Aptian–Albian Cupressaceae (sensu stricto) woods from Cañadón Asfalto Basin, Patagonia Argentina

Aptian–Albian Cupressaceae (sensu stricto) woods from Cañadón Asfalto Basin, Patagonia Argentina

Cretaceous Research 58 (2016) 17e28 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes ...

6MB Sizes 0 Downloads 115 Views

Cretaceous Research 58 (2016) 17e28

Contents lists available at ScienceDirect

Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes

~ ado n AptianeAlbian Cupressaceae (sensu stricto) woods from Can Asfalto Basin, Patagonia Argentina Mariana Brea a, *, Eduardo S. Bellosi b, Aldo M. Umazano c, J.Marcelo Krause d n, Consejo Nacional de Investigaciones Científicas y T Centro de Investigaciones Científicas y Transferencia de Tecnología a la Produccio ecnicas (CICYTTP~ a SN, E3105BWA Diamante, Entre Ríos, Argentina CONICET), Dr. Matteri y Espan b  Museo Argentino de Ciencias Naturales, Av. Angel Gallardo 470, C1405DJR Buenos Aires, Argentina c Instituto de Ciencias de La Tierra y Ambientales de La Pampa(CONICET-UNLPam), Universidad Nacional de La Pampa, Avenida Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina d gico Egidio Feruglio, Consejo Nacional de Investigaciones Científicas y T Museo Paleontolo ecnicas, Avenida Fontana 140, U9100GYO Trelew, Chubut, Argentina a

a r t i c l e i n f o

a b s t r a c t

Article history: Received 18 July 2015 Received in revised form 10 September 2015 Accepted in revised form 23 September 2015 Available online xxx

This paper describes the first macrofloristic record from Los Adobes Formation (Chubut Group) in ~ ado  n Asfalto Basin (Patagonia, Chubut Province, Argentina). The studied fossils were recovered from Can the AptianeAlbian Bardas Coloradas Member, and consist of silicified woods preserved in fluvial channel deposits. One wood shows homocellular rays with smooth radial and tangential walls, diffuse axial parenchyma, tracheid pitting of the abietinoid type and cross-field pitting cupressoid usually ordered in €usel. This fossil tree resembles rows and columns indicating placement within Cupressinoxylon hallei Kra some members of the extant Cupressaceae s.s., as Austrocedrus chilensis (D. Don) Pic. Serm. & Bizzarri, Pilgerodendron uviferum (D. Don) Florin, Fitzroya cupressoide (Molina) I. M. Johnst. and Libocedrus plumosa (D. Don) Druce. Due to poor preservation the other fossil wood specimen was assigned to cf. Cupressi€ ppert 1850 nom. cons. prop. This is the first unequivocal record of C. hallei from the Cretaceous noxylon Go of South America and the oldest reliable record of the Callitroideae, indicating that this subfamily was well established since the mid-Cretaceous in the Southern Hemisphere. © 2015 Elsevier Ltd. All rights reserved.

Keywords: Cupressaceae s. s. Cupressinoxylon Los Adobes Formation AptianeAlbian Chubut Province Argentina

1. Introduction Cupressoid fossil woods from Mesozoic of the Patagonia Argentina are scarce and many of them insufficiently described with imprecise diagnosis (Bodnar & Artabe, 2007; Bodnar, Ruíz, €usel, 1920, 1924, 1949; Artabe, Morel, & Ganuza, 2015; Kra , 1971). However, despite this, fossil genera Vaudois & Prive related to the family Cupressaceae are: Protojuniperoxylon and Cupressinoxylon for the Triassic (Bodnar & Artabe, 2007; Bodnar et al., 2015; Bonetti, 1966), Protelicoxylon, Herbstiloxylon and Protojuniperoxylon for the Jurassic (Gnaedinger, 2007; Gnaedinger,  mez, & Brea, 2013) and Cupressinoxylon for the Cretaceous to Go €usel, 1949; Cenozoic (Egerton, Williams, & Lacovara, in press; Kra ~ o, García Massini, & Miravelli, Martínez, 2010; Pujana, Panti, Cuitin

* Corresponding author. E-mail addresses: [email protected] (M. Brea), [email protected] (E.S. Bellosi), [email protected] (A.M. Umazano), mkrause@mef. org.ar (J.Marcelo Krause). http://dx.doi.org/10.1016/j.cretres.2015.09.020 0195-6671/© 2015 Elsevier Ltd. All rights reserved.

2015) suggesting that the diversity of cupressoid conifers of South-Western Gondwana was broadest during the Mesozoic than the present-day. In the Southern Hemisphere the reliable oldest fossil wood record of the Cupressaceae sensu lato is Cupressinoxylon sp. 1 (Martínez, 2010) from the Berriasian-Valanginian (Bajada Colorada Formation), while the unequivocal oldest record based on reproductive cones, leafy twigs and branches is Austrohamia minuta Escapa, Cúneo and Axsmith (Escapa et al., 2008) from the Jurassic ~ ado  n Asfalto Formation) of Chubut Province, Argentina. (Can Cupressinoxylon zamunerae Bodnar, Ruiz, Artabe, Morel and Ganuza (Bodnar et al., 2015) has been erected recently for the Middle Triassic (Cortaderita Formation) of San Juan Province, Argentina. However, these specimens have heterocellular rays. The presence of ray tracheid cells might indicate that they are not in agreement €ppert (1850), with the diagnosis of Cupressinoxylon as defined by Go Bamford, Ziljstra, and Philippe (2002) and Philippe and Bamford (2008). As a result of a recent fieldwork performed by three of authors (E.S.B, A.M.U and J.M.K) in the Cretaceous Chubut Group, in the

18

M. Brea et al. / Cretaceous Research 58 (2016) 17e28

~ ado n Asfalto Basin, a new fossiliferous western region of the Can locality yielding petrified conifer woods and vertebrate remains was discovered in the Bardas Coloradas Member, the upper unit of the Los Adobes Formation. No other fossils have been previously found in the Los Adobes Formation, with the exception of nonmarine ostracods and charophytes reported by Musacchio and Simeoni (1993, in Page et al. 1999). In this paper, two petrified conifers are described in detail and €usel, 1949, and to cf. Cupresassigned to Cupressinoxylon hallei Kra € ppert, 1850 nom. cons. prop., the oldest reliable fossil sinoxylon Go record of the subfamily Callitroideae. 2. Geological setting The fossil locality, referred herein as Estancia Aguada La Piedra, is located near Gorro Frigio hill, about 40 km northward from the Paso de Indios city, Chubut province, Argentina (Fig. 1). Extensive outcrops assignable to the middle Cretaceous Chubut Group, ~ ado  n Asfalto basin during constitute the sedimentary fill of the Can the post-rift stage (Fig. 1; Figari & Courtade, 1993; Figari, 2011). The Chubut Group overlies Jurassic syn-rift deposits including, in ascending stratigraphic order, volcanic and sedimentary rocks denominated Lonco Trapial Group (e.g. Anselmi, Gamba, & Panza, 2004;Sacomani & Panza, 2007; Silva Nieto, 2005), and lacustrine ~ ado  n Asfalto and Can ~ ado n to fluvio-deltaic successions called Can reo formations (e.g. Cúneo et al., 2013). Calca The Chubut Group is covered, in different sectors of the basin, by PaleogeneeQuaternary, continental and marine successions or Cenozoic basalts (Ranalli, Peroni, Boggetti, & Manoni, 2011). According to the stratigraphic scheme of Codignotto, Nullo, Panza, and Proserpio (1978), the Chubut Group includes the Los Adobes and Cerro Barcino formations. The former, deposited in geographically restricted troughs in the western sector of the basin and linked to a tectonic reactivation stage, is a siliciclastic succession composed by the Arroyo del Pajarito and Bardas Coloradas members. Whereas the lower one is mostly constituted of conglomerates of alluvial origin in broad sense (Codignotto et al., 1978), and includes petrified woods (P. Puerta personal communication), the Bardas

