Email:
[email protected]
Login
Register
English
Deutsch
Español
Français
Português
Home
Add new document
Sign In
Create An Account
APPROACH OF FUZZY MODELING WITH BOUNDED DATA UNCERTAINTIES
HOME
APPROACH OF FUZZY MODELING WITH BOUNDED DATA UNCERTAINTIES
APPROACH OF FUZZY MODELING WITH BOUNDED DATA UNCERTAINTIES
Copyright © 2002 IFAC 15th Triennial World Congress, Barcelona, Spain www.elsevier.com/locate/ifac ...
Download PDF
252KB Sizes
0 Downloads
69 Views
Report
Recommend Documents
APPROACH OF FUZZY MODELING WITH BOUNDED DATA UNCERTAINTIES
Robust least squares methods under bounded data uncertainties
Robust least squares methods under bounded data uncertainties
Modeling fuzzy data with XML: A survey
A Novel Approach to T-S Fuzzy Modeling of Nonlinear Dynamic Systems with Uncertainties using Symbolic Interval-Valued Outputs
Modeling uncertainties in estimation of canopy LAI from hyperspectral remote sensing data – A Bayesian approach
Stochastic modeling of heat exchanger response to data uncertainties
Safe Learning for Distributed Systems with Bounded Uncertainties*
Modeling of uncertainties in reliability centered maintenance — a probabilistic approach
Fuzzy bounded operators
Moving horizon state estimation for nonlinear systems with bounded uncertainties
Hybrid robust approach for TSK fuzzy modeling with outliers
PDF Reader
Full Text
Copyright © 2002 IFAC 15th Triennial World Congress, Barcelona, Spain
www.elsevier.com/locate/ifac
!"#$%&#'()$ )
!
" # $ % $
% ! % ! & ( '**+, ( )" !
!$%) % *+,-./+-,
" # )
ρ = + ∑ δ − + ∑ δ
&
%& ) % ( ) !
δ ≤ρ
# 3 4 # ! *556 + ! / $ 343 # η η = + ∆ − + ∆
( + ∆! ) + ∆) ) ! ∆ = 1∆! ∆)0 $)) 2 # % & " ≅ # " # ∆
∆ ≤η ∆ ≤η
/ $! 343! *557 + $ % ! # ! %
& & )
" # ∆ ∆ " # 3 #
! "
# $ % &' ()
,! % &
301
χ +
& ! & ! !
∆
∆
%8 $ % !
µ &
$
=
" $%) %
!
% $%!9 % !*57:
=
&
!
∑ µ ∑ µ ∈
??
∈
@& ∈
& ! #
= =
=
; %
??
! %%
&
/
4 ! ?*
% %& ! ∈
% ! ,+ < %!<%! *55=! & % / !
&% " # % & !
*55>! ! % ! & ; % ; %
∈
=
∑
−
?=
=
µ =
?B ! % 2 ?: ! ⋅ α
∆ = ! γ ≤ ρ % & !
& & %& & %
∆
θ =
$
∞
≤ ζ ∆ ≤ ζ
* ,-- #&$.,/
(
∑µ
?>
=
µ =
?:
& =
+
+ > !
*
+ −α − θ µ = µ µ ?B ∈ &
?9-@#8+4., ./.@ A-.,@.,/@+,+@
=
∑µ
∑ µ
−
?6
=
% * $ %%
& & ! ! % χ ∈ ! = + + + ?*
!
302
µ + µ = µ − µ + µ =
∑
?7 & ! $
* * , #&$ 0 & )&& & 3&
{
}
∈ + ∈ =
∆ = ∆
∆
=
∆
∆ !
∆
$
ζ = + ∆ !
!
∆
$
{
{
∈ =
3&
}
({
}
)
= ζ =
∆ ≤ζ ∆ ≤ζ
ζ −
µ + ∆ ∆ = ∆ ∑ µ + ∆ ∈
ζ
=
∑ µ ∈
∑ µ + ∆ ∈
µ + ∆
∑ µ + ∆
∈
µ + ∆
+ ∆
}
({ { } = φ ({
$
+ ∆ =
%
∞
≤ η ∆
= ∆
=
≤ ∆
∞
≤ ζ ∆ ≤ ζ !
≤ η
}
=
≤ ∆
∞
=
?*=
∞
?*>
∞
≤ ζ ! %
µ + ∆ ∆ = ∑∑ µ ∆ +
= = ∑ ∈ +
∞
∞
?*:
≤ζ
& + & ! % "
∞
≤ +
?*B
+ & " ?*>!
% % 2 ∆
} ) ?** = } ζ ) ?*?
≤ ∆
)
% ?) ∞) ∆ ! %
∆
= = ζ ∈
}
% % & &
+ ∆ − + ∆
∆ ∆ ∆
}
({
∈ =
% ∞)
∆
∈
φ = ζ
+ &
"! " ?**! % "
∈ ?*? ! D E
{
∈
+
{
∆
ζ
∑ µ + ∆
)
F
µ + ∆ = + µ ∆ ∑ ∈
}
η = ζ &
= ! ∆ = ∆ ∆ ?*C + ∆ ≈ = + ∆ ζ
≤ η %&
η η η = ζ +
=
! ζ = ζ ζ = ! ∆ = ∆ ∆ ?5
∆
&% % !
