Approdmation Theorg and Functional AnaZysds J.B. Prolla l e d . ) 0iVort.h-Holland PA Zishing Company, 1979
APPROXIMATION OF PLURISUBHARMONIC FUNCTIONS
PHILIPPE NOVERRAZ U n i v e r s i t g d e Nancy I Ma t h g m a t i q u e s 5 4 0 3 7 NANCY CEDEX, F r a n c e
If
U
i s a n open and c o n n e c t e d s u b s e t o f
a , an a p p l i c a t i o n
s i o n a l l o c a l l y convex v e c t o r s p a c e E o n (resp. [ -
a,
+ 1
an i n f i n i t e
dimen
-
f :U+a
i s s a i d t o b e h o t o m o h p h i c ( r e s p . p.&.U&ubhahmonLc) i f
)
a)
f
b)
t h e r e s t r i c t i o n of
i s continuous ( r e s p . upper semicontinuous)
f
t o any f i n i t e d i m e n s i o n a l
subspace
i s holomorphic ( r e s p . plurisubharmonic). L e t us d e n o t e by
(resp. P ( U )
H(U)
,
P,(U))
t h e s e t o f holomor-
p h i c ( r e s p . p l u r i s u b h a r m o n i c , p l u r i s u b h a r m o n i c a n d c o n t i n u o u s ) funct i o n s on
U.
If
K i s a compact , s u b s e t of
= Ix E
(U)
In
an,
n
2
2,
1) Any v i n
u,
U
,
l e t u s d e n o t e by
v ( x ) 5 s u p v , wv E P ( U ) ) . K
t h e f o l l o w i n g r e s u l t s are w e l l known ( 3 ) : P(U) i s t h e p o i n t w i s e d e c r e a s i n g l i m i t
of
p l u r i s u b h a r m o n i c f u n c t i o n s i n a s t r i c t l y smaller o p e n
2)
(ie
U'
of
If
U i s pseudo-convex
compact
U
K of
Cm
set
d(U', C U ) > 0).
U)
then
(ie Kp(u)
343
Kp(U)
-
i s compact i n
Kpc(U)
.
U
f o r any
344
NOVERRAZ
If
U i s pseudo-convex,
compact s u b s e t of al,
..., a j
Iv
If
then f o r v i n
U there e x i s t
fll..
Pc(U)
. , f 7.
,
in
E >
0 and K
and
H(U)
p o s i t i v e numbers such t h a t
-
K = KH(U)
sup ai l o g I f i
i
i s compact i--a pseudo-convex open set
U,
then any holomorphic f u n c t i o n i n a neighborhoodof Kcan be a p p r o x i m a t d u n i f o r m l y on K by elements If
u
H(U).
-
A
and U' are pseudo-convex, U C U' t h e n K H ( U ) , = K H ( " , )
f o r any compact s u b s e t of in
of
U i f and o n l y i f
H(U') i s d e n s e
H(U) f o r t h e compact open topology.
P r o p e r t i e s 31, 4 ) and 5 ) have been g e n e r a l i s e d t o l a r g e r c l a s ses of l o c a l l y convex s p a c e s w i t h Schauder b a s i s i n c l u d i n g
Banach
spaces ( 6 ) .
8, c o n d i t i o n
W e s h a l l i n v e s t i g a t e c o n d i t i o n s 1 and 2 . I n
i s o b t a i n e d by r e g u l a r i s a t i o n ( i e c o n v o l u t i o n ) of
se-
v by a D i r a c
quencer so it i s n a t u r a l t o c o n s i d e r s o m e measure.
1)
For t h e sake
of
s i m p l i c i t y w e s h a l l c o n s i d e r h e r e only ( i n f i n i t e dimensional) Banach spaces and Gaussian measures f o l l o w i n g Gross ( 5 ) . I t i s w e l l known t h a t i n a Banach s p a c e E there are no
s t i t u t e t o t h e Lebesgue measure t h a t means t h e r e does n o t e x i s t
sub-
a
measure i n v a r i a n t by t r a n s l a t i o n s o r r o t a t i o n s . A Gaussian measure l.~ on E can be c h a r a c t e r i z e d as follows: there e x i s t s an H i l b e r t space H
v
d e n s e l y and c o n t i n u o u s l y imbeded i n E such t h a t
u
t h e c y l i n d r i c a l Gauss measure on t h e c y l i n d r i c a l s e t s of
arises H
1-I
.
from The
t r i p l e t ( H p , i , E ) is c a l l e d an a b s t r a c t Wiener space. The f o l l o w i n g p r o p e r t i e s hold:
1)
L e t be
T in
P(E,E), i f
and i s u n i t a r y t h e n
p
T restricted t o H
i s i n v a r i a n t by
T
i s i n P(H H ) I-r P I !J ( i e pT-' = 11).
