Approach of Synthesizing Model Predictive Control and Its Applications for Rotary Kiln Calcination Process

Approach of Synthesizing Model Predictive Control and Its Applications for Rotary Kiln Calcination Process

􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇 JOURNALOFIRON ANDSTEELRESEARCH,INTERNATIONAL􀆰2 0 1 3,2 0( 8):1 4 G 1 9 􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉...

657KB Sizes 1 Downloads 170 Views

􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇􀪇

JOURNALOFIRON ANDSTEELRESEARCH,INTERNATIONAL􀆰2 0 1 3,2 0( 8):1 4 G 1 9

􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉􀪉 􀪉

Appr o a cho fSyn t he s i z i ng Mod e lPr e d i c t i v eCon t r o landI t s App l i c a t i on sf o rRo t a r l nCa l c i na t i onPr o c e s s yKi ZHANG L i1 ,  GAO Xi an Gwen2

( 1. Schoo lo fMe chan i c a l,El e c t r i c a landI n f o rma t i onEng i ne e r i ng,ShandongUn i ve r s i t i ha i264209, y,We Shandong,Ch i na;  2. Schoo lo fI n f o rma t i onSc i enc eandEng i ne e r i ng,No r t he a s t e r nUn i ve r s i t y, i na) Shenyang110819,L i aon i ng,Ch Ab s t r a c t:Ana c t ua lc on t r o ldemando fr o t a r i l ni st akena sba ckg r ound. Byana l z i ngandimp r ov i ngapp r oa cho fS G yk y MPC ( syn t he s i z i ngmode lp r ed i c t i vec on t r o l),ane f f e c t i ves t r a t egywh i chapp l i e sc omp l exS GMPCi na c t ua li ndus t r i a l , r o c e s s i sd e s i n e d . F i r s t l a f t e ra n a l z i n h em a i nc o m o n e n t st e c h n o l o n dc a l c i n a t i o nr e a c t i o n m e c h a n i s mi n p g y y gt p gya de t a i l,t hec a l c i n i ngbe l ts t a t e G spa c emode lo fr o t a r i l ni sbu i l tus i ngPOGMoe sp ( s t G ou t tmu l t i va r i ab l eou t t yk pa pu pu e r r o rs t a t espa c e mode li den t i f i c a t i on)me t hod.Then,c a l c i n i ngbe l tt empe r a t u r ep r ed i c t i vec on t r o lsy s t emi sde G s i on t r o lsy s t em c omb i ne st ime G de l ayga i ns chedu l ed,ou t t G t r a ck i ng,r e cu r s i vesubspa c eadap t i veand gned.Thec pu /on o t he rme t hods,andf o rmst heo f f G l i ne G l i nep r ed i c t i vec on t r o l l e ro fr o t a r i l n.Atl a s t,MATLABi sapp l i edf o r yk s imu l a t i on,expe r imen t sr uni nc ons t an tva l uet r a ck i ngands e r vot r a ck i ngs i t ua t i on.S imu l a t i onr e su l t sshowi t se f G f e c t i vene s sandf e a s i b i l i t y. Ke r d s:s t h e s i z i ngmod e lp r e d i c t i v ec on t r o l;s c h e du l e dt r a c k i ng;l i n e a rma t r i xi n e a l i t o t a r i l n;s o f ts e n s o r yn qu y;r yk ywo

   S GMPC ( syn t he s i z i ng mode lp r ed i c t i vecon t r o l t heo r t hgua r an t e eds t ab i l i t sbe c omeanimG y)wi yha r t an tb r ancho ft hecu r r en tp r ed i c t i vec on t r o l.Fo r po S GMPCf u l l e sa sr e f e r enc et heop t ima lc on t r o l, yus Lyapunovana l i s,i nva r i an ts e tando t he r ma t ur e ys t heo r i e s,i tha sp r omo t ednew l e apsf o rp r ed i c t i ve con t r o lt heo r t udyandha sob t a i nedp l en t eousr e G ys [ ] s e a r chr e su l t s1-3 .    I no r de rt or educ et heon G l i neMPCc ompu t a t i on , [ ] bur den t het e chn i fRe f 􀆰 2 wa sapp l i edo f f G queo l i ne,sucht ha tas equenc eo fne s t ede l l i o i dsand ps co r r e spond i ngs t a t ef e edba ck ga i nsa r ec ons t ruc t ed. Ther e a l G t imef e edba ck ga i ni sp r ope r l s enon G ycho l i nef r om Re f 􀆰[ 4]t oRe f 􀆰[ 7].Howeve r,c ompa r ed t ot het r ad i t i ona lp r ed i c t i vec on t r o lwi de l edi n y us , i ndus t r i a lpr a c t i c e S GMPCha sf ewc a s e so fsuc c e s s G f u lapp l i c a t i ons.The r ea r es eve r a lva l uab l er e su l t s, sucha smu l t i Gmode lRMPC ( r obus tmode lp r ed i c t i ve ) con t r o l t ot hec on t r o lo fnuc l e a rs t e am gene r a t o r ands t ab l et oac on t i nuouss t i r r edt ankr e a c t o rde G [ 8-11] v i c e si nl abo r a t o r c e s s f u l l .Thes t a t uso f ysuc y l a cko fpr a c t i c a lapp l i c a t i oni saga i ns tt heo r i i na li n G g

