ATOMIC DATA AND NUCLEAR DATA TABLES 61, 1-30 (1995)
ATOMIC TRANSITION PROBABILITIES AND LIFETIMES F O R T H E Cu I S Y S T E M
K. FU,* M. JOGWICH,t M. KNEBEL, and K. WIESEMANN Experimentalphysik insbes. Gaselektronik Ruhr-Universit~it Bochum D-44780 Bochum Germany
Measured and calculated transition probabilities, oscillator strengths, and wavelengths for Cu I atomic transitions and measured and calculated lifetimes of Cu I states are tabulated. Data published from 1957 to mid- 1994 are covered in this compilation. © 1995A,~demicPr~. ,se.
* On leave of absence from Institute of Plasma Physics, Academia Sinica, Hefei, China t Present address: Krupp Forschungsinstitut GmbH, Essen, Germany
0092-640X/95 $12.00 Copyright © 1995 by Academic Press, Inc. All rights of reproduction in any form reserved.
Atomic Data and Nuclear Data Tables, VoL 61, No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu 1
CONTENTS
INTRODUCTION ........................................ Discussion of Tabulated Quantities . . . . . . . . . . . . . . . . . . . . . . . C o m m e n t s on Lifetime Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . Comments on Transition Probability and Oscillatory Strength Data
2 2 3 3
E X P L A N A T I O N OF TABLES
5
..............................
TABLES I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths . . . . . . . . . . . . . . . . . . II. Relative Transition Probabilities and Oscillator Strengths in Cu I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III. Annotated List of References for the Compiled Data in Tables I and II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 27 28
INTRODUCTION For the upper and lower state of a transition we give the configurations, energies in cm -~, and statistical weights
There is increased interest in spectroscopic data of neutral copper, e.g., for modeling discharges for copper vapor lasers. ~ For a study of charge exchange reactions between Ar 2+ and Cu (Refs. 2 - 4 ) , where highly excited Ar I states are selectively populated in an electron cyclotron resonance discharge, 5 we have compiled probabilities A j; of allowed transitions from upper levels j - - b e l o w the c o n t i n u u m - - t o lower levels i in the Cu I system. These data are necessary for computing rate coefficients for electron collision excitation as well as for obtaining copper plasma densities from measured absolute line intensities. 6 The known data compilations 7-~° contain selections of transition probability and oscillator strength data published up to 1980. We therefore thought it worthwhile to present an up-to-date compilation of Cu I data including transition probabilities, oscillator strengths, and lifetimes. Lifetimes rj are useful for estimating unknown transition probabilities Aj;. The relation is given by
rj= I/~A)i.
gj,; = 2Jj,; + 1.
(2)
These data are mostly taken from the compilation of Moore, ~j except as noted in the Explanation of Tables. For the upper states we have also compiled lifetimes r j . Transition probabilities can be transformed into oscillator strengths and vice versa using the relation
6.67 X 10~3.g~.fj,
Aj;
=
X2
gJ
(3)
where Aji is in s -~ and X is in nm. Comparing values ofAji andf/j given for the same transition in our Table I one should keep in mind that this relation usually does not hold if the compiled data are taken from different sources, that is, when they are independently obtained by different authors using different methods and have different ranges of error. Some authors give only relative transition probabilities or oscillator strengths, that is, transition probabilities or oscillator strengths relative to those of a standard transition. These data are compiled in Table II; transitions are characterized in the same way as in Table I. The relative transition probabilities are abbreviated by
(1)
i
As branching ratios are mostly unknown, the lifetimes rj can yield only an upper limit for probabilities A j;, however.
