Arcs and wedges on sandwiched surface singularities

Arcs and wedges on sandwiched surface singularities

C. R. Acad. CkomCtrie Sci. Paris, t. 326, algkbrique/A/gebraic Abstract. Version S&ie I, p. 207-212, Geometry 1998 .A wedge on a surfacc singula...

438KB Sizes 2 Downloads 120 Views

C. R. Acad. CkomCtrie

Sci. Paris, t. 326, algkbrique/A/gebraic

Abstract.

Version

S&ie I, p. 207-212, Geometry

1998

.A wedge on a surfacc singularit! (.S’. 1’) is ;I l’ornial parametrization series in two variables. locully at I’. A gencricity condition, which enough to guarantee that a wedge lifts to the minimal desingularization is proved to be so if the singularity is wdwichecl.

frangaise

of .S by pww ib expeztccl to be of the wrf’acc.

abrkgke

on entend le voisinage formel 3 d’un point 5ingulier sur une surface obtenue en Cclatant un faisceau d’idkal complet I dont le lieu des zCros e\t un point fermC 0 d’une surface algkbrique non singuliitre dCtinie WI. un corps algkbriquement cloa A.. Si I :- I(, est simple. on dit que la singularit est primiti~v. On appelle courbe (resp. (vin ) un X,-morphismc local de l’anneau 0; dans I‘anneau des skier formelles 2 une variable (resp. deux variables) 5 coefficients dans X,. n’ayant pas I’ideal maximal pour noyau. S’il existe un morphisme local if,, ICI que if 1: ir.,, o 4. on dit que 1~ cwi~ + O.STcrnrr& sur itr courhe It,. On dit que Ir ejt cc,~~I~~~~LI/PI si \a transformCe stricte sur la d~sin~ulariaa~ion minimale .$ de s^ est lisse et transverse 2 la cow-he exceptionnellc de .q en LIII point g6n&al du cellc-ci. Par

LsingularitP

sandwich

Note prksentbe par Jean-Pierre

dr

.YLU~~~~Y~.

DFMAILI.~.

207

M.

Lejeune-jalabert,

Le

rksultat

Pour d’un

A. Reguera

principal

une

singularitk

4Cment

/I I := c.

!J

identitk

, jr,.

I :;

(Ji,,.

Tout

. 2,.

d’abord.

formel

2,,

S,

I’Cventail

dans

sur

fine

.I’,.

,? cst

toute

c6nes

stricte

ZX;_2x1

complkte

de

la

dCsingularisation

DEF[NITION. - On o;,~

=

(;,.

de i2,).

aswcionx

clans

que

(I),

r&uItc

systkmc

une

I <

combinatoire

de ?,I,,.

g.

i

uric

cl

On

oblige

c’or.

tous

apparticnt pas le

le5

commence

de

cylindre

dc

si.

il exi\te

base

C’cst

leurs

vecteur On

208

de

;ILI

des

on

suite

1. no .Y,

; elle =

0 et

et on

pose

plongc

le voisinage

Y(,+,]j

en

25; r donnt’es

et

27.r

X:,, danh

r^, associt-e

envoyanl

respectivement

qui

par

est la subdivision jr,,.

au ctine

On

la

dkmontre

(;,,.

quc

f,,. (j,,, ,)

’ ‘.

r6gulkre

minimale striL?e

plongCe vdrifie

en

pour tore

que

de

fait

leur5

que

I$,

ces

XI

et la

transformke

e\.t une

intersection

de Newton.

vari&&

chacun

de

TX:,

polykdrex

sur

2~~

,. le

et on

rencontrent.

en

d’oii

une

dc

iw,,,(l?,,.

.

+ soul

dan\

grand cvii

qui cas

d‘une

coi’ncidc, singularitti

Jes ;ivt~c

cleux

et

‘I,’

A appartenir

in ff

XI

que

;

Ic : oji

:

eat

la

au

vecteur

deux

tels

que

1 <

r’

I 5 g +

tore

un

soit I. et

squclette.

de E:. II s’agit

(rap.

On

cl’une

au

interprCtation minimale

minimalc

d’un

primitive

: 9 &mt

centr6

minimaux

CJ, de4 fl t 5.