Coloradas Member is mostly an alternation of lenticular sandstones and sheet mudstones deposited in fluvial channels and associated floodplains (e.g. Allard, Paredes, & Giacosa, 2009; Villegas, Visconti, & Umazano, 2014). Until now, no body fossils were recognized in this unit. The more widely distributed Cerro Barcino Formation, which conformably overlies the Los Adobes Formation, is a pyroclastic rich succession deposited during thermal subsidence conditions and pyroclastic influx. The lower section of the Cerro Barcino Formation (Puesto La Paloma Member) mainly records unconfined fluvial sedimentation (e.g. Allard, Paredes, Foix, & Giacosa, 2010; Umazano, Krause, Bellosi, Perez, & Visconti, 2014). ~ o Member was deposited by channeled The overlying Cerro Castan fluvial systems dominated by meandering-like features (e.g. Umazano et al., 2014). The remaining members of the Chubut Group (Las Plumas, Puesto Manuel Arce and Bayo Overo) crop out eastward, outside the study area, and also record channeled fluvial systems (Codignotto et al., 1978). In the Gorro Frigio area, the logged sedimentary succession includes the upper Bardas Coloradas Member (26 m) and the Puesto La Paloma Member (124 m; Figs. 2A and 3). The studied woods come from the uppermost section of the Bardas Coloradas Member (Figs. 2B, C and 3), which has an AptianeAlbian age according to biostratigraphic data (Marveggio & Llorens, 2013; Musacchio, 1972; Musacchio & Chebli, 1975). The Bardas Coloradas Member is mainly composed of channel-like sandbodies interbedded with sheet-like mudstones and sandstones. The channeled bodies have erosive and irregular bases, plane tops and a fining upward trend. They are constituted by planar cross-bedded or rippled, coarse to finegrained sandstones, with gravel clasts at the base, and represent perennial fluvial channel-belts. The sheet-like deposits include massive and parallel laminated mudstones with rhizoliths and other pedogenic features, suggesting a floodplain setting with occasional sub-aerial exposure and soil development. On the other hand, the Puesto La Paloma Member comprises sheet-like deposits constituted, in decreasing order of abundance, by tuffaceous sandstones, sandstones, tuffaceous mudstones, limestones and tuffs. The beds are commonly massive, but also planar crossbedding, plane parallel lamination and ripples can be recognized.

~ ado  n Asfalto Basin. B. Geographic location of the studied materials: Estancia Aguada La Piedra near of Gorro Frigio hill, Fig. 1. A. Map showing the approximate boundary of the Can in the western part of the basin.

M. Brea et al. / Cretaceous Research 58 (2016) 17e28

19

Fig. 2. A. Field photography of the Bardas Coloradas Member (Los Adobes Formation) and the overlying Puesto La Paloma Member (Cerro Barcino Formation); the stratigraphic position of levels with woods is indicated with a black arrow. BeC. Petrified woods in sandstones from Bardas Coloradas Member; the hammer is 33 cm long.

The Puesto La Paloma Member records unconfined fluvial conditions with high pyroclastic influx (sheet-floods laterally related to shallow lacustrine conditions).

3. Materials and methods Two fossil woods were collected in the AptianeAlbian Bardas Coloradas Member (Los Adobes Formation, Chubut Group) at Estancia Aguada La Piedra, next to Gorro Frigio hill, Chubut Province, Argentina (c. 42 540 S; 72 41W; Fig. 1). The fossil woods were permineralized by silica with excellent preservation of the secondary xylem. Standard petrographic slides were made along the transverse (TS), tangential longitudinal (TLS) and radial longitudinal (RLS) sections for each of the two studied specimens. The description and anatomical terminology used in this paper follow the recommendations of the IAWA List of Microscopic Features for Hardwood Identification (IAWA Committee, 2004). The systematic assignment, descriptions and comparisons with fossil and extant taxa were performed following the Inside Wood web site (Inside Wood, 2004-onwards; Wheeler, 2011) and considering previous descriptions (Bamford & Philippe, 2001; Bamford et al., 2002; Bodnar & Artabe, 2007; Bodnar et al., 2015; Bonetti, 1966; Conwentz, 1885; García Esteban et al., 2002; García Esteban, ndez, 2004; Palacios de Palacios, Guindeo Casasús, & García Ferna € ppert, 1850; Gothan, 1905; Grambast, 1952; Gnaedinger, 2007; Go Greguss, 1955; Harland, Francis, Brentnall, & Beerling, 2007; Kr€ ausel, 1949; Lutz, Crisafulli, & Herbst, 1999; Martínez, 2010; Patel, 1968; Philippe & Bamford, 2008; Pujana, Santillana, & Marensi, 2014; Roig, 1992; Ru-feng, Yu-fei, & Yong-zhe, 1996; Tor, 1971). torelli, 1956; Vaudois & Prive

The specimens were analysed using a Nikon Eclipse E200 light microscope and the photomicrographs were taken with a Nikon Coolpix S4 digital camera. The quantitative values in the anatomical description are averages of 25 measurements. In all cases, the average is cited first, followed by the minimum and maximum values, which are given in parentheses. Macrofossil specimens and gico Egidio Feruglio slides are deposited at the Museo Paleontolo paleobotanical collection in Trelew, Argentina (labeled as MPEF-Pb).

4. Systematic paleontology Order Pinales (¼Coniferales) Gorozhankin, 1904. Family Cupressaceae sensu stricto (sensu Pilger, 1926) Subfamily Callitroideae Saxton, 1913. €ppert, 1850 nom. cons. prop. Genus Cupressinoxylon Go €usel, 1920. Type species. Cupressinoxylon gothanii Kra €usel, 1924. C. hallei Kra Figs. 4e6. Synonymy: Cupressinoxylon sp. (cf. gothani) Kr€ ausel, 1924, Arkiv f. Bot. 19, 16, pl. II, 8e10. n, Rivera, & Cupressinoxylon parenchymatosum Torres, Roma Deza, 1985, Mem. III Congr. Latinoamericano Paleont. 568, pl. I, 1e6. Cupressinoxylon magellanicum Nishida & Nishida, 1988, Preliminary stud. petrified plants Creto-Tertiary Chile p. 26, pl. XIV. Cupressinoxylon seymourense Torres, Marenssi, & Santillana, 1994, Ser. Científica INACH 44, 30, pl. IV. Cupressinoxylon sp. Poole, Hunt, & Cantrill, 2001, Ann. Bot. 88, 36, Figs. 2e4, 6.