Discussion of Tabulated Quantities Compiled absolute transition probabilities and oscillator strengths are tabulated in Table I. To characterize the transitions the following quantities are included:
A' A 2
AS,i,(gS,, g~,, X') Aj;(gj, g;, X)
(4)
Atomic Data and Nuctear Data Tables, Vol. 61, No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
and the relative absorption oscillator strengths by
f' f
f~,/(gj,, g~,, X') fj(gj, gi, ~)
Cu I
the values of Kock and Richter (KOC68E). The work of Kock and Richter was also used as a data source for the well-accepted transition probability tables of Wiesefl Besides Wiese's best values, the data from the compilation of Bielski io are also listed in our compilation in their original form, while the data from ALL57E, MEG61E, and COR62E are given as corrected in COR70E. A further review of transition probabilities can be found in the reference GAB70E. Direct measurements of Cu I transition probabilities and oscillator strengths have been carried out by atomic beam absorption measurements (ASH67E, BEL58E, BEL70E), other atomic absorption measurements (MOI66E, BRO78E), and arc emission measurements (ALL57E). Relative Cu I transition probabilities, obtained by arc emission spectroscopy, have been converted into absolute transition probability values using known decay times (KOC68E). The authors of CAR87E, KON82E, and SIE74E determined transition probability values by using their own measured lifetimes and branching ratios, while those of KER81E used their own measured lifetimes and branching ratios from Bielski's survey (Ref. 10). In COR62E, measured branching ratios were converted into absolute transition probability values by the use of an NBS correction factor.
(5)
In those cases where the upper level of the considered transition (primed quantities) is identical to that of the standard transition (unprimed values), the ratio A'/A corresponds to the branching ratio. The sources for the compiled data are given in Table III together with an abbreviation key by which they are referred to below and in Tables I and II. Comments on Lifetime Data In the discussion below, we use the notation in Table III to refer to the sources of the data compiled. Most of the experimental Cu I lifetime data were obtained by the beam-foil technique (CUR76E, CED84E), the levelcrossing technique (BUC67E, KRE75E, NEY66E, SIE74E), and the delayed-coincidence technique (BEZ83E, BUC66E, CAR89E, KER81E, KON82E, OSH81E, VER82E). Direct measurements of the radiative decay rates of Cu I states using laser-aided two-step excitation were reported in the references CAR87E, CAR89E, KER81E, and ZER94E. Lifetime measurements of laser-excited metastable states produced in a hollow-cathode discharge were reported in VEE90E and VEE93E. Cu I lifetimes were also determined by the phase-shift method (CUN67E) and optical resonance measurements (KOW68E). Theoretical lifetime data for Cu I were obtained by means of multiconfiguration Hartree-Fock calculations (CAR88T) and semiempirical Coulomb approximations (LIN80T). The latter data set is described in LIN80T as "a crude but rather complete set of lifetimes for the Cu I isoelectronic sequence." A thorough discussion and evaluation of all the various experimental and theoretical methods can be found in the review article by Wiese. L~
These indirect methods for obtaining absolute transition probabilities seem to be less precise than direct methods: for the transitions at 282.4, 296.1, and 319.4 nm the values of KON82E are smaller than the data range Aj~ +_6Aj~of Wiese's data tables (Ref. 8: WlE80E). The data of SIE74E in the cases of 216.5 and 224.4 nm and the values of KER8 IE in the cases of 424.9, 450.9,465.1, 470.5, and 529.2-nm transitions are beyond Wiese's data range. A probable reason for this deviation from the "wellaccepted" data range might be the dependence not only on the uncertainty of lifetimes and branching ratios, but also on the correct consideration of different decay channels and their transition probabilities (see Eq. ( 1 )). Several authors measured relativefj and Aji values and normalized them with respect tofj and Aji values of other authors: atomic absorption measurements with a normalization tofj (324.7 nm) = 0.43 were reported in HAN78E, while arc emission measurements with a normalization to Aji (515.3 nm) = 7.73 × 10 7 S-i were described in RIE64E. Slavenas (SLA66E) converted his relative fj values obtained by hook measurements by the use o f t h e f j (324.755 nm) = 0.66 value from OST57E. This kind of method obviously strongly depends on the accuracy of the transition probability data used for normalization. For this reason, the uncorrected data of SLA66E are beyond the well-accepted data range. The normalization value used, fj (324.755 nm), is large as compared to data of other authors. A critical discussion of the SLA66E data is given by Corliss 9 and Bielski. ~°
Comments on Transition Probability and Oscillator Strength Data
A critical survey of experimentally determined atomic transition probabilities has been given by Bielski (Ref. 10: BIE75E). The arithmetic averages of the data collected in his compilation were denoted there as "best values"; they are listed in our compilation with the abbreviation BIE75E. Another critical discussion of experimentally determined oscillatory strength values using a normalization to the data of Kock and Richter (KOC68E) has been done by Corliss. 9 The best values from this compilation are cited as COR70E. In many cases they are the only available values, in some cases they correspond to mean values and weighted values, and in some cases they are 3
AIomic Data and Nuclear Data Tables, VOI.61, No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
encouragement. This work was supported by the "Deutsche Forschungsgemeinschaft, Bonn Bad Godesberg" within the Sonderforschungsbereich "Physikalische Grundlagen der Niedertemperaturplasmen Bochum" and by the "Gesellschaft der Freunde der Ruhr-Universit~it Bochum."