(T E 5 qui

~;, uric

singularitf? g&kWeurs

cntier c ctim*\

tel

U

que

(;,

q ait On

un

vecteur

en d6duit

sur

I,,

caractkristique quc

tous

0 I$

Le premier clans

les

vectours

I.:! mT,

, ,.

j =

1. 2. et on

conclut

que

p a un

fkli

primitive

1,

dCmontre

appartient

:I la dtkinguiarisation

rkgulicre

tlej)

Old, h(.r,)I,<,‘e -. ‘, valuation II-adique.

caractCnstique

se rekve

la subdivision

lex systt‘mcs

1 !. alors

suit

/I!]

son

dimension

pour

le plus

I’u~I

:=~ (A, ~,. ?j.

Sq rencontrant

X.[[o. si

aussi de

lc th~%r?rne 4 / eht

wulcment

7 danh

c611e

cbnes

(T,,]

comme

caractCristiques

c81w

par

sur

“+’ L,:,,, dans

et

caractr*rihtiques

que

coin)

un

(I p ,,) dans

4

des

des

faw-.

d&nontre

un

E form6

irrkductibk

cles

engendk

caractCristique se ramtine

cc faire,

la transform&

du

, caract&istiques

le diviscur

telle

q +

I’axt~

dkfinissant

la rkunion

tresp.

2

161. ()n

montrcr

h montrer de

i ::i

sur

approchi-es

par

I une

, ct l’kventail

AZ

On

orhitc\

~eckwrs

hur

8.3

au semi-groupe

consiste

Ies d’uu

vecteurs

par

I) 5

clt;sin~tllarisation

.? l’dventail

cwrbe 11 c$t

g&&ale

de ,? si. et seulement contienne

. .;i,),

la subdivision

dti~PnCr6ec

WY

clans

i 5

g&A-atcur du

-

minimnle.

-k\;

. ../‘,,+l

Spc(.X,[[,Y,,.

Zz,,

rencontre

non

.s~~ut~/c~r

oil

courbe

minimal

: 23,:,>

es1 une

ct

fl?~

cnsuite

(,,,(,-i.~.,i),~~,~~!,~~~. triangulaire

Ir est

:=

de I’orbite

Z\;,

(J:,,.

Pour

2,)

toriques

7h,,

racines

:

1,

dan\

formel

dc~ I/ donke

unitaire

fnriyw.

?3 T induihant

~~ec’~~rurl.s) c,~irLic.f~;ri.sticlU(I(.I I (I I, (I tsp. (Y;,,, = L’in6galitC

!/ -

essentiel

de [S]

explicitly.

appelle

h I’image

Nous

( ji,

XLIr

pIon&

vecteur

de iwT>f,’ par Rif,$+ .~ des T/ thnctions

\‘~ de

cn

de

i y

varitit&

au voisinage -. tic X,, pi-

_-II::,

- 27~. , qui

~qul(:i,,.

81, le

la problitmatique

la valuation

Soit

dc Pirwton

I’orhitc

transversalitC

adhkent

les

r~guli~re dont

0 2

XL:,, cst S;I dCsinFul~u-isaticln ,F U,i dCfinie per !J lonctions

dans

dCduit

\;J-

pnr

singuliere.

ii011

consickre

strictc

), ( , =

par

un usage de

autcurs).

1111 rrl\,i,n/l/lc/rlc~rll

6lkmentaire

subdi\:ision CT F

morphisme

des

On

j.

fait

gknkratrice les

I/(.I.;

irl,.7,

wrfaue

isomorphe

la transform&

=

,? clr/rls

la

suite

(111 ddsigne

de Yi, et des &entails

la singularit Pour

; if

motivC

combinatoire

d’une

I/,

irzsttrllc

suivant

I 161 (suivant

,q $- I

X,1 subdivision

moins

des

de

i 5

I’Cnonz6

lit preuve

,I,?,

0

est

I 1 I] ou

t 1 ). soit

on

de

la variable

sur

dc

de I’dclatement Its

h, =

Note

primitive.

gtnCral

exceptionnel vkrife

de cette

en considkmt

les

f’acteurs

simplcs

de

1.

wul

1. About By

sandwiched

a .sand~~ic/~etl

a surface the

the

surface

now

minimal

denotes

and

chain the

S

X,,

defined

is said

10 bc

/)~.i/~rti~~.

end

of

wedges

tormal

on sandwiched

p1bintz

from

minimal

.x,,

X,,

anti

I

: = &,

3, of

by

0

for

thl.

I

.I,,

of

.i’.

mot-phiam

to bc

the

1~s

.

.

.

.

.

.

.

.

-I-

such

that

to

labelled

the

is obtained

the

curve

:’ , :=

f/(.1.,).

by

strict

the

;;.(..(I.

(ii,,.

exists

a unique

system

~I,,,~i.

Moreover.

=

where

y =

in

2. A toric Let

2(,

0

in

of S~(Y, 1

k[[,‘il,.

(.,.-,AY,;‘l

R>o(??,,. I (

.I(’

(-yo.....?,).

a proof

I(<‘) and

by

of’

of

CUI~VC

not

-

we

C’,

J’ll

&,r'l,

characteristic

nay

‘I,,

I‘(,

the the

.

-

ii

c

hc

let

where

tt;ttural

of

to

X(C~I

tnorphism


of‘

Vornt

.

>

0 and

/!,,I,.

,',

any

-

E

A-..

the

161 Remark

choose by

other

and

cle~ingularization 01’ the

I’, E II’. .I’,

in

(X,,

I) I is

exceptional

i,,ml ,

.I’, s;;tticfy

I.,,(

b,,

fOl lowing

“‘.l’,‘.

i\ either

f',,..

the

that

1.

fatnil~

: I/( I).

WC

set

/ 5 j < !I+

’ 11 ,.

I 5 j

1. i

1.

itlcnliliea:

II/<

;I unit

.g + transversal The

CL:I-1~'.

:ind

function

j = 0.

I /. I /‘I ,. I ‘2 i 5. g $ I, l.L)t.

c / -,

c

minimal valuation

ot‘ r/i /,’ \ 0).

I,, :=

that

I

the

JJ,,. 0 5 ,j <’ i, such

;ts~~me

1,

of divisorial

ddincd

\yjtent

inlqer\

‘.I’,

graph the

I (‘. We

C ',

intcrkect

gzneritting

nc~nnc~.ati\~e

dual I/ be

I’ “mi ’ in

the

does

tnintmal

the L.~I

ji, ). 0 5 i 5 q i- I 1 /ii, ~= II. :tntl

.I’, ., , =

for

and

I’ If’ I

I l.J

I . :tnti I$!‘~ ‘.

represented

I”

q, is the

. f,‘+

deleting

on by

i 5

f,“.

curve

c’, :=

II,,,

~71 ,.,)

;I

.

VI

by

transform

represented 0 5

I‘(,

there and

assume

II. I. 14).

on of

.

ends

t’rom

defined the

Then,

P 0

-I.

I

K(&)

tnay

ik invurtihlc.

.

II2

field

II’ :=

(‘.

.

I

have

point point

Coral.

graph the

.

we

in

in

dual

I,,

i,,. We

(171.

I OX!,,,

point\

The

=C(c’ j --

l

(S. I’)

ticld

simple that

;I singular

;tt a closed

if’ ncccssary

\uch

blowing-up

-I--

where

singularities

yx t ’

L’O -

of

surface

of

supported closed

Z

on

desin~Ltlari/.alioll

curves

neighborhood

shcuf’

an algchraically

Section

near

obtained

the ide;Ll

over

changing

the

exceptional

mc;1n

S’. by

infinitely

is the

we

;t complete

on

until of

surface

2

irreducible

rirzgrkrr-if>

point

and

singularities

blowing-up

singular singularity

Assume

1’ : X(C1

by

algebraic only

simple, the

.SU/;$KP

S obtained

nonsingular be

surface

Arcs

f/

(I)

In 1: (II’ (1. ke

[ I ] sec.

9.

X. IO

environment = &

AZ+’ is

endowed

. -\-,,+ ” s;,. . Ti,,

with

a nonsingular l]]

of 0

1
i < ~1, .PPP [3])

and

in 2,) rf.

We

Newton their

Its

natural

complete

f’an least

cietined

by

consider ?:\tine

‘I’

x~

/,,*!‘-I1

intersection

surt’ke

the the

(least subdivision

function\ Itn

fine

l;.

action. in F; =

The the .I-,+,

elementary

I‘ormal

f’ormal --- .\-:I’

+ (‘, .\‘i;

subdivision

subdivision

of

\; I (.sw

121. chap.

the



(11. 1

Newton I for

neighborhood

I?,

neighborhood

t'an~

the

! : \'

$I ‘Y::‘, :== Rx,:,’ of

the

= ’ + by F’,.

I- I col-respondence

209

M.

Lejeune-jalabert,

3. Arcs

A. Reguera

and wedges

on a primitive

surface

singularity

.,\ Let

<1 be

n : .I We

--

will

the

only

consider

Sketdt of’ptnof: implies w,.

III E (F,,.