20

M. Brea et al. / Cretaceous Research 58 (2016) 17e28

Fig. 3. Sedimentary section and depositional palaeoenvironments of the Bardas Coloradas and Puesto La Paloma members in Estancia Aguada La Piedra; stratigraphic positions of levels bearing woods are highlighted with a red frame.

€usel (1924), Swedish Museum of Natural Holotype. no. 20 of Kra History, Stockholm, Sweden. Studied material. MPEF-Pb 8000aed. Locality. Estancia Aguada La Piedra, next to Gorro Frigio hill, Chubut Province, Argentina. Stratigraphic horizon. AptianeAlbian Bardas Coloradas Member (Los Adobes Formation, Chubut Group). Description. The material comprises pycnoxylic conifer woods. In cross section, secondary xylem shows slightly demarcated growth rings, with a gradual transition from earlywood to latewood (Fig. 4A). The latewood is demarcated by a narrow layer (3e6 cells) marked by radial flattening and thick-walled tracheids (Fig. 5A). Triangular or quadrangular intercellular spaces (Fig. 5D) are present between tracheids and/or tracheids and ray parenchyma. The

tracheids are quadrangular to rectangular in shape. Earlywood tracheids have a mean tangential diameter of 41 (21e63) mm and mean radial diameter of 38 (25e58) mm; the mean thickness of the double wall between two tracheids is 5 (3e9) mm (Fig. 5A). The torus is disc-shaped in earlywood (Fig. 6D). Latewood tracheids have a mean tangential diameter of 42 (24e60) mm and mean radial diameter of 19 (12e38) mm; the thickness of the double wall between two tracheids is 10 (3e20) mm. Axial parenchyma is scarce and diffuse (Fig. 4A). The rays are separated from each other by 2e12 rows of tracheids; with an average of 6 rows. In tangential longitudinal section, the rays are uniserite and rarely biseriate (Fig. 4BeD, Fig. 5B and C). Rays are on average 11 (7e16) mm wide; 9 (2e21) high cells and 185 (512e1354) mm in height. Tracheid pitting in tangential walls (Fig. 4D) have pit pores

M. Brea et al. / Cretaceous Research 58 (2016) 17e28

21

Fig. 4. Cupressinoxylon hallei (MPEF-Pb 8000bed). A. General view in cross section, showing earlywood and latewood, the arrows indicate diffuse axial parenchyma. B. General view in tangential longitudinal section, showing uniseriate rays and axial parenchyma with dark deposits (arrow). C. General view in tangential longitudinal section, showing uniseriate and biseriate rays, the arrow indicates slightly nodular axial parenchyma walls. D. General view in tangential longitudinal section, showing uniseriate rays and tracheids with circular, bordered and uniseriate. E. General view in radial longitudinal section, showing tracheids with pits circular, bordered, uniseriate or rarely with biseriate portions. Scale bar represents 400 mm in A and 160 mm in BeE.

with mean diameter of 14 (12e16) mm and inner aperture with a mean diameter of 5 (2e13) mm. Dark deposits in axial parenchyma are common, probably are resin plugs that can be present in series and adjacent to a ray (Fig. 4B). Smooth, small and isolated nodular axial parenchyma walls (Figs. 4C and 5C). In radial longitudinal section, the tracheid pitting is recognized as being of the abietinoid type. The pits are circular, bordered, spaced or contiguous, uniseriate or rarely with biseriate portions; when biseriate, pits are alternate (Figs. 4E and 5E). Pit pores with mean diameter of 17 (10e23) mm and inner apertures circular and enclosed (Fig. 6C), with a mean diameter of 6 (3e17) mm and in tangential walls. Pit membranes with well-developed torus, having a dense central area with a convex lens shape (Fig. 6A and B). Ray cell walls thin, smooth (Fig. 5F) and occasionally pitted. The rays are homocellular (Fig. 5F). The cross-field pitting is cupressoid type with 2e6 oval to circular pits, usually ordered in rows and columns, with 5 (4e7) mm in mean vertical diameter (Figs. 5G and 6E). € ppert, 1850. cf. Cupressinoxylon Go Fig. 7. Studied material. MPEF-Pb 8001aef. Locality. Estancia Aguada La Piedra, next to Gorro Frigio hill, Chubut Province, Argentina. Stratigraphic horizon. AptianeAlbian Bardas Coloradas Member (Los Adobes Formation, Chubut Group). Description. In cross section, the growth rings are demarcated,

with a gradual transition from earlywood to latewood. The latewood is demarcated by a narrow layer (3e4 cells) marked by radial flattening and thick-walled tracheids. The tracheids are quadrangular to rectangular in shape (Fig. 7A). Earlywood tracheids have a mean tangential diameter of 23 (13e30) mm and mean radial diameter of 27 (20e34) mm; the mean thickness of the double wall between two tracheids is 4 (2e2) mm. Latewood tracheids have a mean tangential diameter of 21 (12e27) mm and mean radial diameter of 9 (5e13) mm; the mean thickness of the double wall between two tracheids is 5 (3e9) mm. The axial parenchyma is scarce and diffuse (Fig. 7A). The rays are separated from each other by 2e9 rows of tracheids; with an average of 4 rows. In tangential longitudinal section, the rays are uniserite (Fig. 7B) and rarely biseriate. In radial longitudinal section, the rays are homocellular and cell walls are thin and smooth (Fig. 7C). Dark deposits in axial parenchyma are common (Fig. 7D). The cross-field pitting is cupressoid type with 2e6 oval to circular pits. 5. Discussion 5.1. Similarities with extant taxa and affinities The Cupressaceae is a cosmopolitan family that has the largest number of living genera (30 taxa) among the conifers and inhabits

22

M. Brea et al. / Cretaceous Research 58 (2016) 17e28

Fig. 5. Cupressinoxylon hallei (MPEF-Pb 8000bed). A. Detail in cross section, showing latewood and earlywood. B. Detail in tangential longitudinal section, showing a uniseriate ray. C. Detail in tangential longitudinal section, showing a biseriate ray and slightly nodular axial parenchyma walls (arrow). D. Detail in cross section, showing triangular or quadrangular intercellular spaces. E. Detail in radial longitudinal section, showing abietinoid tracheid pitting. F. Detail in radial longitudinal section, showing homocellular rays with thin and smooth ray cell walls. G. Detail in radial longitudinal section, showing cupressoid cross-field ordered in rows and columns. Scale bar represents 80 mm.