Bielski l0 gives the following comment concerning the reliability of all these methods: "The most accurate and reliable experimental methods for the determination of atomic transition probabilities are measurements of lifetimes and absorption measurements. In absorption measurements, it is important to know precisely the vapour pressure of the element under investigation, as well as the distribution of the vapour in the absorption region. • . . The accuracy of the emission measurements depends on the knowledge of the plasma parameters, such as its temperature and radial distribution, as well as on the existence of local thermodynamic equilibrium." A more detailed discussion of the advantages and disadvantages of the different methods is given by Wiese. t2 Nevertheless, the most accepted data from KOC68E (also published in WIE80E), are obtained from wall-stabilized arc emission measurements. Relative transition probability measurements without conversion to absolute values were reported in DIC64E (arc emission measurements) and relative oscillator strengths in LVO70E and OST65E (atomic absorption measurements) and ZET83E (hook and emission measurements). These relative values are given in Table II. Two branching ratios from BIE75E are also shown. Theoretical transition probabilities and oscillator strengths were computed using relativistic single-configuration Hartree-Fock calculations (MIG78AT), the pseudopotential approach (HAF78T, MCG69T), and the scaled Thomas-Fermi method (STE65T). Semiempirical methods including exchange and core-polarization effects were applied in MIG78BT. Nearly all transition probability values for transitions with wavelengths larger than 841 nm listed in Table I are taken from LIN80T, where empirical estimates are employed in the course of a numerical Coulomb approximation calculation. The authors of LIN80T state that while their transition probabilities "should generally satisfy the 10% measurement accuracies which presently typify these quantities," transitions involving higher p-states have a much lower accuracy.
R eferences 1. W• T. Walter, N. Solimene, M. Piltch, and G. Gould, IEEE J. Quantum Electron. 2, 474 (1966) 2. E. H. Marlinghaus, B. A. Huber, and K. Wiesemann, Ann. Israel Phys. Soc. 6, 94 (1983) 3. M. Jogwich, "Selektive Besetzung hochangeregter Ar IZust~nde durch einen Zweielektronentransfer zwischen Cu und Ar III in einer EZR-Entladung," Dissertation Ruhr-Universit~t Bochum (1989) [ in German ] 4. M. Jogwich, B. A. Huber, and K. Wiesemann, Z. Phys• D 17, 171 (1990) 5. K. Bernhardi, G. Fuchs, M. A. Goldman, H. C. Herbert, D. Obermann, W. Walcher, and K. Wiesemann, Plasma Phys. 18, 77 (1976) 6. E. H. Marlinghaus, "Messungen zur Bestimmung der Ladungszustandsverteilung in einem EZR-Plasma mittels VUV-Spektroskopie," Dissertation RuhrUniversitSt Bochum (1984) [in German ] 7. W. L. Wiese, M. W. Smith, and B. M. Miles, "Atomic Transition Probabilities," NSRDS-NBS Report 22, Washington, DC (1969), Vol. II 8. W. L. Wiese and G. A. Martin, "Wavelengths and Transition Probabilities for Atoms and Atomic Ions," NSRDS-NBS Report 68, Washington, DC (1980) 9. C. H. Corliss, J. Res. Natl. Bur. Stand. Sec. A 74A, 781 (1970) 10. A. Bielski, J. Quant. Spectros. Radiat. Transfer 15, 463 (1975)
Acknowledgments
11. C. Moore, "Atomic Energy Levels," NSRDS-NBS Report 35, Washington, DC ( 1971 ), Vol. II, p. 111
We are grateful to Professor I. Martinson from the University of Lund for valuable suggestions. Further, we thank Dr. Wolfgang Wiese of the National Institute of Standards, Washington, DC, for his helpful criticism and
12. W. L. Wiese, in Progress in Atomic Spectroscopy, edited by W. Hanle and H. Kleinpoppen (Plenum Press, New York/London, 1979), Part B, p. 1101
4
Atomic Data and Nuclear Data Tables, Vol. 61, No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
EXPLANATION OF TABLES FABLE I.
Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator
Strengths This table presents states, their lifetimes, and wavelengths, transition probabilities, a n d / o r absorption oscillator strengths of transitions from these states arranged according to increasing wavelengths. The columns are arranged in groups with explanatory c o m m o n headings and headings for the individual columns. upper state j config.
Ej gj
lifetime of upp. lev.
reference (rj) lower state i
wavelength k reference (E, X)
transition probability Aji ( 6Aji)
reference (Aji) oscillator strength
Quantities characterizing the upper state j of a transition. Configuration, with parentage given in parentheses, of the upper state taken from Moore.l~ In one case not found in Moore I~ (corresponding to a transition of 338.5 nm), the configuration itself is given in parentheses in a different notation as taken from CAR87E, the source of the listed lifetime and wavelength. Energy of the upper state in cm -~ taken from Moore. ~ Statistical weight of the upper state (see Eq. (2)). Lifetimes rj of the upper states as specified in the first three columns and source of the tabulated values. Lifetime is in ns, with uncertainties in the last quoted digits given in parentheses where uncertainty values have been stated in the source. Lifetimes from VEE93E marked with an asterisk are multiplet values. Source of tabulated lifetimes keyed in abbreviated notation to Table III. Quantities characterizing the lower state i in the same way as the upper statej in the first three columns (see above). Compiled wavelength values and sources Wavelength in nm of the optical radiation emitted in the transition from state j to state i. Source of the tabulated wavelength keyed in abbreviated notation to Table III. The (E, X) indicates that some authors give transition energies instead of wavelengths. In these cases, wavelengths were calculated from transition energies, keeping as many digits as given by the authors for the energies. Compiled Einstein coefficients Aji and sources of the tabulated values. Transition probability from state j to state i, in 108 s -j . Uncertainties in the last quoted digits are given in parentheses where uncertainty values have been stated in the source. Source of the tabulated transition probability keyed in abbreviated notation to Table III. Compiled oscillator strengths fij and sources of the tabulated values. 5
Atomic Data and Nuc~ar Data Tables, Vol. 61, No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL,and K. WIESEMANN
Cu I
E X P L A N A T I O N OF T A B L E S continued fij (tSfij) Absorption oscillator strength from state i to state j. Uncertainties in the last quoted digits are given in parentheses where uncertainty values have been stated in the source. For the ~, = 202.4335 transition, the asterisk ( , ) indicates multiplet values. reference (f0) Source of the tabulated oscillator strength keyed in abbreviated notation to Table III. T A B L E II.
Relative Transition Probabilities and Oscillator Strengths in Cu I This table presents transition probabilities and oscillator strengths of the investigated transitions j ' --~ i' relative to some standard transitions j --~ i. It is arranged in ascending order of the wavelength ~,', yielding compiled relative transition probabilities A'/A and oscillator strengths f ' / f and the respective sources in the last four columns. upper state j' Quantities characterizing the upper state j ' and the lower state i' lower state i' of the investigated transition in the same way as in Table I. All entries are taken from Moore. ~ wlg. ~' Wavelength of the investigated transition in nm, taken from Corliss (Ref. 9: COR70E) and rounded to two decimals. For more precise wavelength values Table I should be consulted. upper state j Quantities characterizing the upper state j and the lower state i lower state i of the standard transition in the same way as in Table I. All entries are taken from Moore. l wig. ~, Wavelength of the standard transition in nm, taken from Corliss (Ref. 9: COR70E) and rounded to two decimals. For more precise wavelength values Table I should be consulted. trans, prob. Compiled relative transition probabilities and sources of the tabulated values. A'/A Ratio of the transition probability of the investigated transition to that of the standard transition. reference Source of the relative transition probabilities keyed in abbreviated notation to Table III. osc. str. Compiled relative oscillator strengths and sources of the tabulated values. f'/f Ratio of the absorption oscillator strength of the investigated transition to that of the standard transition. reference Source of the relative oscillator strengths keyed in abbreviated notation to Table III.
T A B L E IlL Annotated List of References for the Compiled Data in Tables I and II This table gives on the left the abbreviated notation for references used in Tables I and II. The key is formed from the first three letters of the first author's name, two numbers giving the year of publication, letters A and B to distinguish between papers with the same first author and year of publication when necessary, and letter E or T indicating whether the referenced values were obtained by means of experiments or theoretical calculations. Short comments describing the methods used and the type of quantities obtained are given following the complete citation. 6
Atomic Data and Nuclear Data Tables, Vol. 61, No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper !
config,
Iowe
ig.