≤ η ∆
"
≤ ζ ∆ ≤ ζ ! )
≤ η %
∆
∞
≤ ζ ∆ ≤ ζ
{
=
∞
? 3& ∈ = #$%
≤ ζ ∆ ≤ ζ $ ∞ ∈
≤ η ∆
% ∆
∆
∆
≤ ζ + =
= ζ +
! % ? ∆ $
∆ ≤ ζ ! % 2 ∆ ≤ ∆ = ζ
+ ∆ * %&
$
303
4 ! & 2 %& ∆ ∆
≤ η ∆
∞
≤ ζ ∆ ≤ ζ
≤ η
&% # ?*= η = ζ + ! η = ζ F
% # + ! ! % ∆
≤ η %& ! η
H & # / % ∆ ≤ ζ
#$% " / $! 343!
*557
3& ∈ × ! ≥
$! ∈ ! %& (η η ) %
{
+ ∆ − + ∆ ∆ ≤ η ∆ ≤ η
}
& "
! % ! ∆ !
∆1 !
%
&
Σ z + G ! = !
×
∈ ∈ Σ = σ σ
×
2
%! %!
σ ≥ σ ≥ ≥ σ > % %&
z F & = z +
−
Σ Σ
−
η
τ =
α
(
!
= + α
)
−
"
(
)
! α " & " Ω α = +
η ≤ τ
! −
"
+
= Σ = + η = τ = τ ! %& −
!
=
∈ − × − ∈ × ∈ − !
+
= βΣ = β ! ≤ β ≤
−
!
− %
+ ∆ − + ∆ ∆ ≤ η ∆ ≤ η
τ < η < τ ! " = + α
=
=
% + η ≥ τ ! " = + −
≤ η !
≤ η
! α " & " Ω α =
=
∆
∈ ! ∈ − !
% + η ≥ τ ! " = +
η <τ
! ∈ ×
=
/ $! 343! *557 3&
=
Ω α = Σ − η Σ + α − − z τ =
2
∆)
∈ −
∈
8 %
4 ! ! % " 2 * +#($# , 0 & & 3&
{
}
∈ + ∈ =
&''(%)! ? %& %
304
∆
∞
≤ ζ ∆ ≤ ζ *
% ! % % *
! %% ? (+$#% *+ I µ = +
α ∈ J
?/ %
= +9.#+-,@ .# ! / = + ! ∈ π
π = − ∈ = + = = 7 / "
9 @ *
. >
?6I?7
& + K 2! ! % * % % ?J =& & & /
{θ
}
∈ µ
?>I?B % ∈ ?=J
?= + @ & ! %?! %% ?
(+$#%"
∆ % ?9 @ ζ = ! ∆ ∈ −
> α ∈ ∈ /
*+ η = ζ + η = ζ J
? % 2 J
= + − +
% =9 @ ζ = ! ∆ ∈ −
+ − +
∆
= = = + − ++ =
% ? + % ∆ ∞ ≤ ζ
=F & ?% 1L J >+& % %
% ∆ ∞ → !
+ − + =
+ − ++
= = + − + =
8 ∆
+ ! ! $ & & 9 & ! %& % & % $ ∆
∞
C!
"$ ! % = & ∆ ∞ % ζ ! % - % ∆
∞
≤ ζ ∆ ≤ ζ
∞
≤ζ
%& *
&
305
% !
*/
% !
ζ
∆ %
&
92
9
92
9
*C >C 7C
1)*!*0 1)>!>0 1)7!70
*?C6 *?BB ?675
CCC:: CCC:: CCC::
C57* ?77= ?77=
C*:5 C*:5 C*:5
9 @
9 @
% 9 & ! %& % & %
! /
= + + − + − & =
× × × = = = = = A ∆ ∞ ≤ ζ =
*B ?/
∆
9 @ 92 9 1C7?C7?C=>0 ?B6B *=>: 1C=*C:6)C6C0 5CB* *=>: 1C7CC:?C*60 ?B:B *=>: 1C6>)CC*C?C0 ?:C= *=>:
9 @ 92 9 =?>C *:B* =?67 *:B= =>75 *:B6 >?>C *:B6
=) ∆
∞
≤ζ
$ ? $
, + ! 2 ; %
306
$%! 9 % ! *57:! + +H 9 % /! +@@@ - 9!/! !**B)*=? < ) % % <%! *55=! ,+ & ), $)A + ! +!!! 2 3&) .!BB:)B7: # @3 4 & # !*556!
# ) " F . ! +3 4 3 1 $ (($! ,! *C=:M*CB>
/ $! 343! 93! 4 ! *557! 5 # ! # 5 && +34 3 1$ (($4 ! !?=:M?:?
/ ! *55>! 9 + A / @ ! 4 +$$ ,-- # !.*?B6)?67 ; % <%%! *555! F A % .& !/ ; % <%% ! 9 <"! ! *555! )
9 +/ 2
9 %!+,!A %
×
Report "APPROACH OF FUZZY MODELING WITH BOUNDED DATA UNCERTAINTIES"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & close