Asymptotic stability of discrete-time systems with time-varying delay subject to saturation nonlinearities

Asymptotic stability of discrete-time systems with time-varying delay subject to saturation nonlinearities

Chaos, Solitons and Fractals 42 (2009) 1251–1257 Contents lists available at ScienceDirect Chaos, Solitons and Fractals journal homepage: www.elsevi...

180KB Sizes 1 Downloads 20 Views

Chaos, Solitons and Fractals 42 (2009) 1251–1257

Contents lists available at ScienceDirect

Chaos, Solitons and Fractals journal homepage: www.elsevier.com/locate/chaos

Asymptotic stability of discrete-time systems with time-varying delay subject to saturation nonlinearities Shyh-Feng Chen * Department of Electrical Engineering, China Institute of Technology, Taipei 11581, Taiwan, ROC

a r t i c l e

i n f o

Article history: Accepted 10 March 2009

a b s t r a c t The asymptotic stability problem for discrete-time systems with time-varying delay subject to saturation nonlinearities is addressed in this paper. In terms of linear matrix inequalities (LMIs), a delay-dependent sufficient condition is derived to ensure the asymptotic stability. A numerical example is given to demonstrate the theoretical results. Ó 2009 Elsevier Ltd. All rights reserved.

1. Introduction In practical implementations, the values of transfer-function coefficients are stored in registers with the finite wordlength. It is well known that discrete-time systems implemented in finite wordlength format are intrinsic saturation nonlinearities [1]. As a result, the stable discrete-time systems may become the unstable discrete-time systems due to such nonlinearities. During the last decades, the stability problem for discrete-time systems subject to saturation nonlinearities has been investigated in the literature [2–13]. As is well known, time delays are frequently encountered in various practical engineering systems such as chemical systems, power systems, and networked control systems. Delays are often a source of instability and poor performance. Therefore, various issues of time-delay systems have been reported in the literature. See, e.g. [14–20], and references cited therein. It is worth noting that most of the existing results for this topic only deal with discrete-time state-delayed systems without saturation nonlinearity. In many practical applications, however, saturation nonlinearities may appear in discrete-time state-delayed systems when its transfer function is implemented by a state-space model with the finite wordlength format. Recently, the problems of stability analysis for discrete-time systems with constant delay subject to saturation nonlinearities has been addressed [21]. However, the proposed condition in [21] was delay-independent results, rather than delay-dependent results. It is well known that the delay-dependent condition may offer less conservative results than the delay-independent counterparts, especially when the delays are small. To the best of the author’s knowledge, the delay-dependent stability problems for discrete-time systems with time-varying delays subject to saturation nonlinearities has not been adequately investigated and still remains challenging task. The purpose of the paper is as follows. New LMI-based [22] sufficient condition is derived to ensure the asymptotic stability of discrete-time systems with time-varying delay subject to saturation nonlinearities. The obtained condition depends not only on the difference between the upper and lower delay bounds but also on the upper delay bounds of the time-varying delays, which is less conservative than that of the delay-independent stability condition for discrete-time systems with constant delay subject to saturation nonlinearities. The notation used throughout the paper is quite standard. Rn is the n-dimensional Euclidean space, and Rnm is the set of n  m real matrices. PT stands for the transpose of a matrix P, and P > 0 (<0) means that the symmetric matrix P is positive (negative) definite. The boldface characters represent matrix variables, and H is used as an ellipsis for the terms that are implied by symmetry. * Fax: +886 2 26534518. E-mail address: [email protected] 0960-0779/$ - see front matter Ó 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.chaos.2009.03.026

1252

S.-F. Chen / Chaos, Solitons and Fractals 42 (2009) 1251–1257

2. Problem formulation Consider the discrete-time systems with time-varying delay subject to saturation nonlinearities described by

xðk þ 1Þ ¼ gðfðkÞÞ ¼ ½ g 1 ðf1 ðkÞÞ g 2 ðf2 ðkÞÞ    g n ðfn ðkÞÞ 

T

T

fðkÞ ¼ ½ f1 ðkÞ f2 ðkÞ    fn ðkÞ  ¼ AxðkÞ þ Ad xðk  dðkÞÞ xðkÞ ¼ uðkÞ; n

nn

where x 2 R is the state vector, A; Ad 2 R varying delay satisfying

8 k ¼ dH ; dH þ 1; . . . ; 0;

ð1Þ

are system matrix with compatible dimensions. The state delay dðkÞ is a time-

dL 6 dðkÞ 6 dH ;

ð2Þ

where dL and dH denote the lower and upper delay bounds, respectively. uðkÞ; k ¼ dH ; dH þ 1; . . . ; 0, is a given initial condition sequence. We assume the saturation nonlinearities given by

9 8 fi ðkÞ > 1 > > = < 1; g i ðfi ðkÞÞ ¼ fi ðkÞ; 1 6 fi ðkÞ 6 1 ; > > ; : 1; fi ðkÞ < 1

8 i ¼ 1; 2; . . . ; n:

ð3Þ

The following definition will be used later. Definition 1 [23,24]. A square matrix P ¼

pii P

n X

jpij j;





pij 2 Rnm is called diagonally dominant matrix if

8 ı ¼ 1; 2; . . . ; n:

j–i

3. Main result In this section, a delay-dependent sufficient condition for the asymptotic stability of systems (1)–(3) is presented. Theorem 2. Given positive integers dL and dH , if there exist matrices 0 < P 2 Rnn , 0 < Q 2 Rnn , 0 < W 2 Rnn ,       R1 R2 2 R2n2n and diagonally dominant matrices M ¼ MT ¼ mij 2 Rnn , N ¼ nij 2 Rnn such that 0
2

3

W11

H

H

H

H

H

6 AT M 6 d

Q

H

H

H

H 7 7 7 H 7 7 < 0; H 7 7 7 H 5

6 6 R3 W¼6 6 NT A 6 6 4 W51

0

W  R3

H

H

N T Ad

0

P  ðN þ NT Þ

H

MAd

0

0

dH R3  2M

R2

0

0

0 R2 n X mii P jmij j;

2

ð4Þ

R1 ð5Þ

j–i

nii P

n X

jnij j;

ð6Þ

i–j

hold for i ¼ 1; 2; . . . ; n, where 2

W11 ¼ P þ ð1 þ dH  dL ÞQ þ W þ dH R1  R3 þ ðA  In ÞT M þ MðA  In Þ; W51 ¼ MðA  2In Þ þ

2 dH RT2 ;

ð7Þ

then system (1)–(3) is asymptotically stable for any time-varying delay dðkÞ 2 ½dL ; dH . Proof. Define the following Lyapunov functional candidate as

mðkÞ ¼

5 X

ms ðkÞ;

s¼1

where

m1 ðkÞ ¼ xT ðkÞPxðkÞ; m2 ðkÞ ¼

k1 X t¼kdðkÞ

xT ðtÞQ xðtÞ;

ð8Þ

1253

S.-F. Chen / Chaos, Solitons and Fractals 42 (2009) 1251–1257 k1 X

m3 ðkÞ ¼

xT ðtÞWxðtÞ;

t¼kdH

m4 ðkÞ ¼

dL k1 X X

xT ðtÞQ xðtÞ;

s¼dH t¼kþs 1 k1 X X

dT ðtÞRdðtÞ;  s¼dH t¼kþs  dT ðtÞ ¼ xT ðtÞ gT ðtÞ ;

ð10Þ

gðtÞ ¼ xðt þ 1Þ  xðtÞ;

ð11Þ

m5 ðkÞ ¼ dH

and P, Q , W, R ¼



R1 RT2

R2 R3



ð9Þ

are all positive definite matrices. By evaluating the first-forward difference Dmi ðkÞ ¼ mi ðk þ 1Þ

mi ðkÞði ¼ 1; 2; . . . ; 5Þ along the trajectories of system (1), one has Dm1 ðkÞ ¼ g T ðfðkÞÞPgðfðkÞÞ  xT ðkÞPxðkÞ; k X

Dm2 ðkÞ ¼

k1 X

xT ðtÞQ xðtÞ 

t¼kþ1dðkþ1Þ

xT ðtÞQ xðtÞ;

t¼kdðkÞ k1 X

¼ xT ðkÞQ xðkÞ  xT ðk  dðkÞÞQ xðk  dðkÞÞ þ

t¼kþ1dðkþ1Þ k1 X

6 xT ðkÞQ xðkÞ  xT ðk  dðkÞÞQ xðk  dðkÞÞ þ

xT ðtÞQ xðtÞ 

kd XL

T

¼ x ðkÞQ xðkÞ  x ðk  dðkÞÞQ xðk  dðkÞÞ þ

xT ðtÞQ xðtÞ;

t¼kþ1dðkÞ

t¼kþ1dH T

k1 X

xT ðtÞQ xðtÞ  k1 X

xT ðtÞQ xðtÞ;

t¼kþ1dL

ð12Þ

T

x ðtÞQ xðtÞ;

t¼kþ1dH

Dm3 ðkÞ ¼ xT ðkÞWxðkÞ  xT ðk  dH ÞWxðk  dH Þ; kd XL

Dm4 ðkÞ ¼ ðdH  dL ÞxT ðkÞQ xðkÞ 

xT ðtÞQ xðtÞ;

t¼kþ1dH k1 X

2

Dm5 ðkÞ ¼ dH dT ðkÞRdðkÞ  dH

dT ðtÞRdðtÞ:

t¼kdH

For any vectors y 2 Rn ; z 2 Rn and matrix 0 < R 2 Rnn , we have

yT Ry  zT Rz 6 yT Rz  zT Ry:

ð13Þ

Then, it is easy to verify that

dH

k1 X

k1 X

dT ðtÞRdðtÞ ¼ 

t¼kdH

dT ðtÞRdðtÞ  ðdH  1Þ

t¼kdH k1 X

6

k1 X

dT ðtÞRdðtÞ

t¼kdH k2 k1 X X 

T

d ðtÞRdðtÞ 

t¼kdH

T

"



T

d ðlÞRdðrÞ þ d ðrÞRdðlÞ ¼ 

l¼kdH r¼lþ1

k1 X

t¼kdH

# " T

d ðtÞ R

k1 X

# dðtÞ :

ð14Þ

t¼kdH

Hence,

"

Dm5 ðkÞ 6

2 dH dT ðkÞRdðkÞ



k1 X

# " T

d ðtÞ R

t¼kdH

¼

2 dH xT ðkÞR1 xðkÞ

þ

# dðtÞ

t¼kdH

2 2dH xT ðkÞR2

"  2½xðkÞ  xðk  dH ÞT RT2

k1 X

gðkÞ þ

k1 X

t¼kdH

2 dH

#

" T

g ðkÞR3 gðkÞ 

k1 X t¼kdH

# T

x ðtÞ R1

"

k1 X

# xðtÞ

t¼kdH

xðtÞ  ½xðkÞ  xðk  dH ÞT R3 ½xðkÞ  xðk  dH Þ:

ð15Þ

1254

S.-F. Chen / Chaos, Solitons and Fractals 42 (2009) 1251–1257

For the sake of simplicity, we give the following definitions and identities:

a1 ¼ fT ðkÞNgðfðkÞÞ þ g T ðfðkÞÞNT fðkÞ  g T ðfðkÞÞðN þ NT ÞgðfðkÞÞ

  T ¼ ½AxðkÞ þ Ad xðk  dðkÞÞ NgðfðkÞÞ þ g T ðfðkÞÞNT ½AxðkÞ þ Ad xðk  dðkÞÞ  g T ðfðkÞÞ N þ NT gðfðkÞÞ

b1 ¼ ½fðkÞ  xðkÞT MgðfðkÞÞ þ g T ðfðkÞÞM½fðkÞ  xðkÞ  gT ðkÞð2MÞgðfðkÞÞ b2 ¼ ½fðkÞ  xðkÞT MxðkÞ  xT ðkÞM½fðkÞ  xðkÞ þ gT ðkÞð2MÞxðkÞ ¼ ½ðA  IÞxðkÞ þ Ad xðk  dðkÞÞT MxðkÞ  xT ðkÞM½ðA  IÞxðkÞ þ Ad xðk  dðkÞÞ þ gT ðkÞð2MÞxðkÞ

a2 ¼ b1 þ b2 ¼ ½fðkÞ  xðkÞT MgðkÞ þ gT ðkÞM½fðkÞ  xðkÞ  gT ðkÞð2MÞgðkÞ ¼ ½ðA  IÞxðkÞ þ Ad xðk  dðkÞÞT MgðkÞ þ gT ðkÞM½ðA  IÞxðkÞ þ Ad xðk  dðkÞÞ  gT ðkÞð2MÞgðkÞ;

ð16Þ

where M is a symmetric diagonally dominant matrix and N is a diagonally dominant matrix. It follows from (12) and (15) and (16) that