all habitats (Farjon, 2005, 2008; Taylor, Taylor, & Krings, 2009). This family included both Taxodiaceae, considered as the basal clade of the lineage, and the Cupressaceae s.s. considered the more derived clade within in the group (Eckenwalder, 1976; Farjon, 2005; Gadek et al., 2000). Phylogenetic studies performed by Gadek et al. (2000) based on molecular, biochemical, morphological and anatomical data sets, recognized the family Cupressaceae s.s. as a monophyletic group, that is included in a broader clade (Cupressaceae s.l.) which

comprises also the Taxodiaceae. Furthermore, in the Cupressaceae s.s. two clades are recognized: Callitroideae (Southern Hemisphere) and Cupressoideae (Northern Hemisphere). The cladistic analyses proposed by Hart (1987) support the monophyly of Callitroideae (Li, 1953; Saxton, 1913). In extant floras, this subfamily includes trees with phyllotaxis opposite or whorled, mostly with adult leaves reduced to appressed scales and, with Southern Hemisphere distribution (Farjon, 2005, 2008; Gadek et al., 2000). The subfamily includes the following genera: Callitris

M. Brea et al. / Cretaceous Research 58 (2016) 17e28

23

Fig. 6. Cupressinoxylon hallei (MPEF-Pb 8000bed). AeB. Detail in radial longitudinal section, showing pit membranes with well-developed torus, having a dense central area (arrows). C. Detail in radial longitudinal section, showing pit pores and inner apertures. D. Detail in cross section, arrow indicates a torus with disc-shaped in earlywood. E. Detail in radial longitudinal section, showing cross-fields. Scale bar represents 20 mm.

Vent., Austrocedrus Florin and Boutelje, Diselma Hook f., Fitzroya Hook f., Libocedrus Endl. (including Pilgerodendron Florin), Neocallitropsis Florin, Papuacedrus H. L. Li, and Widdringtonia Endl. Taxodiaceae and Cupressaceae s.s. differ in their cross-fields which are taxodioid in the first group, and cupressoid or taxodioid in the second (Greguss, 1955; IAWA Committee, 2004). Furthermore, within Cupressaceae s.s. the subfamily Callitroideae differs by the presence of smooth axial parenchyma walls, absence of ray tracheids, number and arrangement of the pits in the crossfields, and the height of rays in number of cells. For more details about anatomical wood features of living and fossil Cupressaceae see Bodnar and Artabe (2007: Chart 1). The comparison between Callitroideae species and the fossil wood studied here, C. hallei, is shown in Table 1. Widdringtonia differs from C. hallei in the shape of tracheids in cross-section, dentate and thickened ray parenchyma horizontal walls and occasionally ray tracheids are present. Papuacedrus has ray height 46 cells and occasionally ray tracheids. Diselma differs from the fossil wood described here in the shape of tracheids in crosssection, absence of tangential tracheid pitting, abundant axial parenchyma, nodular axial parenchyma walls, pitted ray parenchyma horizontal walls and occasionally ray tracheids (Table 1). In addition, C. hallei differs from Callitris in the presence of calliptroid thickening and cupressoid cross-field pitting, with one to two bordered pits per field (Table 1). Neocallitropsis has araucariod and multiseriate radial tracheid pitting and cupressoid, taxodiod or fenestriform cross-fields but these were not observed in the Bardas Coloradas Cupressaceae wood (Table 1). Finally, C. hallei resembles extant Austrocedrus chilensis (D. Don) Pic.Serm. & Bizzarri, Pilgerodendron uviferum (D. Don) Florin, Libocedrus plumosa (D. Don) Druce (Pujana et al., 2014) and Fitzroya

cupressoide (Molina) I. M. Johnst. (Table 1), all are members of the Callitroideae subfamily sensu Yang, Ran, and Wang (2012). The affinity of C. hallei to Callitroideae was previously proposed by Pujana et al. (2014) for woods of the La Meseta Formation (Eocene) in the northern part of the James Ross Basin, at the NE of the Antarctic Peninsula. 5.2. Comparison with fossil taxa € ppert (1850) to describe the Cupressinoxylon was erected by Go gymnospermous fossil woods that were composed of tracheids and axial wood parenchyma but lack resin canals, including all the fossil woods belonging to Cupressaceae, Taxodiaceae and Podocarpaceae (Ru-feng et al., 1996). Gothan (1905) erected another genus, Podocarpoxylon for the fossil woods resembling with the Podocarpaceae. Therefore, Cupressinoxylon can be used for woods with affinity to , 1971). Cupressinoxylon has an Cupressaceae (Vaudois & Prive intricate taxonomic story and there is a long tradition to use Cupressinoxylon in a broad sense, i.e., for a genus comprising all woods of Cupressaceae type (Bamford et al., 2002).  (1971) in their revision of Cupressaceae fossil Vaudois and Prive woods listed the following anatomical characteristics to Cupressi€ppert (1850), Gothan (1905) noxylon following descriptions by Go and Kr€ ausel (1949): cross-field pits with oblique pore, ray cell walls smooth, and abundant axial parenchyma. This wide-ranging definition can include all Cupressaceae fossil woods. Philippe and Bamford (2008) redefined and limited this genus to fossil woods that have abietinean radial pitting and earlywood oculipores always cupressoid and usually ordered in rows and columns. €ppert has The original diagnosis in Latin of Cupressinoxylon Go been translated in English by Philippe and Bamford (2008). Aiming

24

M. Brea et al. / Cretaceous Research 58 (2016) 17e28

Fig. 7. cf. Cupressinoxylon (MPEF-Pb 8001bef). A. General view in cross section, showing tracheids and diffuse axial parenchyma (arrows). B. General view in tangential longitudinal section, showing uniseriate rays (arrow). C. General view in radial longitudinal section, showing homocelluar rays and tracheid pits (arrow). D. General view in tangential longitudinal section, showing dark deposits in axial parenchyma (arrow). Scale bar represents 160 mm.

to limit the characterization of the genus the key diagnostic features are listed herein: latewood usually narrow with thick-walled flattened cells, earlywood wider with thin-walled cells; pits round and uniseriate, also biseriate or tri-or quadriseriate, opposite, also sometimes on tangential walls (abietinoid type); axial parenchyma; homocellular rays, low and uniseriate composed of pitted parenchyma cells; cupressoid cross-field and usually ordered in rows and columns (Bamford et al., 2002; Philippe & Bamford, 2008). One of the specimens studied here was assigned to C. hallei, which has growth ring boundaries distinct, abietinean radial pitting, low to medium rays, usually diffuse axial parenchyma, smooth vertical and smooth to scarce pitted horizontal ray cell walls, homocellular rays, and cross-field pitting cupressoid with pits arranged in rows and columns. South America has scarce Mesozoic and Cenozoic records assigned to Cupressinoxylon (Bodnar et al. 2015; Conwentz, 1885; Egerton et al., in press; Herbst et al., 2007; Martínez, 2010; Nishida, 1984a, 1984b; Philippe et al., 2004; Pujana et al., 2014, 2015). The comparison between C. hallei and the South American fossil species of Cupressaceae is shown in Table 2. The specimen describe here as C. hallei differs from Cupressinoxylon latiporosum, C. patagonicum, and C. austrocedroides in the number of pits per cross-field (Table 2). Cupressinoxylon sp. (Egerton et al., in press) is poorly described but it differs in the type