3dl°(IS)gp
S)4s
3dl°(IS)gp
S)4S
3dl°(ZS)Sp
S)4s
3dt°(tS)Sp
S)4s
3d94s(tD)4p
S)4s
3dS4a(ID)4p
S)4s
3d1°(tS)Tp
S)4s
3dS4s(ID)4p
S)4a
3dln(13)6p
S)4s
3d~°(~S)6p
S)4a
3dX°(xS]Sp
S)4s
3dl°(IS)Sp
S)4s
3dl°(zS)7p
4a
3d94a{ZD)4p
5)4s
3d94sCJD)4p
S)4s
3dS4s{~D)4p
IS)4s
3dS4~(I D)4p
4s~
3d94s( I D)4p
4s~
3dg4s( I D)4p
4s2
3d94s( 1D)4p
4sz
3d; 4s(3 D)4p
t S)4s
3d~4s(ID)4p
4s 2
7
Atomic Data and Nuclear Data Tables, Vol. 61, No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper
lower state i
config,
config.
3dS4s(~D)4p
3dg4s2
3dl©(tS)Tp
3dS4s z
3d~4s( 3D)gp
3dl°(IS)4s
3dlo(Is)Tp
3d94s2
3dlO(1s)6p
3d~4s~
3dS4s(~D)gp
3dl°(zS)4~
3dt°(IS)6p
3d94s
3dS4s( a D)4p
3dt°(tS)4s
3d94s( ~D )4p
3dlQ(ZS)4s
3dz°(zS)Sp
3ds4s 2
3dz°(IS)sp
3d94s 2
3d~4s(aD)~d
3d~4s(3D}4p
3dS4s(3DlSd
3dS4s(~D}4p
3dS4s(~D)Sd
3d94a(aD}4p
3dg4s(3D)Sd
3dS4~(3D)4p
3d94s(3D)Sd
3d94~(3D)4p
3d*a(]5)~p
3d~4s2
3dg4s( 3D )4p
3d~4a
3dS4s(3D)6s
3d~4~D}4p
3d~4s(aD)fs
3d94~(aD)4p
8
wavelength
[ transition probability
oscillator strength
Atomic Data ancl Nuclear Data Tables, Vol. 61, NO. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper
lower state i
coafig.
config.
3dS4s(aD)4p
3d94~2
3d94.( ~D)4p
3~4a z
3d~4s( ~D )Sd
3d~4.s(]D)4p
3d~4a(aD)$d
3de4~(ZD)4p
3d~4s( ~D)6s
3d94~(aD)4p
3d~4s(ZD)4d
3d94s(ZD)4p
3d~4s(a D)4p
3d94~2
3d94s(3D)$d
3d94a(aD)4p
3dS4s( 3D )$d
3d94a(aD)4p
3d94s(ZD)4p
3d94s 2
3d;4s(3D)4p
3d94s 2
3d94a(3D)4p
3d94,~~
3d94s( J D)4d
3d~4s(~D)4p
3d94s(3D)6s
3d~4s( a D)4p
3dS4a(aD)6s
3dS4s(JD)4p
3d94s(3D)4d
3d94s(a D)4p
3d94s(aD)4d
3d94s(a D}4p
3da4s(ZD)4p
3dS4s ~
3dS4s(aD}6s
3dS4s(3D)qp
3da4s(aD)6s
3d~4~(aD)4p
3d94a(~D )4p
3d94.s2
3dS4a(3D)4p
3dO4s;~
3d94n(aD)4p
3d94s ~
3d94s(~D)4d
3d94~{aD)4p
3dS4a(~D)4p
3d94~2
3da4s(aD)4d
3d94s(a D)4p
3dS4s(~D)4d
3d94a{J O)4p
3dS4~(aD)4d
3d94s(3 D)4p
3d~4s(aD)4d
3d94s( aD )4p
3dO4~(a D)4d
3d94s(3 D)4p
3d~4.~(aD)4d
3d94s(~D)4p
3d~4.~(aD )4d
3dS4s{3D)4p
3d'~4~(~D )4d
3d94s{a D}4p
3d94s( ~D )4d
3d94s(aD)4p
3d94a(aD )dd
3d94s(3 D)4p
3dS4~(~D}4p
3dS4s z
3d°4s(a D)4d
3d;4s(ZD)4p
3dO4a(aD]4d
3d94a(3D}4p
3d94a( ~D)6.~
3d~4.s(3D)4p
9
I
wavelength
I transition probability [ oscillator strength
Atomic Data and Nuclear Data Tables, Vol. 61, No. 1. September lg95
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu l
]'ABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper state j
[lifetimeof upp lev.[
lower state i
conflg.
con~g.