DmðkÞ ¼ m1 ðkÞ þ m2 ðkÞ þ m3 ðkÞ þ m4 ðkÞ þ m5 ðkÞ 6 g T ðfðkÞÞPgðfðkÞÞ  xT ðkÞPxðkÞ þ xT ðkÞQ xðkÞ  xT ðk  dðkÞÞQ xðk  dðkÞÞ þ xT ðkÞWxðkÞ 2

2

 xT ðk  dH ÞWxðk  dH Þ þ ðdH  dL ÞxT ðkÞQ xðkÞ þ dH xT ðkÞR1 xðkÞ þ 2dH xT ðkÞR2 gðkÞ " # " # " # k1 k1 k1 X X X 2 T T T T þ dH g ðkÞR3 gðkÞ  x ðtÞ R1 xðtÞ  2½xðkÞ  xðk  dH Þ R2 xðtÞ t¼kdH

t¼kdH

t¼kdH

 ½xðkÞ  xðk  dH ÞT R3 ½xðkÞ  xðk  dH Þ ¼ hT ðkÞUhðkÞ ¼ hT ðkÞUhðkÞ þ a1  a1 þ a2  b1  b2 ¼ hT ðkÞWhðkÞ  a1  b1 ;

ð17Þ

where

" 2

k1 P

xT ðkÞ xT ðk  dðkÞÞ xT ðk  dH Þ g T ðfðkÞÞ gT ðkÞ

hðkÞ ¼

U11

6 0 6 6 6 R3 U¼6 6 0 6 6 2 T 4 dH R2 R2

H

H

H

H

Q

H

H

H

H 7 7 7 H 7 7; H 7 7 7 H 5

0

W  R3

H

H

0 0

0 0

P 0

H 2 dH R3

0

R2

0

U11 ¼ P þ ð1 þ dH  dL ÞQ þ W þ

0 2 dH R1

;

t¼kdH

3

H

#T xT ðtÞ

R1  R3 :

ð18Þ

Note that a1 and b1 can be expressed as follows:

a1 ¼

n X i¼1

b1 ¼

n X i¼1

(

"

2½fi ðkÞ  g i ðfi ðkÞÞ nii g i ðfi ðkÞÞ þ (

"

n X

 nij g j fj ðkÞ

#)

j–i

2½fi ðkÞ  g i ðfi ðkÞÞ mii g i ðfi ðkÞÞ þ

n X



mij g j fj ðkÞ

; #) :

ð19Þ

j–i

By conditions (5) and (6) and the saturation nonlinearities (3), a1 and b1 are nonnegative. Therefore, it can be established that DmðkÞ < 0 for all hðkÞ – 0 if conditions (4)–(6) are satisfied. Then, the system (1)–(3) is asymptotically stable. This completes the proof of the Theorem 2.  Remark 3. Note that conditions (4) depends not only on the difference between the upper and lower delay bounds but also on the upper delay bounds. Thus, Theorem 2 presents a delay-dependent stability condition for discrete-time systems with time-varying delay subject to saturation nonlinearities. Moreover, Theorem 2 is a standard LMI form, which can be easily solved by Matlab LMI toolbox [25]. Remark 4. With lower delay bounds dL given, the upper delay bounds dH can be obtained by iteratively solving the LMIs given in Theorem 2 with respect to dH . For constant delay case, the upper delay bounds are the same as lower delay bounds (i.e., dH ¼ dL ¼ d). In this case, the system (1) reduce to the following system:

S.-F. Chen / Chaos, Solitons and Fractals 42 (2009) 1251–1257

1255

xðk þ 1Þ ¼ gðAxðkÞ þ Ad xðk  dÞÞ; xðkÞ ¼ uðkÞ;

8 k ¼ d; d þ 1; . . . ; 0;

ð20Þ

where d is positive integer denoting time delay. gðÞ are defined in (3). Then Theorem 2 can be reduced to the following Corollary.    if there exist matrices 0 < P 2 Rnn , 0 < W 2 Rnn , 0 < R ¼ R1T R2 2 R2n2n , and Corollary 5. Given positive integer d,     R2 R3 diagonally dominant matrices M ¼ MT ¼ mij 2 Rnn , N ¼ nij 2 Rnn such that

2

 11

H

6R þ 6 3 6 6 NT A 6 6 6 4  41

ATd M

H

W  R3



T

N Ad

H

P NþN

T



H

H

H 7 7 7 7 7 < 0; 7 7 H 5

H

MAd

0

2 R3  2M d

R2

0

0

R2 n X mii P jmij j;

3

H

ð21Þ

R1 ð22Þ

j–i

nii P

n X

jnij j;