t ens i ono fS GMPC.   Thes t a r t i ngpo i n to fs t udyi nt h i spape ri st ak G i nga c t ua lcon t r o ldemando ft i c a lcomp l exi ndus G yp t r i a lp r oc e s sa s ba ckg r ound,and r e s e a r ch above r ob l ems.Fur t he rmo r e,a f t e rana l z i ngandimpr o G p y v i ng S GMPC me t hod,an e f f e c t i ves t r a t egy i s de G , s i i chapp l i e scomp l exS GMPC me t hodi na c G gned wh t ua li ndus t r i a lp r oc e s s.

1 L imeRo t a r l nPr o c e s sDe s c r i t i on yKi p

   Ac t i vel imero t a ryk i l nsys t em hasmanyt e chG no l og i c a lproc e s s e s.Theproc e s si sma i n l d i v i d ed y i nt o ma t e r i a lsys t em and a i rf l ow sys t em.Raw ma t e r i a lbe come s produc ta f t e r pr ehea t i ng,h i gh t empe r a tur ec a l c i na t i onandcoo l i ng.Pr ima rya i r, s e conda rya i randcokeovengascons t i tut ethea i r f l ow sys t em.Se conda ry a i rc ancoo lthef i n i shed t.Exhaus tgas e sent e r pr ehea t e rand pr e G produc hea tr aw ma t e r i a l. The who l e t e chno l og i c a l e s si sshowni nF i 􀆰1. I nt h i spape r,t hepr o G proc g /d, duc t i onc apa c i t fl imek i l nunde rs t udyi s600t yo i nt hes i z eo f4 􀆰0 m×60 m.

Founda t i onI t em: I t em Spons o r edbyNa t i ona lNa t ur a lSc i enc eFounda t i ono fCh i na ( 61034005) B i o r aphy: ZHANG L i( 1979—),Ma l e,Do c t o r,Le c t ur e sh i Gma i l:neuzhang l i@163 􀆰c om; Re c e i v e dDa t e:Ap r i l23,2012 p;  E g

I s sue8 App r oa cho fSyn t he s i z i ngMode lPr ed i c t i veCon t r o landI t sApp l i c a t i onsf o rRo t a r l nCa l c i na t i onPr o c e s s  􀅰 15 􀅰 yKi

augmen t ed obs e r va t i on ma t r i x Γf ands t a t espa c e ∧

ve c t o re s t ima t i on Xf c anbeob t a i nedt hr oughSVD de compos i t i on.