APPROXIMATION OF PLURISUBHARMONIC FUNCTIONS
L e t be
2)
clx(A)
= p(x
+
,A
A)
346
u
Bore1 i n E l t h e n
and p x are
e i t h e r e q u i v a l e n t o r o r t h o g o n a l , t h e y a r e e q u i v a l e n t if and only i f
x belongs t o
H
P
.
W e have t h e f o l l o w i n g Lemma:
16
LEMMA 1:
i n a Gaubbian meabutre on E and
p
hatrmonic 6uncLion i n an open n u b s e t U
doh
E we h a v e
Suppose t h a t v i s bounded from above i n t h e b a l l B ( x , r ) , t h e
mapping
x
+
eiex
- invariant,
but
a pLuhisub-
r bmale enough.
PROOF:
Te
06
i d v in
V(X)
induce& a
u n i t a r y mapping T e on H
P
I
so
u
is
and w e have
5
v(x
+
y e i e )do
.
The r e s u l t f o l l o w s from
Fubini
t h e o r em. L e t us note
P R O P O S I T I O N 1: 1)
A(v,x
A(x,v r )
p(r)A
2)
v(x) = l i m r =O
3)
A(x,v,r)
LA apLutribubhatrmonic d u n c t i o n 06
a c nwex and inctreasing dunc-tion
i n in6initely
any x i n E t h e f u n c t i o n y = 0.
and
0 6 Log r .
A(x,V,r).
L e t us r e c a l l t h a t a f u n c t i o n
entiable a t
x
y
+
cp
H
u - di66etrenZiable. 9 is H -differentiable
u
( x + y ) , d e f i n e d on
Hcl
I
if
for
is differ
-
NOVERRAZ
346
PROOF:
1) i s a consequence of t h e f a c t t h a t p l u r i s u b h a r m o n i c
func-
t i o n s depending o n l y from I1 x I) are l o g a r i t h m i c a l l y convex. S i n c e v i s upper s e m i c o n t i n u o u s , f o r any
2)
5 v(x) +
v ( x + y)
w e have
II y II 5 r X f E hence
for
E
> 0
E
Is a consequence of a r e s u l t of Gross (5).
3)
L e t us n o t i c e t h a t , u n l e s s
v i s continuous, A(v,x,r)
i n g e n e r a l a continuous f u n c t i o n of
is
not
x.
A s a consequence of 2 ) and 3 ) w e have:
A p l u t i b u b h a h m a n i c dunc-tion v
PROPOSITION 2:
wine l i m i t
a nequence
06
06
i-6
L a c a l l y ,the p o i n t -
i n , 5 i n i t d y H - d i d , 5 e h e n t i a b l e @~L5ubha/unonic
iuncztio nA . T h e r e i s a n o t h e r way t o a p p r o x i m a t e bounded f u n c t i o n s : l e t p be a Gaussian measure o f p a r a m e t e r
vt{ll x 11 2
c1
> 01
+
f u n c t i o n Ptf ( x ) = f Ptf
0
i,
if f (x
t
+
+
t > 0 , then
t h e n Gross ( 5 ) h a s proved t h a t
0
1.1
/f(x)
-
f
is uniformly continuous
f u n i f o r m l y on E .
tends t o
For
the
y)ut(dy) is i n f i n i t e l y H -differentiable if
i s bounded and m e a s u r a b l e . Moreover i f
PROOF:
t and
= 1
vt(E)
E
f(y)I 5
< 0, t h e r e i s E
.
<
2 E
n
such t h a t
if
Ix
- yi 5
t < t E .