of cross-field and ray height. The original description of C. mochaense is considered herein as an imprecise description because the absence or presence of axial parenchyma must be verified (Table 2). The presence of ray tracheids in C. zamunerae (Bodnar et al., 2015) suggests that their diagnostic characters should be revised. Cupressinoxylon sp. (Pujana et al., 2015) has many features in common but this example has a very brief description which does not allow for a detailed comparison. Finally, Cuppressinoxylon sp. 1 (Martínez, 2010) is the most similar to the fossil wood species described in this paper (Table 2). 5.3. Biogeography and phylogenetic relationships in the Cupressaceae Cupressaceae s.l. is the most widely distributed of all gymnosperm families. In the present-day, it occurs in different habitats on all continents except Antarctica. Many of the genera are monotypic and have disjunct or relictual distributions (Earle, 2013; Farjon, 2005, 2008). Based on 16 fossil calibration points and three molecular dating methods, Mao et al. (2012) show that Cupressaceae s.l. originated during the Triassic in the Pangea super-continent. Mao et al. (2012) also suggested that the origination of the two subfamilies, the Laurasian Cupressoideae and the Gondwanan Callitroideae,

Table 1 Comparison between the selected wood anatomical characters of Cupressinoxylon hallei and the extant genera of subfamily Callitroideae. References: Patel (1968); Rancusi et al. (1987); Roig (1992); Gadek et al. (2000); García Esteban et al. (2002); Bodnar and Artabe (2007); Bodnar et al. (2015). Radial tracheid pitting

Tracheid pits with torus

Calliptroid Tangential thickening tracheid pitting

Axial Axial parenchyma parenchyma walls

Ray parenchyma Ray Ray height parenchyma horizontal walls end cells

Cross-field pits

Widdringtonia Distinct Endl. Papuacedrus H. Usually L. Li indistinct

Quadrangular to poligonal; angular Quadrangular; angular

Present

Absent

Present

1e17 Dentate and Pitted and (35) beaded thickened 1e46 Smooth Pitted

2e4, cupressoid and Occasionally ordered 1e3 (4e6), taxodiodeae and Occasionally ordered in two rows

Diselma Hook f. Distinct

Poligonal, angular

Abietinoid, uniseriate Abietinoid, uniseriate or biseriate Abietinoid, uniseriate

1e2 (3e5), cupressoid

Occasionally

Abietinoid, uniseriate rarely biseriate Araucariod multiseriate Abietinoid, uniseriate and rare biseriate Abietinoid, uniseriate

1e2 (3e4), cupressoid

Absent or scarce

1e2 (4e6), cupressoid, taxodiod or fenestriform 1e4 (6), cupressoid or taxodioid

Absent or scarce Absent

Callitris Vent.

Usually Quadrangular or indistinct irregular; rounded

Neocallitropsis Florin Austrocedrus Florin and Boutelje Fitzroya Hooker ex Lindley Pilgerodendron Florin

Poorly distinct Distinct

Libocedrus Endler

Distinct

Distinct

Quadrangular or circular; rounded Circular or quadrangular; rounded or angular Quadrangular; angular Circular or quadrangular; angular Quadrangular; angular

Distinct or indistinct Cupressinoxylon Distinct Quadrangular to €usel, rectangular hallei Kra 1924 This paper

Ray tracheids

Present

Smooth

Absent

Present in latewood Scarce

Present

Smooth

Present

Absent

Absent

Abundant

Nodular

1e6 (12)

Pitted

Present

Present

Scarce

Present

Smooth

1e8 (36)

Smooth

Present

Absent

Present

Scarce

Smooth

Smooth

Present

Absent

Present in latewood

Scarce

Present

Absent

Present in latewood

Scarce

Smooth and slightly nodular Nodular and smooth

1e12 Smooth (24) 2e6 Smooth (16) 1e12 Smooth or (19) beaded

Pitted

present

absent

Present in latewood

Abundant

Smooth and scarce 1e3 (4e6), cupressoid and Absent pitted disarrange

Abietinoid, Present uniseriate and rare biseriate Present Abietinoid, uniseriate and rare biseriate

Absent

Present in latewood

Absent

Present in latewood

1e10 Smooth or slightly beaded 1e15 Smooth or (17) slightly beaded 2e21 Smooth

Abietinoid, uniseriate

Smooth and slightly nodular Abundant Smooth and slightly nodular Diffuse and Smooth and scarce slightly nodular

Usually smooth, rare nodular or beaded Smooth

Smooth

1e3 (4e8), cupressoid and Absent ordered in columns

M. Brea et al. / Cretaceous Research 58 (2016) 17e28

Tracheid transverse section

Growth rings

Absent Smooth and scarce 1e6 (1e4), cupressoid or pitted rarely taxodioid and disarrange Smooth and scarce 2e6, cupressoid and usually Absent pitted ordered in rows and columns

25

26 Table 2 Comparison between the selected wood anatomical characters of Cupressinoxylon hallei and the South American fossil species of Cupressaceae. References: Conwentz (1885); Nishida (1984a, 1984b); Martínez (2010); Pujana et al. (2014, 2015); Bodnar et al. (2015); Egerton et al. in press. Cross-field pits

Ray, type

Ray tracheids

1e18 1-seriate

?

Pitted

1e2, cupressoid

?

?

Smooth

1e29 1-seriate, rare biseriate

?

?

1e2, cupressoid

?

?

Scarce

Smooth

1e10 1-seriate

?

Pitted

1e2, cupressoid

Homocellular Absent

Present

Present?

?

?

?

Present

Scarce

?

Smooth

Smooth

3 to more, cupressoid ordered in rows 6 (3e8), cupressoid ordered in two rows

Homocellular Absent

Absent

2e20 1-seriate, rare biseriate 2e12 1-seiate

present

Absent

Absent

Scarce

Smooth

4e33 1-seriate, rare biseriate

?

?

?

Present

?

1e3

?

?

Diffuse

Smooth

5

Absent

Smooth Present in Diffuse and Smooth and 2e21 1-seriate, uncommonly with latewood scarce slightly biseriate portions nodular

Tracheid transverse section

C. latiporosum Conwentz, 1885 C. patagonicum Conwentz, 1885 C. austrocedroides Nishida, 1984b C. mochaense Nishida, 1984a Cupressinoxylon sp. 1 Martínez, 2010

Quadrangular Abietinoid, uni- ? biseriate

?

Present

Abundant

Smooth

Quadrangular? Abietinoid, uniseriate

?

?

Absent

Present

Rectangular

?

?

Present

?

?

?

C. zamunerae Bodnar et al. 2015 Cupressinoxylon sp. Pujana et al. 2015 Cupressinoxylon sp. Egerton et al. in press C. hallei Kr€ ausel, 1924 this paper

Rectangular to poligonal Quadrangular to sub-circular

Quadrangular

Abietinoid, uniseriate Abietinoid, uniseriate Abietinoid, uniseriate and rare biseriate, opossite Uniseriate

?

Abietinoid, uniseriate

?

Uniseriate

Quadrangular Abietinoid, to rectangular uniseriate and rare biseriate

Present

1-seriate

Pitted Beaded nodular and thickened Uniseriate ?