3 App r oa cho fS GMPC

F i 􀆰1 Te chno l o i c a lp r o c e s scha r to fr o t a r i l n g g yk

2 Ca l c i na t i onPr o c e s sMod e l l i ng    POGMoe sp me t hodi sus edi nc a l c i na t i onp r oc e s s mode l l i ng.Thes t a ckve c t o rs t a t espa c eequa t i oni s scu r r en tt ime i n t r oduc edi nEqn 􀆰( 1).Suppo s ek a andf a sf u t u r et ime,t hen ( ) (   yf =Γfx k +HfUf +GfWf +Vf 1) éê ùú ( )   y k ê ú ê ( ) úú ê  y k+1 ú ,Γf = De f i nef u t u r e ou t t yf = ê pu ê    ⋮ ú ê ú êê ( ) k+f-1 úúû ë y éê éê  D     0    􀆺  0 ùúú  C ùúú ê ê ê ú ê CB    D    􀆺  0 úú ê  CA ú ê ê ú , Hf = ê ú, ⋮ ⋮    ⋮    ⋱  ⋮ ú ê  ú ê ê ú ê ú êê êê f-1 úú f-2 C C B  CAf-3B   􀆺  D úúû ë A û ë A o t he rs t a ckve c t o rGf ,Wf ,Vf andf u t u r ei npu tUf havet hes imi l a rpe r f o rmanc e.Al s o,pa s tt imes t a ck ve c t o rc anbede s c r i beda s: (   yp =Γpx( k-p)+HpUp +GpWp +Vp 2) [ )􀆺 , ( ) ( whe r e pa s tou t typ = y k-p y k-p +1 pu T k-1)] ando t he rve c t o r sandma t r i c e shaves imG y( i l a rde f i n i t i ons.Eqn 􀆰( 1)andEqn 􀆰( 2)a r ewr i t t eni n : Hanke lma t r i xf o rm (   Yf =ΓfXf +HfUf +GfWf +Vf 3) (   Yp =ΓpXp +HpUp +GpWp +Vp 4)   I npu tandou t tHanke lma t r i xexp r e s s eda s: pu éê   y( k)   y( k+1)  􀆺  y( N -f+1)ùúú ê ê ú, Yf = ê    ⋮       ⋮    ⋱     ⋮ ú ê ú êë ( k+f-1) y( k+f)  􀆺    y( N ) úû y whe r e Hanke l ma t r i xYp ,Uf ,Wf ,Vf ,Up ,Wp , andVp haves imi l a rde f i n i t i on.Tos o l ves t a t espa c e , mode l QR de c ompo s i t i oni s madet o Hanke l ma G t r i x. é ù é ù éê T ùú ê fú ê 11  0  0  0 ú Q U L 1 ú ê ú ê ú ê ê ú ê ú ê Tú Y L L22 0 0 ú Q ê 2ú ê p ú ê 21 ( ú ú ê    êê úú = êê 5) ê Tú U L L32 L33 0 úú Q ê 3ú ê pú ê 31 ú ê ú ê ú ê êë ú êë Y L L42 L43 L44 úû êëQ4T úû 41 f û é Tù ∧ ê 2ú Q [ 42 L43 ] êê T úú =ΓfXf ,t   WhenN →∞ ,t hen L he êë úû Q3

  Thef o l l owi ngs t ab i l i z ab l et ime G de l ayl i ne a rs G ys t em wi t hapo l t op i cunc e r t a i n t s c r i t i oni scon G y yde p s i de r ed: p

  x( k+1)=A( k) x( k)+ ΣAj ( k) x( k- j=1

( τj )+B( k) u( k-τ) 6) nu nx , , r es t a t er e s e c G whe r e u∈R a r ei npu t andx∈R a p t i v e l τandτi , i∈{ 1,2,􀆺,p}a r ei n t e e ri npu tand y; g |A1 ( |􀆺|Ap ( |B ( s t a t ed e l a s;[ A( k) k) k) k)]∈Ω y whe r eΩ i st heconvexs e t.As sumet ha tAj ( k),j∈ { , ,􀆺, } 1 2 r ea s t o t i c a l l t ab l eandf o rs imG ymp ys p a l i c i t p y,0≤τ<τ1 < 􀆺 <τp .   Thepur ei st ode s i r ed i c t i vecon t r o l l e r pos gnap , t ha tbr i ngst hes t emt ot heequ i l i br i um po i n t a t ys ch i ev i ngt hef o l l owi ngcos ti ndex: e a cht imek a   mi n J∞ ( k)= max u( k) [ A( k+i) k+i) k+i) k+i)]∈Ω .∀i≥0 |A1( |􀆺|Ap ( |B( ∞ 2 W i=0

    Σ [‖x( k+τ+i| k)‖ +‖u( k+i| k)‖2R ]

k+i| k)≤u,-ψ≤ψx( k+τ+ s 􀆰t 􀆰 -u≤u( -



(    i+1| k)≤ψ,∀i≥0 7) /upp whe r e,uandui si npu tc on s t r a i n t sl owe r e rbound; -