rl
i m p 1i e s
APPROXIMATION
If
f
OF PLURISUBHARMONIC FUNCTIONS
347
i s only continuous, t h e n t h e convergence of
Ptf
to
f
i s u n i f o r m on e v e r y compact s u b s e t . I t is a l s o w e l l known (1) t h a t t h e r e e x i s t
ceding r e s u l t gives a
separable
f u n c t i o n s are n o t
Banach s p a c e s s u c h t h a t t h e bounded and 'C i n t h e space o f uniformly
several
dense
c o n t i n u o u s and bounded f u n c t i o n s . T h e p r e
uniform a p p r o x i m a t i o n by H-inf i n i t e l y differen-
t i a b l e f u n c t i o n . F o r p l u r i s u b h a r m o n i c f u n c t i o n s t h i s k i n d of approxim a t i o n g i v e s more o r less t h e same r e s u l t as p r o p o s i t i o n 2 . Now w e s h a l l s t a t e t h e f o l l o w i n g p r o p o s i t i o n :
PROPOSITION 3:
Let
U
be a pheudo-convex open b u b b e t o d aBanach bpace
v be a pLuhinubhahmonic
E and L e t
pointwide l i m i t
06 a
d e c h e a n i n g oequence a d con,Chow ( i n
p ~ u h i n u b h a h m o n i c 6unct i onh i n U
Let
COROLLARY: E,
60%
v
6unctian on U , t h e n
i n
the
duct L i p b C c k i t Z )
.
U b e a pbeudo-convex o p e n b u b n e t 0 6 a Bunach
Apace
then
K ad
any compact Aubbet
U.
F o r t h e p r o o f w e s h a l l follow a n u n p u b l i s e d p a p e r o f
C.Herves
and M. E s t e v e z ( 2 ) . They f i r s t g e n e r a l i z e i n t h e Banach case a n i d e a of
( 3 ) : L e t f be a l o w e r s e m i - c o n t i n u o u s f u n c t i o n bounded from
above,
t h e n for any i n t e g e r k d e f i n e
f
k
( x ) = i n f [ kll x
I t i s e a s y t o show t h a t
Moreover
f
Y
fk-l- < fk ( f
-
yll
and
+
f ( y )1
.
1 f k ( x ) - f k ( y ) I -<
i s t h e p o i n t w i s e l i m i t of t h e s e q u e n c e
fk
.
k I1 x
-
yll.
NOVERRAZ
348
If U
U i s pseudo-convex and v i s a p l u r i s u b h a r m o n i c f u n c t i o n i n
w e t a k e t h i s approximation sequence of t h e f u n c t i o n f d e f i n e d by
e x p ( - v)
i n U and z e r o o u t s i d e
and i f w e c o n s i d e r t h e norm
U
If we s t a t e
+ Iw 1
kII z 1 I
on
E x 4
, we
subharmonic i n
U,
moreover
v = l i m [-log f k 1 k
proved.
xo
B
cp(u)
.
there i s v i n
P ( U ) such t h a t
u(xo) > a
P r o p o s i t i o n 3 i m p l i e s t h a t t h e r e i s a d e c r e a s i n g sequence
> sup
K
(vn)
v. in
, hence: K C { X E U, v ( x ) < a ) =
U
n
{x E U, vn(x) < a ] .
vn+l < v
S i n c e K i s compact and
t h e r e i s an index
p
that
We have v (x 1
P
hence
is
Proposition 3
It i s s u f f i c i e n t toprove t h a t
PROOF OF THE COROLLARY:
Pc (U)
have
i s a pseudo-convex domain it follows t h a t -log fk i s p l u r i -
Since
If
.
O
2 v(xo)
xo does n o t belong t o
*
>
c1
sup v K P The c o r o l l a r y i s proved.
such
APPROXIMATION OF PLURISUBHARMONIC FUNCTIONS
340
REFERENCES
11
R. BONIC and J. FRAMPTON, Smooth functions on Banach manifold, J. Math. Mech. 15(1966) , 877 - 898.
2
1
M. ESTEVEZ and C. HERVES, Sur une proprigts de l'enveloppeplurisousharmonique dans les espaces normds, preprint.
3
1
L. HORMANDER, An i n t h o d u c t i o n t o campeex a n a l y d i b , VanNostrand 1966.
14 1
J. P. FERRIER and N. SIBONY, Approximation ponddrde sur une sous-vari6tG totalement r6elle de an, Ann. Inst.Fourier 26 (1976)I 101 - 115.
5 1
H. H. KUO, Gaudhian meabuhe i n Banach d p a c e b , Springer Lecture Notes 464.
61
Ph. NOVERRAZ, Approximation of holomorphic or plurisubharmonic functions in certain Banach spaces. Phoc. on ' I n d i n i A e Dimen&Lonad Holomohphy, Springer Lecture Notes 364,p. 178-185.
1
Ph. NOVERRAZ, P n e u d o - c o n v e x i t e , c o n v e x i t e p o l y n o m i a l e etdomainen d ' h o l o m o h p h i e , North-Holland Publishing Cn., Amsterdam, 1972.
[
[ 7