3d94~(~D)4p
3d~4~ 2
3dg4s(3D)4p
3d94s2
3dg45(3D)4d
3d94~(]D)4p
3dP4s(ZD)4d
3d~4s( 3 D)4p
3d~4a(3D)4d
3d94s( 3 D)4p
3dg4a(~D)4d
3d94.*()D)4p
3d94s(~D)4d
3d94d(~D)4p
3d94s(3D)4d
3d94~(] D )4p
3diO(IS)4p
3dl°(Is)4s
3dS4~(SD)4d
3d~4~(3D)4p
3dJO(tS)4p
3d l0 ( i S)4.s
3d94~(3D)4p
3d94~ ~
3dS4~(ZD)4d
3d94a{3D)4p
3d94s(3D)4d
3d94n( z D)4p
3d94s(ZD)4d
3d94~(3D)4p
3d94s(ZD)4p
3dS4s z
3dg4~(3D)4d 3d94.~(ZD)4d
3dS4.q(aD)4p 3dS4d(ZD)4p
3dg.1~(3D)4d
3d~4~(3D)4p
3d94s(3D)4d
3d94.~(3D)4p
3d94~(ZD)4d
3dO4~(3D)4p
3dg4s(ZD)4p
3de4:~2
3dg4.~(3 D)4d
3d94.~(3D )4p
10
[
...... length
] transhion probability ] oscillator strength
Atomic Data and Nuclear Data Tables, Vol. 61, NO. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
I'ABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper state
j
[|i~timeof upp. lev. I
lower
config.
coafig,
3dl°(I S)gd 3dS4s(3D)4d
3dl°( I S)4p 3d94d(ZD)4p
3d94sI 3D )4d
3d94s(aD)4p
3dS4s(ZD )4d
3d94a(~D)4p
3d948(~D)4d
3d94s(ZD)4p
3d~4a(aD )4d
3dg4s(~D)4p
3dl°(J S)Sd
(4p L°i.1) 3d~°{ I S)4p
3d94s(~D)4d
3d94a(]D)4p
3dg4s(3D)4d
3~4s(aD)4p
3d94s( 1D)4d
3d94s(aD)4p
3d~°(t S)Sd
3dtU(~S)4p
3dlU(tS)ad
3dZ°( I S)4p
3d94s( I D)4d
3dS4~(aD)4p
3dJo(~S)9s
3dlo(iS)4p
3d~4s( ~D)4d
3d94~(ZD)4p
3d94s(~O)4p
3d94~ 2
3d94,~(~D)4p
3d94~ 2
3d94s(~D)4d
3d94s(ZD)4p
3dl°(lS)9s
3dx°( ~S)4p
3d94s(3D)4d
3dS4~(3D)4p
3d94s(aD)4d
3d94s(3D)4p
3d94s(aD)4d
3d948(aD)4p
3d10( I S)7d
3dtO{ ~S)4p
3d94s()D)4d
3dS4d(aD)4p
3d~4s(t D)4d
3d94d(~D)4p
3d94s(JD)4d
3d94d(aD)4p
3d94s( ~D )4d
3d94~(aD)4p
3d~4,~(aD )4d
3ds4,~(~ D)4p
3d~4s(~D)4d
3,'P4~(a D )4p
3d~4~(aD)4d
3d°4~(aD)4p
3dl°(IS)Td
3dlO(IS)qp
11
Atomic Data and Nuclear Data Tables, Vol. 61, No. 1. September 1995
K, FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE I. Cu I States, Wavelengths, and Absolutc Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables ifetime of app. lev.
upper state j config.
p(~v~) reference
Ej
(~)
(~,.-,)
fi5.2 CAR88T ~8.35 LINTOT )0(6) CAR87E 84.8 CAR68T
lower state i confi$.