/uppe -ψandψi ss t a t econs t r a i n t sl owe r rbound;W -

andR i spe r f o rmanc ei ndexwe i tma t r i c e s. gh

3 􀆰1 Of f G l i nepr e d i c t i v ec on t r o l   Toso l veEqn 􀆰( 7),t hep r ed i c t i ono fx( k+i| k) i sne eded. I ti spos s i b l et ode f i nes e t si n wh i cht he f u t ur es t a t e swi l ll i e.De f i net hes e tχ( k+i|k)=Co 􀆺 { xli-1 l1l0 ( k+i|k),1≤lj ≤L ,0≤j≤i-1}.As G 􀆺 sumi ngt ha tx( k+i| k)∈χ( k+i|k),i fxli-1 l1l0 ( k +i| k)s a t i s f i e s 􀆺 li-1􀆺l1l0 (   x k+i+1| k)=Alixli-1 l1l0 ( k+i| k)+ p

li li-τj -1     ΣAj x j=1 li li-1􀆺l1l0

􀆺l1l0

( k+i-τj| k)+

( (    B u k+i-τ| k) 8) , ( ) whe r e χ k+i|k i st het i t e s ts e tt ha tcon t a i ns gh a l lpos s i b l ef u t ur es t a t e sx( k+i+1|k).Nows e l e c t Lyapunovf unc t i onr e f e r r i ngt ot he me t hodo f Ko G ha r ei n1996.Thes t ab i l i t t r a i n t sc anbego t: ycons T Tù é êΛ   Ml   Ξ ú ê ú (    êêMl Λ 0 úú ≥0, l∈ { 1, 2,􀆺, L} 9) ê ú ê Ξ 0 γI úû ë , { whe r e Λ =d i ag Q ,Q0 ,Q1 ,􀆺,Qp },Ml =

    J ou r na lo fI r onandS t e e lRe s e a r ch,I n t e r na t i ona l              Vo l 􀆰20 

􀅰 16 􀅰

l l l l éê l A Q  B Y A1Q1   􀆺  Ap-1Qp-1  ApQp ùúú ê ê ú 􀆺 0 0 0 0 Q ê ú ê ú ê ú, 􀆺 0 0 0 0 Ξ= 0 Q ê ú ê ú ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ê ú ê ú ê ú 􀆺 Qp-1 0 0 0 0 ë û 1/2 éê ù 􀆺   0  0ú W Q   0    0  ê ú .I tf o l l owst ha t / êê 0 R1 2Y 0 􀆺 0 0úúû ë J∞ ( k)≤V [ w( k+τ|k)].De f i neV [ w( k+i|k)]≤ , , γ whe r eγi sauppe rbounds c a l a r andEqn 􀆰( 9) i sequ i va l en tt o:

    1     ∗ ùúú ≥0,∀l0 , l1 ,􀆺, 􀆺 wlτ-1 l1l0 ( k+τ| k) Λ úúû L} (            lτ-1 ∈ { 1, 2,􀆺, 10)   Suppo s et he r ea r eaγ,s Z, mm e t r i c m a t r i c e s y , { , ,􀆺, , , , } Γ Q Q0 Qj j∈ 1 2 t r i xY =F p andma ( ha tEqn 􀆰( 9),Eqn 􀆰( 10)andt hef o l l owG k) Q0sucht   

éê ê êê ë

i ngLMIa r es a t i s f i ed. é ù êZ ú  Y ú 2 , j ≤uj    êêê T 1,􀆺, nu } ( 11) i . n f, j= { ú ≥0 Zj Y ë Q0 úû êé   Γ    ∗ ∗  􀆺  ∗ úù ê ú T ê ú AlQ) Q ê( ú ψ ê ú l T ú ≥0 ) ( B Y   12)    êê( Q0 ψ ú ê ú ê           ⋱ ú ê ú T ê( l ]       Qp úû ApQp ) ë ψ whe r e,uj,inf= mi uj ,uj };ψs,inf = mi n{ n{ s, ψ ψs}; - -