?

?

1e2, cupressoid

Homocellular Absent

Heterocellular Present

? ? 4e5, cupressoid and usually ordered in rows and columns 1e2, cupressoid Homocellular Absent

Homocellular Absent Smooth and 2e6, cupressoid and scarce pitted usually ordered in rows and columns

M. Brea et al. / Cretaceous Research 58 (2016) 17e28

Ray Ray parenchyma parenchyma horizontal end cells walls

Ray Ray width Axial Radial tracheid Tracheid Calliptroid Tangential Axial parenchyma parenchyma height pitting pits with thickening tracheid walls pitting torus

Cupressinoxylon

M. Brea et al. / Cretaceous Research 58 (2016) 17e28

occurred around 153 Ma (124e183 Ma), as a result of Gondwanan vicariance. The date of the divergence of Callitroideae, endemic to fragments of Gondwana, suggests a crown age during the Early Cretaceous (128e121 Ma) (Mao et al., 2012). The only living species of the Callitroideae in southern South America are endemic with restricted distribution, and inhabit Argentina and Chile. Pilgerodendron uviferum and Fitzroya cupressoides live in humid areas on nutrient-poor soils in the Valdivian, Patagonian, and Magallanic rain forests, while A. chilensis occurs in open woodlands in dry areas and in cool temperate forests (Archangelsky & Del Fueyo, 2010; Veblen, Burns, Kitzberger, Lara, & Villalba, 1995). On the other hand, L. plumosa is a species endemic to New Zealand which grows in temperate rainforests. The genus Libocedrus is closely related to the South American genera Pilgerodendron. These four extant genera, together with C. hallei, are an example of the Antarctic flora distribution. The fossil record of the AptianeAlbian C. hallei, a fossil wood resembling extant Callitroideae, confirms the hypothesis that this subfamily was already well-established during the Early Cretaceous (Li and Yang, 2002; Mao et al., 2012; Yang et al., 2012). 6. Conclusions The fossil gymnospermous woods here described are the first macrofloristic remains recorded from the Bardas Coloradas Mem~ ado  n Asfalto Basin). ber (Los Adobes Formation, Chubut Group, Can The studied woods are assigned to genus Cupressinoxylon, which is characterized by tracheid pitting of the abietinoid type, diffuse axial parenchyma, homocellular rays, smooth radial and tangential walls, and cross-field pitting cupressoid usually ordered in rows and columns. This is the first unequivocal record of the C. hallei from the Cretaceous of South America. The occurrence of this taxon supports the idea that the Callitroideae subfamily was present in southern South America since at least the AptianeAlbian. Acknowledgments The authors are thankful to the Secretaria de Cultura del Chubut for the land permits. We acknowledge the financial support by the ANPCyT (PICT 2010-2034 to A.M.U., PICT 2012-0326 to E.S.B.), the CONICET (PIP 2013-0058 CO to E.S.B) and UNLPam (Project 01G to A.M.U). We would also like to acknowledge the logistic support of gico Egidio Feruglio (MEF), Universidad the Museo Paleontolo n Nacional de Energía Nacional de La Pampa (UNLPam) and Comisio  mica (CNEA). Graciela Visconti, Mariano Perez, Pablo Villegas Ato and Pablo Puerta helped during the field work. M. Brea is grateful to Leandro M.C. Martínez (Universidad Nacional de La Plata) and Silvia Gnaedinger (Universidad Nacional del Nordeste) for their help and discussions on diverse topics. The authors would like to express their thanks to the two anonymous reviewers and the Editor for their valuable help in providing critical and constructive comments. References Allard, J. O., Paredes, J. M., Foix, N., & Giacosa, R. E. (2010). Variable response and depositional products of fluvial-alluvial fan systems in pyroclastic-rich suc~ ado n Asfalto Basin, cessions: Cerro Barcino Formation (Cretaceous) of the Can Central Patagonia, Argentina. In 18th International Sedimentological Congress, Actas 1 (p. 101). Mendoza. Allard, J. O., Paredes, J. M., & Giacosa, R. E. (2009). Fluvial dynamics, alluvial architecture and palaeohidrology of axial and transverse drainage systems in an ~ ado n Asfalto Basin, extensional setting: Los Adobes Formation (Aptian), Can Argentina. In 9th International Conference on Fluvial Sedimentation, Actas 1 (pp. 12e13). Tucum an. gica 4369-IV, Los Altares, Anselmi, G., Gamba, M. T., & Panza, J. L. (2004). Hoja Geolo