210

.a; I <

For-

-

of

that

order

3. --

polyhedron by

completion

U { $- x ) such

Ptavst,rto\

This

I>-adic

rn,<

Z>(,

ctt7)’

that

Ihe

i 5

q.

functions or&t.

Because

I<; in

of

the

is

not

12. By

fki, On

luo

o&t-

-CX j,,<-

inquality. intersect5

strict the

cc)ndilions

transfornt other

hand. ch;traclcri/e

by

by

2-,,

proposition the

it7

supportin a face

I,,

:i.

*t’

111.I’ + !/

tnean

a function

> tliitt(vj.1.).

vi(;)

i y: y -t- I.

lirs

;<, ,,+,

along of

and

. 0 5

the A;

on

,firt7cTiott

) + I/(!/)

1.1 I’, ) f

(I ,, : q = i t/( .I’, j

the* triangular of‘ Ihc

3ti = //(.I

that

/:~71~ttof7.

empty. The5e

~3,

yuch

directton

intersection

-‘,. ?,, .~ t )“.

of

I/’ I,.’ I == 0. vi.!.!/

skeleton

of’ ,?.

117~~ .sk/c~/otr

g hyperplanc i’,

of

dinicn\iort

-

Z,, 5.

the

Newton

at least

\h ith

I (i ). iit,. of‘

of

(I,,}

the

orbit I’

enc. given

0 Cot- any

1.

Arcs

and

wedges

on

sandwiched

surface

singularities

Dtt:tNrrtoN. - An a/~ (resp. a ~vrc/,~:r) on ,5 ilr ;1 X,-local morphism from .i to the lormal powet series ring in one (resp. two) variable(s) with coefficients in 1,. whose herncl ih not tt~, I.. The wedge i\ c~/~feru~/ at the arc Ir. if /i factor\ through 4. we will restrict our attention to arci and wedgea whtch do not tanish on .I’,. 0 1:~ I I. ‘J + I. Given an arc II (rap. a wedge 3) on ,F. wc associate to any dtscrete \~aluation of rank ant: f . tlc~nnegative on X:[[t]] (resp. X:[[U. ,I!]]). t h e order function 11 := r’ o I, (t‘e\p. I’ c $1 : 1 ~- Z,,,, ii {-i- x ). By convention /J in /,.[[I!. f.1’. WC denote by v( ,f) = +x it’ and only if ,/’ pi K(*r /I (rc\p. 9). Fork any irreducible v,, the p-adic order function. PROPOSITION ,qi\~fvf

ig

-- DEFI~II‘ION

II

017 tlic-.

tiot7.sitigdrrr

tt~itiitttul

poitit

flitr7f~t7siot7al

of

f’otif’

/x~/otfg.s

to

;1I’c

ihr

n.it/i

the

ff

hr

oirtsiflr

//

rhf)

t/if>

:

i

.sAelrtoti

Ll/JO\‘f’

\w/i

E.

f/f~.sit7,~7ri~7ri,Ltti,)II

tliot

/Jtu/“P/?ic’s

of

0

E .s/rcV7

t

t/lot

op.,,

if’ftt7tl :=

(I/,

o/ tlir

(trc’

/Jr

fJ/

.hfiifi

(i rw/,cy if’thcw

I., , )j,,.

,

Thr

.?.

/t~frris~~f~t~~~~//~ ( ‘,,

0 -C _

f/w

; c_

IO

tlic

fl

/if,\

i’i(rIafJ

if’ t/rf,w

:=

(1 ml,

Z’l

It

\I 11. lit

fhr

on

E

c.i-ists

fit

ft

II 1 .I’, ) j,,.:,< t/If’

ft

tn~r~ (,/+ I

.sf~ylle/.

f1/7

0115.

(171 *S. 777~~ tJtor/J/ti.stti

,

c~.w~/Jfiotttrl

tk!, i:

of‘

2.

f’.\-t.vfs ,,’

lrft17.~,~ot-tt1

oti/\~

~w~iot~

~CllCtd

hfl

.sttkt

CJ. if’rrtrd

\fwii,y,r~trp

oi Propo\ilion

cur/\.

017

1,iirtrrrr./f,t-i\tif,

(i.c.

rl,ill

~oroll~u-y

f!f’.?.

I JV U/I

,2 ititrt-\f,fT.\

rrf’n

5. - L.CJlr> : .-r -- XJU. f,] /Jf’

PtWrosrrtoh

A.[[/]]

tt~rrti~,f~Jrrt7

.s>.\7f’t77

in an immediate

-01

.cit’ii.I

grt7c~t~trtit7g

f~c/7li\Yrlct7t

tJ7it7itt7ttl Jo/t/e

it7

-

rlr.\it7~7~/ut-i~frtiot7

F,‘,

tt7itfirt7trl

PIW?~. - This

3.

ft fwt7f it7

T . ,/or

SIWC’

T it7

tl7c

fit7.v

it~rrflirf~ihle

k[\l,.

I,]]

ttiitiitt7fd

-’

2

t?qtr/rrt-

lift.\

to

l/70

,s7fhdii~i.sioti

/I.

Proof: -- The morphistn SIHY /,,[[I(. v]] mmm+ .S lifts to tllc minimal dcsingLtlari~atit,n oi‘ ,G il‘and only if is ;t regular suhdt\iaic~n of !Zr it lifts to 2!:. where 1 ;I\ in Proposition 2. Thts is also
Let

--

,fidlo\r~itig

thw

(i) 0, _ t t

fwtittrit7.s

(ii)

rttfd

of’ l/w

T/7(>

oti/y

A,

hf,

f~ottrlitiotis fit

tl7e

.stt7ft//f~.s/

it7

P

ccJt7tfrit7itrg

ft f.ltrtlurr.t~ri.\tif,

IY*(.IcJ~-

c!f’ 9,

Ot7p

o/‘

0,

i ,

holfls: /ccr.st

0170

f~/trct~frf~7rt~i.~tic.

“I,., ,, I 5 I,. 5: i. ,j f./7ftt.f/f,trt.istif,

rwt7f’

~‘fv’tors

:

~~rf~/~~r~ i?/

;

trrlcl

tlir\t

it//

\i)it/7

0 5

Iif>

it7

tl7fj

itt7ioti

I frtt,/

h,.

01

I L!.

orrt~idr

n,+

, z /if,

rJt7 R

,,,:t,

A, <

, t, =

Applying q to ( I ), we derive frotn the existence of o,, E IX”,,:,’ that the minimum ix achieved same side by all o,, f 0. i.e. either thL, cone CT, ! I 01 CT, ,, in \‘*-2’ , contains than all.

0.

on

the

211

M.

Lejeune-jalabert,

A. Reguera

I’

frj, also lies in CT, ‘, Therefore tklr is located with 0 5 i -<. y. Hecause for an! 11. c,, ,’ E (T,. on tl;e’ .Yll-a\,ls of a general XC’ in the union of (T, +, I and irk,,. I :;: X. < /. NOM the coordinate Ir on ,? such that 07~ E (T( .,,. I < I <_ ‘1 + I, oolncides with its multiplicitv ancl is bounded below ii., . with equality if‘ and only if 07, t Iw ,.,,b, i (61 Car. 8.4). So. by ‘77.1 . ‘7ilpI. and above by 71, p having one characteristic vector in CT,_ , .I and in view of Prop. 4. (17, bcIong\ to the mininlal generating system 01‘ (T,+ , , (I:! C: (<-,,, . Y,. 6,). Th e intclaection of this Ia\t Write 07, =: (tI + (~1 with 0 f C\ t iJ,~++l , d cone with the plane generated by ,T, , , is a cone T,.,. , and the pair (CT, ,~, ,7 : T, + , ) is isomorphic to the pair ((( 1.0). ((,,.J,, , - r/,3, I): (0 I 0). II,. - 77,,j, i)). Therefore cl’2 = 0 and thth ~)nly characteristic vector of 9 is (~7,. Suppose now that Condition (ii) 01‘ Prop. 6 holds with 0 5 i < !I. Here for any I), o+-,, E m, and we can write (~7, = n, + cv2 uilh (I, t IT,+I ?. ckl f (I. and o2 t (c,,J.. .;, 8. But (I? lies in the plane generated by h,.-, and c, t ,. Its coordinate on the -iv,,+, -axis may not bc ICI-~ unless 07, = 0 and as above. the only characteristic vector of F i\ it;.. In general. choose X0 and / as it1 171. II. Car. I. 1-l. and let lj be the distinct simple factors 01‘ 1. There exists i (may be not unique) ~LIC~I that p induce\ ;I wedge q, on the forn1aI neighborhood .<, of the image of I’ on the blowit+-up with center I,. centered at a general arc‘ ‘7,. We prove that the minima1 desingulariz~~tions oi‘ .‘i and .5”, art’ I~KxII~ isomorphic at the point\ through which II and /I., lifts respectively.

References

212