ð23Þ

j–i

hold for i ¼ 1; 2; . . . ; n; where

2 R1  R3 þ ðA  In ÞT M þ MðA  In Þ;  11 ¼ P þ W þ d 2 RT ;  41 ¼ MðA  2In Þ þ d

ð24Þ

2

 then system (20) subject to saturation nonlinearities (3) is asymptotically stable for any delay d 2 ½0; d. Proof. Define the following Lyapunov functional candidate as

mðkÞ ¼ xT ðkÞPxðkÞ þ

k1 X

 xT ðtÞWxðtÞ þ d

 t¼kd

 where dT ðtÞ ¼ xT ðtÞ

1 X k1 X  t¼kþs s¼d



dT ðtÞRdðtÞ;

ð25Þ 

R

R



gT ðtÞ , gðtÞ ¼ xðt þ 1Þ  xðtÞ, P, W, and R ¼ R1T R2 are all positive definite matrices. Then the Cor3 2

ollary can be obtained by using similar lines as in the proof of Theorem 2.



In the delay-independent case, Corollary 5 may be reduced to following simpler results.   Corollary 6. If there exist matrices 0 < P 2 Rnn , 0 < W 2 Rnn and diagonally dominant matrix N ¼ nij 2 Rnn such that

2

P þ W 6 0 4 T

H W T

3

H H T

7 5 < 0;

N Ad P  ðN þ N Þ N A n X jnij j; 8 i ¼ 1; 2; . . . ; n; nii P

ð26Þ

ð27Þ

j–i

then system (20) subject to saturation nonlinearities (3) is asymptotically stable. Remark 7. Corollary 6 provides a delay-independent stability conditions for discrete-time systems with constant delay subject to saturation nonlinearity. Note that the diagonally dominant matrix N is not required to be positive definite matrix in Corollary 6. When the matrix N is set to be positive definite and diagonally dominant matrix and choose P ¼ N, Corollary 6 can reduced to Theorem 1 of [21] with single delay and no uncertainties in the system. With Ad ¼ 0 in (20), the system (20) reduce to the following system:

xðk þ 1Þ ¼ gðAxðkÞÞ: The saturation nonlinearities gðÞ are defined in (3). Then, we have the following Corollary.   Corollary 8. If there exist matrix 0 < P 2 Rnn and diagonally dominant matrix N ¼ nij 2 Rnn such that

ð28Þ

1256

S.-F. Chen / Chaos, Solitons and Fractals 42 (2009) 1251–1257



P



H

< 0; NT A P  ðN þ NT Þ n X jnij j; 8 i ¼ 1; 2; . . . ; n; nii P

ð29Þ ð30Þ

j–i

then system (28) subject to saturation nonlinearity (3) is asymptotically stable. Remark 9. It should be noted that Corollary 8 is a special case of [2,3].

4. A numerical example Consider a discrete-time systems with time-varying state delays subject to saturation nonlinearities, where

 A¼

0:92 0:5 0:21 0:9



 ;

Ad ¼



0:06

0:1

0:04

0:1

:

We assume that the lower delay bounds of dðkÞ is dL ¼ 2. Our purpose is to determine the upper delay bound dH such that the system (1)–(3) is asymptotically stable for any delay dðkÞ 2 ½dL ; dH . By using the LMI control toolbox to solve Theorem 2 as follows:

 P¼

607:2355

95:6886

 ;

10:6583

3:2214

 ;

3:2214 17:8518   888:8193 888:0410 N¼ ; M¼ ; 52:4310 60:1377607 888:0410 888:5045 2 3 2:0502 1:9492 5:9034 5:9093   6 7 37:4312 33:4267 6 1:9492 1:8922 5:2180 5:2230 7 W¼ ; R¼6 7; 4 5:9034 5:2180 6:7030 6:7072 5 33:4267 31:6243 

95:6886 562:9530

26:8607  128:9789

 Q¼

5:9093 5:2230 6:7072 6:7170 we can find the upper delay bounds dH ¼ 12. It is noted that the delay-independent result in Corollary 6 and [21] is not feasible.

5. Conclusions This paper deals with the stability analysis for discrete-time systems with time-varying delay subject to saturation nonlinearities. Sufficient conditions in term of LMIs are derived to ensure that the system is asymptotically stable, which depends not only on the difference between the upper and lower delay bounds but also on the upper delay bounds of the time-varying state delays. An example is given to illustrate the usage of the proposed approach. Acknowledgment This research is supported by the National Science Council of Taiwan under Grant NSC 96-2221-E-157-009. References [1] Liu D, Michel AN. Dynamical systems with saturation nonlinearities. London: Springer-Verlag; 1994. [2] Singh V. Modified LMI condition for the realization of limit cycle-free digital filters using saturation arithmetic. Chaos, Solitions & Fractals 2007;32:1448–53. [3] Kar H. An LMI based criterion for the nonexistence of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic. Digital Signal Process 2007;17:685–9. [4] Kar H, Singh V. Stability analysis of 1-D and 2-D fixed-point state-space digital filters using any combination of overflow and quantization nonlinearities. IEEE Trans Signal Process 2001;49:1097–105. [5] Kar H, Singh V. Stability analysis of discrete-time systems in a state-space realization with partial state saturation nonlinearities. IEE Proc Control Theory Appl 2003;150:205–8. [6] Singh V. Stability analysis of discrete-time systems in a state-space realization with state saturation nonlinearities: linear matrix inequality approach. IEE Proc Control Theory Appl 2005;152:9–12. [7] Kar H, Singh V. Elimination of overflow oscillations in fixed-point state-space digital filters with saturation arithmetic: an LMI approach. IEEE Trans Circuits Syst II 2004;51:40–2. [8] Liu D, Michel AN. Asymptotic stability of discrete-time systems with saturation nonlinearities with applications to digital filters. IEEE Trans Circuits Syst I 1992;39:798–807. [9] Liu D, Michel AN. Stability analysis of state-space realizations for two-dimensional filters with overflow nonlinearities. IEEE Trans Circuits Syst I 1994;41:127–37. [10] Liu D, Molchanov A. Asymptotic stability of a class of linear discrete systems with multiple independent variables. Circuits Syst Signal Process 2003;22:307–24.

S.-F. Chen / Chaos, Solitons and Fractals 42 (2009) 1251–1257

1257

[11] Mills WL, Mullis CT, Roberts RA. Digital filters realizations without overflow oscillations. IEEE Trans Acoust Speech Signal Process 1978;26:334–8. [12] Ooba T. Stability of linear discrete dynamics employing state saturation arithmetic. IEEE Trans Automat Control 2003;48:626–30. [13] Singh V. Elimination of overflow oscillations in fixed-point state-space digital filters using saturation arithmetic: an LMI approach. Digital Signal Process 2006;16:45–51. [14] Gao H, Chen T. New results on stability of discrete-time systems with time-varying state delay. IEEE Trans Autom Control 2007;52:328–33. [15] Liu XG, Martin RR, Wu M, Tang ML. Delay-dependent robust stabilisation of discrete-time systems with time-varying delay. IEE Proc Control Theory Appl 2006;153:689–702. [16] Dugard L, Verriest EI. Stability and control of time-delay systems. London: Springer-Verlag; 1998. [17] Gao H, Wang C. A delay-dependent approach to robust H1 filtering for uncertain discrete-time state-delayed systems. IEEE Trans Signal Process 2004;52:1631–40. [18] Mahmoud MS. Robust control and filtering for time-delay systems. New York: Marcel Dekker Inc.; 2000. [19] Moon YS, Park P, Kwon WH, Lee YS. Delay-dependent robust stabilization of uncertain state-delayed systems. Int J Control 2001;74:1447–55. [20] Palhares RM, Souza CED, Peres PLD. Robust H1 filtering for uncertain discrete-time state-delayed systems. IEEE Trans Signal Process 2001;49:1696–703. [21] Krishna VKR, Kar H. Robust stability of discrete-time state-delayed systems employing generalized overflow nonlinearities. Nonlinear Anal 2008;69:2780–7. [22] Boyd S, Ghaoui El, Feron E, Balakrishnan V. Linear matrix inequalities in system and control theory. Philadelphia: SIAM; 1994. [23] Gao H, Lames J, Wang C. Induced l2 and generalized H2 filtering for systems with repeated scalar nonlinearities. IEEE Trans Signal Process 2005;53:4215–26. [24] Chu YC, Glover K. Bounds of the induced norm and model reduction errors for systems with repeated scalar nonlinearities. IEEE Trans Automat Control 1999;44:471–8. [25] Gahinet P, Nemirovski A, Laub AJ, Chilali M. LMI control toolbox for use with MATLAB. Natick, MA: The MathWorks Inc.; 1995.