27

provincia del Chubut. Buenos Aires: Instituto de Geología y Recursos Minerales, gico Minero Argentino, Boletín 313, 70 pp. Servicio Geolo Archangelsky, S., & Del Fueyo, G. M. (2010). Endemism of Early Cretaceous Conifers in Western Gondwana. In C. T. Gee (Ed.), Plants in Mesozoic Time: Morphological innovations, phylogeny, ecosystems (Ted Delevoryas festschriff) (pp. 247e268). Indiana: Indiana University Press. Bamford, M., & Philippe, M. (2001). Jurassic-Early Cretaceous Gondwanan homoxylous woods: a nomenclatural revision of the genera with taxonomic notes. Review of Palaeobotany and Palynology, 113, 287e297. Bamford, M., Ziljstra, G., & Philippe, M. (2002). Proposal to conserve the name €ppert (Fossil, Gymnospermae, Coniferales) against RetiCupressinoxylon Go nodendron Zenker (Fossil, Gymnospermae, Coniferales), with a conserved type. Taxon, 51, 205e206. tico y paleodendrolo gico del len ~o Bodnar, J., & Artabe, A. E. (2007). Estudio sistema n Ischigualasto, provincia de San de una Cupressaceae tri asica de la Formacio Juan, Argentina. Ameghiniana, 44, 303e319. Bodnar, J., Ruíz, D. P., Artabe, A. E., Morel, E. M., & Ganuza, D. (2015). Voltziales y n Cortaderita (Tri Pinales (¼Coniferales) de la Formacio asico Medio), Argentina,  n de las coníferas tria sicas. Revista Brasileira y su implicancia en laReconstruccio de Paleontologia, 18, 141e160. sico de Bonetti, M. I. R. (1966). Protojuniperoxylon ischigualastensis sp. nov. del Tria Ischigualasto (San Juan). Ameghiniana, 4, 211e218. Codignotto, J., Nullo, F., Panza, J., & Proserpio, C. (1978). Estratigrafía del Grupo gico Chubut, entre Paso de Indios y Las Plumas, Chubut. In 7th Congreso Geolo n. Argentino, Actas 1 (pp. 471e480). Neuque  siles del Río Negro. Boletín de la Academia de Conwentz, H. (1885). Arboles fo rdoba, 7, 435e456. Ciencias Co Cúneo, R., Ramezani, J., Scasso, R., Pol, D., Escapa, I., Zavattieri, A. M., et al. (2013). High-precision U-Pb geochronology and a new chronostratigraphy for the ~ ado n Asfalto Basin, Chubut, central Patagonia: implications for terrestrial Can faunal and floral evolution in Jurassic. Gondwana Research, 24, 1267e1275. Earle, C. J. (2013). The Gymnosperm data base Accessed June 2015 http://www.conife rs.org/index.php. Eckenwalder, J. E. (1976). Re-evaluation of Cupressaceae and Taxodiaceae: a pro~ o, 23, 237e256. posed merger. Madron Egerton, V. M., Williams, C. J., & Lacovara, K. J. (2015). A new Late Cretaceous (late Campanian to early Maastrichtian) wood flora from southern Patagonia. Palaeogeography, Palaeoclimatology, Palaeoecology. http://dx.doi.org/10.1016/ j.palaeo.2015.07.011 (in press). Escapa, I. H., Cúneo, N. R., & Axsmith, B. (2008). A new genus of the Cupressaceae (sensu lato) from the Jurassic of Patagonia: implications for conifer megasporangiate cone homologies. Review of Palaeobotany and Palynology, 151, 110e122. Farjon, A. (2005). A Monograph of Cupressaceae and Sciadopitys. Kew, Richmond, U.K.: Royal Botanic Gardens. Farjon, A. (2008). A natural history of conifers. Portland, OR: Timber Press. Figari, E. (2011). The Sierra de La Manea Formation (Titho-Neocomian) composite ~ ado  n Asfalto Basin, Patagonia, Argentina. In 18th Congreso Geostratotype, Can gico Argentino, Actas 1 (pp. 1012e1013). Neuque n. lo  n tectosedimentaria de la cuenca Figari, E., & Courtade, S. S. (1993). Evolucio ~ ado n Asfalto, Chubut, Argentina. In 12th Congreso Geolo gico Argentino, 2nd Can n de Hidrocarburos, Actas 1 (pp. 66e77). Mendoza. Congreso de Exploracio Gadek, P. A., Alpers, D. L., Heslewood, M. M., & Quinn, C. J. (2000). Relationships within Cupressaceae sensu lato: a combined morphological and molecular approach. American Journal of Botany, 87, 1044e1057. García Esteban, L., Palacios de Palacios, P., Guindeo Casasús, A., García Esteban, L., n, I., Gonza lez Fern n L azaro Dura andez, L., et al. (2002). Anatomía e identificacio n Conde del Valle de de maderas de coníferas a nivel de especie. Madrid: Fundacio Salazar, Ediciones Mundi-Prensa. García Esteban, L., Palacios de Palacios, P., Guindeo Casasús, A., & García Fern andez, F. (2004). Characterisation of the xylem of 352 conifers. Invesn Agraria. Sistemas y Recursos Forestales, 13, 452e478. tigacio Gnaedinger, S. C. (2007). Planoxylon Stopes, Protelicoxylon Philippe y Herbstiloxylon n La Matilde (Jura sico Medio), provincia nov. gen. (Coniferales) de la Formacio de Santa Cruz, Argentina. Ameghiniana, 44, 321e335. mez, G. N., & Brea, M. (2013). Xilotafoflora de la Formacio n Roca Gnaedinger, S. C., Go sico Inferior, Santa Cruz, Argentina: Taxonomía y paleclima. AmeBlanca, Jura ghinana, 50. Suplemento, R51. €ppert, H. R. (1850). Monographie der fossilen Coniferen (Vol. 6, p. 196). HollandGo sche Maatsch. Wetensch.Natuurk. Verh.. Gorozhankin, I. N. (1904). Lektsii po morfologii i sistematikearchegonialnykh rastenij. II, Pteridophyta, I, Archispermae.Moscú, A.I. Mamontov (pp. 73e93). €lzer (Vol. Gothan, W. (1905). Zur Anatomie lebender und fossiler Gymnospermen-Ho € niglichPreußische Geol. Landesanst. Bergakademie. 44, pp. 1e108). Ko Grambast, L. (1952). Un nouveau bois Tertiaire du Bassin de Paris. Cupressinoxylonmatromnense n. sp. Bulletin du Mus eum, 2nd s erie, t, XXXIV(3), 333e340. Greguss, P. (1955). Identification of gymnosperms on the basis of xylotomy. Budapest: miai Kiado . Akade Harland, M., Francis, J. E., Brentnall, S. J., & Beerling, D. J. (2007). Cretaceous (AlbianeAptian) conifer wood from Northern Hemisphere high latitudes: forest composition and palaeoclimate. Review of Palaeobotany and Palynology, 143, 167e196. Hart, J. A. (1987). A cladistics analysis of conifers: preliminary results. Journal of the Arnold Arboretum, 68, 269e307. Herbst, R., Brea, M., Crisafulli, A., Gnaedinger, S., Lutz, A., & Martínez, L. C. A. (2007). La Paleoxilología en la Argentina. Historia y desarrollo. In S. Archangelsky,

