0.1) -126.9 -124 (2) -81.9 -109 (1.3) - 9 2 (1.3) -19.5 +48.7
2 2 2 2 23 1 23 2 2 8 8
28. Organotin derivatives of carboranes (MeaSn)2C~BIoI-Ilo CCI4 EtaSn(p-C2BloHlo) CS2
-40.3 -15.1
23 23
29. Covalent organotin halide complexes Me2SnCI2, 2 D.M.S.O. satd. CH2C!2 Me2SnCh, "2 Ph3PO satd. CH2Ci2 MeaSnCl, D.M.S.O. satd. CH2CI 2 Me3SnCI, py CHCI3 Me3SnCl, py MeCN Me2SnBr2, bipy satd. CH2CI2 MeaSnBr, PhNH2 CHCI3 Me2SnI2, bipy satd. CH2CI2
+84 (0.08) +83 (0.3) +86 (1.3) -25.4 -20.2 +245 (3) -149.9 +237 (3)
20 20 20 8 8 20 8 20
30. Ionic organotin halide complexes (MeSnCls)2" H20 (MeSnBrs)2" H20 (MeSnBr3CI2)2" H20 (EhN)÷(MeaSnC12)satd. Me2CO (MeaSn, bipy)+(BPh4)satd. CH2C12
+464 (0.5) +662 (0.5) +546 (0.5) +53 (0.05) +18 (0.1)
2 2 2 20 20
27. Organotin sulphides (containing an Sn---S-Sn bond) (Me2SnS)3 CS2 (Me2SnS)3 Phil (Me2SnS)3 20% in CH2C12 (Me2SnCI)2S 20% in CH2C12 (Me2SnBr)2S 20% in CH2C12 I
I
Me2SnaSSnaMe2NEtSnbMe2NEt Me2S/~SSnbMe2NEtSnbMe2~ (Bu2SnS)3 (Bu2SnS)3 BuaSnSSnBu3 BrBu2SnaSSnbBu2Br (Ph2SnS)3 PhaSnSSnPh3
Phil tin a tin b Phil tin a tin b CC14 neat liquid CCI4 CH2C12 tin a tin b CHC13 neat liquid
Acknowledgements 6. References The authors wish to express their appreciation to Dr. David Dodd and Mr. S. N. Anderson (University College London) for reading through the manuscript; to Drs. R. F. M. White, John D. Kennedy and David S. Rycroft (City of London Polytechnic) for many helpful discussions; and to Professor Alwyn Davies for initiating their interest in tin chemistry.
1 J.J. Burke and P.C. Lauterbur, J. Am. Chem. Soc., 83, 326 (1961). 2 A.G. Davies, P. G. Harrison, J. D. Kennedy, T. N. Mitchell, R.J. Puddephatt and W. McFarlane, J. Chem. Soc. C, 1969, 1136. 3 H. Elser and H. Dreeskamp, Ber. Bunsenges. Phys. Chem., 73, 619 (1969).
l aOSnchemical shift in tin chemistry 4 G.E. Maciel, in "N.M.R. of Nuclei other t h a n P r o t o n s " (T. Axenrod and G.A. Webb, eds.), Wiley, New York, February, 1974. 5 D.D. Traficante and J.A. Simms, Rev. Sci. Instr., 43, 1122 (1972). 6 P.J. Smith, Organometal. Chem. Rev. A, 1970, 373. 7 P.C. Lauterbur, Det. Org. Struct. Phys. Meth. 2, 486 (1962). 8 B.K. Hunter and L.W. Reeves, Can. J. Chem. 46, 1399 (1968). 9 J. Kaufman, W. Sahm and A. Schwenk, Z. Naturforsch. A 26, 1384 (1971). 10 J.W. Emsley, J. Feeney and L.H. Sutcliffe, "High Resolu- ! tion Nuclear Magnetic Resonance Spectroscopy", Vol. 2, p. 1100 (1966), Pergamon, Oxford. 11 W.G. Henderson and E.F. Mooney, in "Annual Review of N.M.R. Spectroscopy" (E.F. Mooney, ed), Vol. 2, p. 219 (1969), Academic Press, New York. 12 P. Pregosin and E.W. Randall, Det. Org. Struct. Phys. Meth., 4, 263 (1971). 13 R. Lichter, ibid., 4, 195 (1971). 14 D.L. Alleston, A.G. Davies, M. Hancock and R.F.M. White, .I. Chem. Soc., 1963, 5469. 15 W.J. Considine, G.A. Baum and R.C. Jones, J. Organomet. Chem., 3, 308 (1965). 16 G.C. Levy, J. Am. Chem. Soc., 94, 4793 (1972). 17 W. McFadane, Det. Org. Struct. Phys. Meth., 4, 139 (1971). 18 P.R. Wells, P.J. Banney and D.C. McWilliam, J. Magn. Res., 2, 235 (1970). 19 Ref. 17, p. 168. 20 P.G. Harrison, S.E. Ulrich and J.J. Zuckermann, Z Am. Chem. Soc., 93, 5398 (1971). 21 K.Furue, T. Kimura, N. Yasuoka,N. Kasai and M. Kakudo, Bull. Chem. Soc. Jap., 43, 1661 (1970). 22 T..Kimura, N. Yasuoka, N. Kasai and M. Kakudo, Bull. Chem. Soc. Jap., 45, 1649 (1972). 23 A.P. Tup~iauskas, N.M. Sergeyev and Yu. A. Ustynyuk, Org. Magn. Res., 3, 655 (1971). 24 R.V. Parish and R.H. Platt, lnorg. Chim. Acta, 4, 589 (1970). 25 J.C. May, D. Petridis and C. Curran, ibid., 5, 511 (1971). 26 A.C. Chapman, A.G. Davies, P.G. Harrison and W. McFarlane, J. Chem. Soc. C, 1970, 821. 27 A.G. Davies, L. Smith, P.J. Smith and W. McFarlane, J. Organomet. Chem., 29, 245 (1971). 28 R. Okawara and M. Wada, Adv. Organomet. Chem., 5, 137 (1967). 29 Y.M. Chow, lnorg. Chem., 10, 673 (1971). 30 H. Matsuda, A. Kashiwa, S. Matsuda, N. Kasai and K. Jitsumori, J. Organomet. Chem., 34, 341 (1972). 31 W. McFarlane and R.J. Wood, J. Organomet. Chem., 40, C17 (1972). 32 N.W. Alcock and R.E. Timms, J. Chem. Soc. A, 1968, 1873. 33 P.J. Smith, R.F.M. White and L. Smith, J. Organomet. Chem., 40, 341 (1972). 34 R.W. Taft, Jr., "Steric Effects in Organic Chemistry," ed. M~ S. Newman, ch. 13, Wiley, New York, 1956. 35 L. Smith, Ph.D. Thesis, University of London, 1972. 36 W. McFarlane, J.C. Maire and M. Delmas, J. Chem. Soc. Dalton Trans., 1972, 1862. 37 M.G. Hogben, A.J. Oliver and W.A.G. Graham, Chem. Comm., 1967, 1183. 38 G. Barbieri and F. Taddei, J. Chem. Soc. Perkin H., 1972, 1323. 39 A.R. Lyons and M.C.R. Symons, Chem. Comm., 1971, 1068.