Zjji st hejt hd i agona le l emen t so fZ.Thent hecon G s t r a i n ti ss a t i s f i ed.Ateacht imeapp l i ngcont ro l y ( ) ( ) ( ) , u k =F k x k t hef o l l owi ngr e su l tc anbeob G t a i ned:   

mi n

γ

γ, Q, Q0, Q1,􀆺 , Qp , Y, Z, Γ

  s 􀆰t 􀆰 Eqn 􀆰( 9), Eqn 􀆰( 10), Eqn 􀆰( 11), Eqn 􀆰( 12) ( 13)   Re f e r r i ngt ot heo f f G l i neRMPCi n Eqn 􀆰( 11),

t heo f f G l i neme t hodc anbeob t a i nede a s i l st hea l G ya r i t hm1. go   1)Of f G l i n e.S e l e c ta ugme n t e ds t a t e swi ,i∈ { 1, lτ-1􀆺l1l0 􀆺,N },t ( h e ns ub s t i t u t ee a c hs t a t ew k+τ|k) i nEqn 􀆰( 10),c ompu t et hec o r r e spond i ng { γi ,Qi , nx ( τp +1) T , } , { Λi Yi e l l i o i dsεi = w ∈R |w Λi-1w ≤ ps -1 1}andf e edba ckga i nsFi =YiQi ,whe r ewi shou l d , { ,􀆺, } , s a t i s f ε ⊂ ε ∀ ∈ 2 N a n d y j j-1 j l T -1 l   Λi-1 - ( Ti l∈ { 1,􀆺, L} ( 14) +1 )Λi Ti+1 >0,

  2)On G l i ne.Ate a cht ime,kt ake st hef o l l owi ng s t a t ef e edba ckl aw: ïìF[ αi( k)] x( k), w( k)∈εi , ï ï ( u( k)=F( k) x( k)= íï w ( k)∉εi+1 , i≠N 15) ï ïF x( ) , ( ) k w k ∈ ε î N N whe r e,F [ αi( k)]=αi( k) Fi + [ 1-αi ( k)] Fi+1 ,and T -1 -1 w( k) { αi( k) Λi + [ 1-αi( k)] Λi+1} w( k)=1.

3 􀆰2 Ou t t G t r a ck i ngde s i pu gn 3 􀆰2 􀆰1 MPCf o rt rac k i ng   Suppos et ha ts t emou t ty( k)i sr equ i r edt o ys pu , ( t r a ckt heg i v e nt a r e t . A ts t e a d s t a t e z = x g yr y s s, ) , ( ) us i saso l u t i ono fEqn 􀆰 16 . (   Ezs =Fyr 16)

éê ù 0 A0 -Inx  B0 ùúú nx , ny ú ê ú, , F = nd [ A0 , êê úú a  C0 D0 úúû I ë ny û B0]i sthenomi na lmode l.Then,theso l ut i ono f th i sequa t i onc anbepa r ame t e r i z eda szs = Mθθ and r eθ∈Rnθ i sapa r ame t e rve c t o r,and yr =Nθθ,whe -1 T ìï[ i fr<nx +nu ï VΣ U FG  V ⊥ ] Mθ = íïï -1 T and V i fr=nx +nu î Σ U FG ïì[ i fr<nx +nu ny , nx +nu -r ] ï G  0 .He r e,E = Nθ = íïï i fr=nx +nu îG ( ) UΣVT ,r=r ank( E ),U ∈R nx +ny ×r ,Σ∈Rr×r ,V ∈ ìï I i fr=nx +ny ï ny     ( ) .Ma t r i x R nx +ny ×r and G = íïï T ) ( fr<nx +ny î F U ⊥ ⊥i Gi saf u l lco l umnr ankandrg ≤ny . 3 􀆰2 􀆰2 De s ignofo G l i ner o bu s ts t a t eo b s e rve r ff   A s imp l eLuenbe r robs e r ve rt oe s t ima t et he ge s t a t eo fEqn 􀆰( 6)i sus ed:

whe r e,E =

éê ê êê ë





x( k+1)=A0x( k)+B0u( k)+ ∧

     Lp [ k)-y( k)], y( ∧



( 17)

k)=Cx( k)+Du( k) y( ∧ nx k)∈R i st hecur r en tobs e r ve rs t a t e,and whe r ex( Lp ∈Rnx ×ny i st heobs e r ve rga i nt obede t e rmi ned.

3 􀆰3 She du l e d G t r a ck i ng MPCde s i Al r i t hm2) gn ( go   Eq n 􀆰( 1)g i v e st h ee i l i b r i ums u r f a c ea ndc ompu t e s qu s ( ) t h eexpe c t edequ i l i br i um po i n tf r omyr byEqn 􀆰 16 .   1)Of f G l i ne.S t a r tf r om j=0,spe c i f st he yj a () () x j ,u j ),so l vea l G co r r e spond i ngcon t r o l l e ro f( go ( j), ( j), ( j), ( j)} , { , ,􀆺, r i t hm1 andge t γi Qi Λi Yi i=1 () () () N .Andt hes t a t ef e edba ckga i nFij =Yij ( Qij )-1i s t r o l l e ri nl ook Gupt ab l e.Al ongt hed i G s t o r eda sjcon ( ( s) s) ( , ) , r e c t i ono fx u choos et henex tequ i l i br i um ( ) ( ) i n t( x j+1 ,u j+1 ).Le tj =j +1,r epe a tt h i s po () r oc e s sun t i l ∪jM=0 ∪iN=0εij ,and M = maxj cove r p ( ( s) s) ( , ) t heexpe c t edpo i n tx u .   2)Gi v i ngani n i t i a lx( 0).Le tt hes t a t ebex( k) ( ) r f o rm al i nes e a r chove r{ γij , a tt imek.Then pe ( j), ( j), ( j)} Qi Λi Yi i nt hel ook Gupt ab l et of i ndt hel a r G s tcon t r o l l e rj andt hel a r s tsubs c r i ti such ge ge p () () t ha tx( k)∈εij . Imp l emen tu( k)=Fij ( k)[ x( k)- ( ( j)] j) x +u ons t em. ys

4 Ro t a r l nCa l c i n i z i ngZon eTemp e r a t u r e y Ki MPCCon t r o ls s t em y   I nF i 􀆰2,t her o t a r i l ni st ake na st her e s e a r c h g yk

I s sue8 App r oa cho fSyn t he s i z i ngMode lPr ed i c t i veCon t r o landI t sApp l i c a t i onsf o rRo t a r l nCa l c i na t i onPr o c e s s  􀅰 17 􀅰 yKi

ob e c t,andc a l c i n i ngbe l tt empe r a t u r ep r ed i c t i vecon G j t r o ls t emi sde s i on t r o ls t emc ons i s t s ys gned.Thec ys o fs e tva l uemodu l e,c a l c i n i ngbe l tt empe r a t ur eso f t s ens o r,syn t he s i z i ng mode lp r ed i c t i vec on t r o lmod G

u l e,e t c.Asshowni nF i 􀆰3,on G l i necon t r o ls t em g ys , cons i s t so ft a r tc a l cu l a t i ngun i t op t imi z a t i onso l u G ge t i onun i t,s t a t eobs e r ve run i tandr e cur s i vesubspa c e adap t i veun i t.

F i 􀆰2 S t r u c t u r ed i a r amo fr o t a r i l nc a l c i n i ngb e l tt emp e r a t u r ec on t r o ls s t em g g yk y

F i 􀆰3 On G l i n ec on t r o ls s t emd i a r am g y g

5 S imu l a t i onExp e r imen t

t ot hes t em ma t r i xchanger angeandchangel aw ys i nt heope r a t i onp r oc e s s,i n t r oduc et hepe r t urba t i on , , , t e rmμ1 μ2 andμ3 . So t hes t a t espa c emode lpa G r ame t e r sa r ea sf o l l ows:

  I no r d e rt oc h a r a c t e r i z et h eun c e r t a i n t c c o r d i ng y,a éê ùú ( ) 0 􀆰 9 9 3 6 k   0 􀆰 0 0 1 5     -0 􀆰0062  -0 􀆰0007  -0 􀆰0001 1 μ ê ú ê ú 0 0063 0 􀆰9906μ2( k) 0 􀆰0170 -0 􀆰0017 -0 􀆰0001 ê􀆰 ú ê ú ú   A( k)= êê -0 􀆰0009 0 􀆰0026 0 􀆰9793 -0 􀆰0147 0 􀆰0209 ú ê ú 0 0000 -0 􀆰0001 0 􀆰0018 0 􀆰9985 -0 􀆰0069 ê􀆰 ú ê ú ê -0 k)úû 􀆰0000 0 􀆰0001 -0 􀆰0015 0 􀆰0062 0 􀆰9848μ3( ë whe r e,μ1 ∈ [ 0 􀆰80,1 􀆰20],μ2 ∈ [ 0 􀆰88,1 􀆰07],μ3 ∈ Ts=10s,de l aypa r ame t e rd1 =3,d2 =10.ConG [ , ] , ( ) , ( ) , ( ) [ , ] , [ 0 􀆰99 1 􀆰01 B k =B0 C k =C0 D k =D0 . s t r a i n t sψ= 0 0 ψ= 1500,1300],u= [ 0,0],