28

M. Brea et al. / Cretaceous Research 58 (2016) 17e28

nchez, & E. P. Tonni (Eds.), Publicacio n Especial 11, Ameghiniana 50th aniT. Sa n Paleontolo gica Argentina. versario (pp. 57e71). Buenos Aires: Asociacio IAWA Committee. (2004). International Association of Wood and Anatomists list of microscopic features for softwood identification. IAWA Journal, 25, 1e70. InsideWood. 2004-onwards. Published on the Internet. http://insidewood.lib.ncsu.e du/search (May, 23 2015). €rflora Schlesiens II. Braunkohlenho €lzer. Kr€ ausel, R. (1920). Nachtr€ age zur Tertia Jahrbuch der Preußischen Geologischen Landesanstalt, 39, 418e460. €ge zur Kenntnis der fossilen Flora Südamerikas 1. Fossile Kr€ ausel, R. (1924). Beitra €lzer aus Patagonienund benachbarten Gebieten. Arkiv fo €r Botanik, 19, 1e36. Ho € lzer (unter Ausschluss von AraucarixKr€ ausel, R. (1949). Die fossilen Koniferen-Ho oxylon Kraus). Palaeontographica Abteilung B, 89, 83e203. Li, H. (1953). A reclassification of Libocedrus and Cupressaceae. Journalof the Arnold Arboretum, 34, 17e35. Li, C. X., & Yang, Q. (2002). Divergence time estimates for major lineages of Cupressaceae (s.l.). Acta Phytotaxonomica Sinica, 40, 323e333 (in Chinese). Lutz, A. I., Crisafulli, A., & Herbst, R. (1999). Gymnospermous woods from the Upper Triassic of Northern Chile. The Palaeobotanist, 48, 31e38. Mao, K., Milne, R. I., Zhang, L., Penga, Y., Liu, J., Thomas, P., et al. (2012). Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences, 109, 7793e7798. cico dela Cuenca Neuquina, gicos en el Creta Martínez, L. C. A. (2010). Estudios xilolo provincia de Neuqu en, Argentina (Ph.D. thesis). Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 238 pp. Marveggio, N., & Llorens, M. (2013). Nueva edad de la base del Grupo Chubut en la n Geomena uranífera Cerro Solo, provincia del Chubut. Revista de la Asociacio gica Argentina, 70, 318e326. lo Musacchio, E. (1972). Charophytas del Cret acico Inferior en sedimentitas chubutenses al este de la Herrería, Chubut. Ameghiniana, 9, 354e356. codos no marinos y caro  fitas del Creta cico Musacchio, E., & Chebli, G. A. (1975). Ostra n. Ameghiniana, 12, 70e96. Inferior de las provincias de Chubut y Neuque ficos (microfo siles Musacchio, E. A., & Simeoni, M. (1993). Informes bioestratigra reos) sobre muestras de afloramientos jura sico-creta cicos, colectadas por la calca n Geolo gica No 2. YPF S.A. unpublished report. Comisio Nishida, M. (1984a). The anatomy and affinities of the petrified plants from the Tertiary of Chile. III. Petrified woods from Mocha island, Central Chile. In M. Nishida (Ed.), Contributions to the Botany in the Andes I (pp. 96e100). Tokyo: Academia Scientific Book Inc. Nishida, M. (1984b). The anatomy and affinities of the petrified plants from the Tertiary of Chile. I. In M. Nishida (Ed.), Contributions to the Botany in the Andes I (pp. 81e85). Tokyo: Academia Scientific Book Inc. Nishida, M., & Nishida, H. (1988). Preliminary studies on the petrified plants from the Creto-Tertiary of Chile. In M. Nishida (Ed.), A report of the botanical survey to Bolivia and Southern Chile (1986e87) (pp. 26e28). Chiba: Faculty of Science, Chiba University. Patel, R. N. (1968). Wood anatomy of Cupressaceae and Araucariaceae indigenous to New Zealand. Journal of the Royal Society of New Zealand, 6, 9e18. Philippe, M., & Bamford, M. K. (2008). A key to morphogenera used for Mesozoic conifer-like woods. Review of Palaeobotany and Palynology, 148, 184e207. Philippe, M., Bamford, M. K., McLoughlin, S., Alves, L. S. R., Falcon-Lang, H. J., Gnaedinger, S., et al. (2004). Biogeographic analysis of JurassiceEarly Cretaceous wood assemblages from Gondwana. Review of Palaeobotany and Palynology, 129, 141e173. Pilger, R. (1926). Coniferae. In A. Engler (Ed.), Die Naturlichen Pflanzenfamilien (2nd ed.,, Bd. 13 pp. 121e403) Dunker and Humblot, Berlin,Germany. Poole, I., Hunt, R. J., & Cantrill, D. J. (2001). A fossil wood flora from King George Island: ecological implications for an Antarctic Eocene vegetation. Annals of

Botany, 88, 33e54. ~ o, J. I., García Massini, J. L., & Miravelli, S. L. (2015). Pujana, R. R., Panti, C., Cuitin A new megaflora (fossil Wood, and leaves) from the Miocene of southwestern Patagonia. Ameghniana, 52, 350e366. Pujana, R. R., Santillana, S. N., & Marensi, S. A. (2014). Conifer fossil woods from the La Meseta Formation (Eocene of Western Antarctica): evidence of Podocarpaceae-dominated forests. Review of Palaeobotany and Palynology, 200, 122e137. ~ ado n Ranalli, J. N., Peroni, G. O., Boggetti, D. A., & Manoni, R. (2011). Cuenca Can n y Desarrollo de Asfalto. Modelo tectosedimentario. In 8 Congreso de Exploracio n actual, Actas 1 Hidrocarburos, Simposio Cuencas Sedimentarias Argentinas: visio (pp. 185e215). Mendoza. Rancusi, M. H., Nishida, M., & Nishida, H. (1987). Xylotomy of important Chilean woods. In M. Nishida (Ed.), Contributions to the Botany in the Andes II (pp. 68e153). Tokyo: Academa Scientific Book Inc. Roig, F. A. (1992). Comparative wood anatomy of southern South America Cupressaceae. IAWA Bulletin, 13, 151e162. Ru-feng, W., Yu-fei, W., & Yong-zhe, C. (1996). Cupressinoxylon jiayinense, A new species of the late Cretaceous from Heilongjiang province, China. IAWA Journal, 17, 319e326. gica 4366-III, Las Plumas, provincia Sacomani, L. E., & Panza, J. L. (2007). Hoja Geolo del Chubut. Buenos Aires: Instituto de Geología y Recursos Minerales, Servicio  gico Minero Argentino, Boletín 291, 74 pp. Geolo Saxton, W. T. (1913). The classification of the conifers. New Phytologist, 12, 242e262. gica 4369-III, Paso de Indios, provincia del Chubut. Silva Nieto, D. G. (2005). Hoja Geolo gico Buenos Aires: Instituto de Geología y Recursos Minerales, Servicio Geolo Minero Argentino, Boletín 267, 64 pp. Taylor, T. N., Taylor, E. L., & Krings, M. (2009). Paleobotany, the biology and evolution of fossil plants (2nd ed.). Amsterdam: Academic Press. siles de la Isla Seymour, Torres, T., Marenssi, S. A., & Santillana, S. (1994). Maderas fo  n La Meseta, Anta rtica. Serie Científica INACH, 44, 17e38. Formacio Torres, T., Rom an, A., Rivera, C., & Deza, A. (1985). Anatomía, mineralogía y tersil del Terciario de Isla Rey Jorge, Islas Shetland moluminiscencia de madera fo del Sur. In Memoria III Congreso Latinoamericano de Paleontología (pp. 566e573). Tortorelli, L. A. (1956). Maderas y bosques argentinos. Buenos Aires: Editorial Acme, 910 pp. Umazano, A. M., Krause, J. M., Bellosi, E. S., Perez, M., & Visconti, G. (2014). Modification of fluvial style in a volcaniclastic setting: an example from the Cretan Argentina ceous Cerro Barcino Formation, Patagonia, Argentina. In 14 Reunio de Sedimentología, Actas 1 (pp. 271e272). Puerto Madryn. , C. (1971). Re vision des bois fossiles de Cupessaceae. PalaeVaudois, N., & Prive ontographica Abteilung B, 134, 61e86. Veblen, T. T., Burns, B. R., Kitzberger, T., Lara, A., & Villalba, R. (1995). Theecology of the conifers of southern South America. In N. J. Enright, & R. S. Hill (Eds.), Ecology of Southern Conifers (pp. 120e155). Melbourne: Melbourne University Press. Villegas, P. M., Visconti, G., & Umazano, A. M. (2014). Respuestas sedimentarias de sticos: el caso de los miemun sistema fluvial al influjo de sedimentos pirocla cico de Patagonia. In bros Bardas Coloradas y Puesto La Paloma durante el Creta  n Argentina de Sedimentología, Actas 1 (pp. 295e296). Puerto Madryn. 14 Reunio Wheeler, E. A. (2011). InsideWood d a web resource for hardwood anatomy. IAWA Journal, 32, 199e211. Yang, Z. Y., Ran, J. H., & Wang, X. Q. (2012). Three genome-based phylogeny of Cupressaceae s.l.: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography. Molecular Phylogenetics and Evolution, 64, 452e470.