33 40 R.V. Parish and R.H. Platt, J. Chem. Soc. A, 1969, 2145. 41 B.A. Goodman and N.N. Greenwood, J. Chem. Soc. A, 1971, 1862. 42 L. Verdonck and G. P. van der Kelen, J. Organomet. Chem., 40, 139 (1972). 43 J. Mason, J. Chem. Soc. A, 1971, 1038. 44 J.D. Kennedy,. W. McFarlane, P.J. Smith, R.F.M. White and L. Smith, J. Chem. Soc. Perkin H., 1973, 1785. 45 A.P. Tup~iauskas, N.M. Sergeyev and Yu. A. Ustynyuk, Liet. Fiz. Rinkinys., 11, 93 (1971). 46 E.V. van den Berghe and G.P. van der Kelen, J. Organomet. Chem., 26, 207 (1971). 47 J.D. Kennedy, personal communication. 48 E.W. Randall and J. J. Zuckerman, J. Am. Chem. Soc., 90, 3167 (1968). 49 P.G. Harrison, S.E. Ulrich and J.J. Zuckerman, Inorg. Chem., 11, 25 (1972). 50 J. Mack and C.H. Yoder, ibid.,8, 278 (1969). 51 P.R. Wells, Det. Org. Struct. Phys. Meth., 4, 233 (1971). 52 R. Hulme, J. Chem. Soc., 1963, 1524. 53 A.G. Davies, L. Smith and P.J. Smith, J. Organomet. Chem., 39, 279 (1972). 54 V.N. Torocheshnikov, A.P. Tup~iauskas, N.M. Sergeyev and Yu. A. Ustynyuk, J. Organomet. Chem., 35, C25 (1972). 55 P.G. Harrison, S.E. Ulrich and J.J. Zuckerman, lnorg. Nucl. Chem. Lett., 7, 865 (1971). 56 D.C. McWiUiam, M. Sc. Thesis, University of Queensland, 1970, quoted in Ref. 51. 57 J.R. Webster and W.L. Jolly, lnorg. Chem., 10, 877 (1971). 58 W. McFarlane and R.J. Wood, Chem. Comm., 1969, 262. 59 W. McFarlane, private communication, quoted in: R.G. Jones, P. Partington, W.J. Rennie and R.M.G. Roberts, J. Organomet. Chem., 35, 291 (1972). 60 A.P. Tup~iauskas, N.M. Sergeyev and Yu. A. Ustynyuk, Mol. Phys., 21, 179 (1971). 61 K. Hildenbrand and H. Dreeskamp, Z. Phys. Chem. Frankfurt, 69, 171 (1970). 62 C. Schumann and H. Dreeskamp, J. Magn. Res., 3, 204 (1970). 63 A. Fratiello, S. Peak, R. E. Schuster and D. Davies, J. Phys. Chem., 74, 3730 (1970). 64 M.F. Lappert, W. McFarlane and J. S. Poland, unpublished data, quoted in: S. R. A. Bird, J. D. Donaldson, S. A. Keppie and M.F. Lappert, J. Chem. Soc. A, 1971, 1311. 65 L. Smith and P.J. Smith, unpublished results. 66 J.D. Kennedy and L. Smith, unpublished results. 67 M. Barnard, P.J. Smith and R.F.M. White, unpublished results. 68 R.R. Sharp, J. Chem. Phys., 57, 5321 (1972). 69 L. Smith, P.J. Smith and R.F.M. White, unpublished results. 70 E.V. van den Berghe and G.P. van der Kelen, J. Organometal. Chem., 59, 175 (1973). 71 J.D. Kennedy and W. McFarlane, J. Chem. Soc. Perkin II, Paper 3/1592, in press. 72 J.D. Kennedy and W. McFartane, J. Chem. Soc. Dalton Trans., 1973, 2134. 73 E.V. van den Berghe and G.P. van der Kelen, J. Organometal. Chem., 61, 197 (1973).
Note added in proof (December 1973): Since this Review was submitted in May, further reports of 1195n chemical shift data have appeared on methyltin compounds, Mea._,SnX. (X = Halogen 7°, SR 71, SeMe 72, NR273 and, in part, ORT1'73), which are not included in the tables.