I ti ssuppo s edt ha tt heunc e r t a i npa r ame t e r sa r es e G l e c t edr andoml na l l owab l er ange.Samp l i ngt ime yi





u= [ 12000,50000],we i t i ng ma t r i xW =d i ag( 1, gh

􀅰 18 􀅰

    J ou r na lo fI r onandS t e e lRe s e a r ch,I n t e r na t i ona l              Vo l 􀆰20 

1,1,1,1),R =d i ag( 0 􀆰1,0 􀆰1). )   1 Cons t an tva l uet r a ck i ngexpe r imen t    S imu l a t i onha sob t a i nedt heou t tcu r ve so f pu t he c on t r o l l ed va r i ab l e si nc l ud i ng c a l c i n i ng z one t empe r a t u r ey1 andk i l nt a i lt empe r a t u r ey2 sucha s F i 􀆰4 ( a)and ( b).Compa r ed wi t ht he me t hodi n g Re f 􀆰[ 8],t heme t hodo ft h i spape rha sobv i ousad G van t age ssucha ssho r tr i s et imeandsma l lf l uc t ua G

t i oni ns t e adys t a t e.I nf i xedva l uet r a ck i ngs i t ua G , t i on t hecompa r i soncur ve so fga sf l owands e cond G a r i ra r eshowni nF i 􀆰4 ( c)and ( d).Ea chs t a t e ya g componen t compa r i son cur ve si n cons t an t va l ue t r a ck i ngs i t ua t i ona r ede s c r i bedi nF i 􀆰5.Fo ru s i ng g t he ga i ns chedu l ed pr ed i c t i vecon t r o l,t hecon t r o l va r i ab l echangei nl adde rshapeexh i b i t st het r ans a c G t i onp r oc e s sa te a chi n t e rmed i a t es t e adys t a t e.

( a)Ca l c i n i ngz onet empe r a t ur eou t t;   ( b)Ki l nt a i lt empe r a t ur eou t t;   ( c)Coa lga sf l ow;   ( d)Se c onda r i rf l ow. pu pu ya

F i 􀆰4 Compa r i s onc u r v eo fc on s t an tv a l u et r a ck i ngs i t ua t i on g

F i 􀆰5 Compa r i s onc u r v eo fs t a t ec ompon en t si nc on s t an tv a l u et r a ck i ngs i t ua t i on g

  2)Se r vot r a ck i ngexpe r imen t    Se tt hei n i t i a lc a l c i n i ngz onet empe r a t ur eand k i l nt a i lt empe r a t u r ea r e1000and900 ℃. S t udyt he ab i l i t fy1 and y2 t r a ck i ng va r i ab l eg i ven va l ue. yo Thec on t r o l l ed va r i ab l e sy1 and y2 s e r vot r a ck i ng cur vei sshowni nF i 􀆰6.Ande a chs t a t ecomponent g

compa r i soncur ve sa r eshowni nF i 􀆰7. g   Thes imu l a t i onr e su l t sshowt ha tf o rt het ime va r i ngk i l ncon t r o lob e c tt hecon t r o ls t r a t egyp r o G y j edi nt h i spape rc anno ton l t r o lt empe r a t ur e pos ycon t oa ch i evet hede s i r edt a r tva l ue,bu ta l soha st he ge r obus tandf a s tt r a ck i ngab i l i t r edwi t ht he y.Compa

I s sue8 App r oa cho fSyn t he s i z i ngMode lPr ed i c t i veCon t r o landI t sApp l i c a t i onsf o rRo t a r l nCa l c i na t i onPr o c e s s  􀅰 19 􀅰 yKi

( a)Ca l c i n i ngz onet empe r a t ur eou t t;   ( b)Ki l nt a i lt empe r a t ur eou t t. pu pu

F i 􀆰6 S e r v ot r a ck i ngs i t ua t i onc ompa r i s onc u r v e g

F i 􀆰7 S e r v ot r a ck i ngs i t ua t i onc ompa r i s onc u r v eo fs t a t ec ompon en t s g

me t hodi nRe f 􀆰[ 8],t hep r e s en t me t hodha sbe t t e r r f o rmanc e. pe

6 Conc l u s i on

  Th i spape ri n t r oduc e sandpu t sf o rwa r das e r i e s o fnew a l r i t hmst oana l z eandimp r ovet hep r e G go y d i c t i vec on t r o l.Andane f f e c t i ves t r a t egyi sde s i gned t oapp l omp l ex p r ed i c t i vec on t r o lt op r a c t i c a li n G yc , dus t r i a lpr o c e s s.Howeve rt he r ei ss t i l lag r e a td i s G t anc ebe twe ent her e su l t sandp r a c t i c a li ndus t r i a lap G l i c a t i ons;t h i si s ma i n l c aus et hep r ob l emt ha t p ybe t hei ndus t r i a lf i e l di smo r ec omp l ext hans imu l a t i on env i r onmen t.Howt oex t r a c tp r ob l emsf r omi ndus G t r i a lpr a c t i c eandgu i det hed i r e c t i ono ft h e o r e t i c a lr e G s e a r c hh a sb e c omet h es t udyf o c u s. Re f e r enc e s: [ 1]  MayneD Q,Rawl i ngJB,RaoCV. Cons t r a i nedMode lPr ed i c G t i veCon t r o l:S t ab i l i t t ima l i t J].Au t oma t i c a,2000, yandOp y[ 36( 6):789. [ 2]  Ko t ha r eM V,Ba l akr i shnanV,Mo r a r iM.Robus tCons t r a i ned Mode lPr ed i c t i veCon t r o lUs i ngL i ne a rMa t r i xI nequa l i t i e s[ J]. Au t oma t i c a,1996,32( 10):1361.

[ 3]  Cuz z o l aFC,Ge r ome lJC,Mo r a r iM.AnImp r ovedApp r oa ch f o rCons t r a i nedRobus tMode lPr ed i c t i veCon t r o l[ J].Au t oma t G i c a,2002,38( 7):1183. [ 4]  WanZY,Ko t ha r eM V.AnEf f i c i en tOf f GL i neFo rmu l a t i ono f

Robus tMode lPr ed i c t i veCon t r o lUs i ngL i ne a rMa t r i xI nequa l i G t i e s[ J].Au t oma t i c a,2003,39( 5):837. [ 5]  Cychowsk iM T,MahonyO. Fe edba ckMi n GMaxMode lPr ed i c G t i ve Con t r o l Us i ng Robus t One GS t ep Se t s[ J].I n t e r na t i ona l J our na lo fSys t emsSc i enc e,2010,41( 7):813. [ 6]  Kouva r i t ak i sB,Ro s s i t e rJA,SchuurmansJ.Ef f i c i en tRobus t Pr ed i c t i veCon t r o l[ J]. IEEE Tr ans a c t i onson Au t oma t i cCon G t r o l,2000,45( 8):1545. [ 7]  Bao c angD,YugengX,Ma r c i nT,e ta l.ASyn t he s i sApp r oa ch

f o rOu t tFe edba ckRobus tCons t r a i nedMode lPr ed i c t i veCon G pu t r o l[ J].Au t oma t i c a,2008,44( 1):258. [ 8]  WANZhao G e shV Ko t ha r e.AFr amewo rkf o rDe G yang,Mayur s i fSchedu l ed Ou t tFe edba ck Mode lPr ed i c t i ve Con t r o l gno pu [ J]. J our na lo fPr o c e s sCon t r o l,2008,18( 3/4):391. [ 9]  KE Hu,YUANJ i ng G i.Mu l t i GMode lPr ed i c t i veCon t r o lMe t h G q odf o rNuc l e a rS t e am Gene r a t o rWa t e rLeve l[ J].Ene r G gyCon ve r s i onand Managemen t,2008,49( 5):1167. [ 10]  Gr ube rJK,Rami r e zD R,Al amo T,e ta l.Mi n GMax MPC

Ba s edonanUppe rBoundo ft heWo r s tCa s eCo s tWi t hGua r G an t e edS t ab i l i t l i c a t i ont oaP i l o tP l an t[ J].J our na lo f y.App Pr o c e s sCon t r o l,2011,21( 1):194. [ 11]  Di ngB,HuangB.Cons t r a i nedRobus tMode lPr ed i c t i veCon G t r o lf o rTime GDe l aySys t ems Wi t hPo l t op i cDe s c r i t i on [ J]. y p I n t e r na t i ona lJ our na lo fCon t r o l,2007,80( 4):509.