wavelength
E,
A
(cm -L )
(rim)
30783.69
4
351.3
LINSOT
6
3d94s(3D)4p
43726.19
6
3M.7030
CDR70E
4
3d94d(3D)4p
44915.61
2
352.0031
CORTOE
72093.08
3d94.~(3D)4p
43;26.19
6
352.4231 C O R 7 0 E
3dg4a(~D)4d
72066.97
6
3d94a(3D)4p
43726.19
6 i 352.7482 C O R 7 0 E
3d94a(~D)4p
41562.90
6
13245,42
4
353.0383 C O R 7 0 E
3d94a(3D)4d
72016.76
8
3d94~(aD)4p
43726.19
6
353.3746 COR70E
3d94~(aD)4d
71927.22
4
3dS4~(aD)4p
43726.19
6
354,4963
3da4s(ZD)4d
73104.68
4
3dS4~(a D)4p
44915.61
2
354.0433 COR70E
3dl°(tS)8~
58508.92
2
30535.30
2
356.6131 C O R 7 0 E
3d94~(3 D)4p
39018.65
0
359.4023 COR70E
58568.92
2
59249.46
4
3d94s(3D)4d
72151.18
3dg4s(3D)4d
73316.46
3dS4s[aD)4d
3d]°(Is)8s
3d~4s(3D)4d
71290.54
3d~4s(aD]4d
71268.21
8
3d94.~(~D)4p
40943.73
2
3d94s(aD)4d
72093.08
8
3d94s{~D)4d
71178.19
3d~4sCaD)4d
72066.97
3d~4s(3D)4d
3d94a 2
L[NSOT CAR07T CAR08T CAR86T
3dlO(IS)4p 3d64~ ~
11202.56
6
160.9 204(141 169
LINTOT CAR87E CAR68T
3dm(IS)4p
30783.60
4
3d94~(~D)4p
43513.95
8
359.9132 COR70E
3dg4s(~D)4p
43513.95
6
360.2032 CORTOE
334
CAR88T
ICAR87E
13245.42
4
360.9295
CORTOE
3dg4s(]D)4p
44406.27
6
36[.0809
COR70E
3d94d(3D)4p
43513.95
8
361.376[ COR70E
6
3d94d(3D)4p
44406.27
6
361.4218 COR70E
71127,81
6
3d~4s(3D)4p
43513.95
362.0352 COR70E
3d94a(aD)4d
72151.18
6
3d94s(aD)4p
44544.15
362,1245 CORTOE
3d~4a(aD)4d
71098.17
3d94s(~D)4p
43513.95
362.4236
I
o
3d~4,~z
0.01354
3d~d~(aD)4d
72104.80
3dS4,~(aD)4p
44544.15
362,732
CORTOE
71268.2I
3dS4.~(~D)4p
43726.19
302.9771
COR70E ?
3dS4,~(aD)4d
71927.22
4
3dS4a(aD)4p
44406.27
363.2558 C O R T O E
3dg4.~(~D)4d
73316.46
4
3dS4,~(~D)4p
45821.00
363.5916 COR70E
3d~4s(~D}4d
71170.19
0
3dS4,,(aD)4p
43726.1fl
364.1693 CORTOE
3d~4s(aD)4d
73304.07
g
3d94s(]DJ4p
45879.31
364.5232 ~OIITOE
3da4~(ZD)4d
71127.61
g
3d94s(~D)4p
43726.1~
3643383 COR70EI
3d~4s(aD)4d
71927.2~
4
3d94a(aD)4p
44544.1-~
365.0855
COR70E
3d~4s(aD)4d
71098.1]
0
3d94s(3D)4p
4372619
6
365.234
COR70E
4
3dl°{iS)4p
30535.30
2
365.42
CED84E 0.1236
57893.0~
51.06 67[3)
LINSOT CAR87E
12
oscillatorstrength flj(6f,i)
BIE75E
reference
if,j)
L
LO2E-03 COR7OE L34E-03 ALL57E 9.37E-3 COR62E 0.1442 CORTOE 0.1442 COR62E o.o616 COR70E 00616 CORB2E 0.0348 COI~70E 0,0325 0.0373 5,72E-04 5.34E-04 6.28E-4 0.0399 0.0448 0.03646 0.0126 0.0126 0,01294 0.0146 0.0148 0.0151 2.45E-03 2.45E-03
LIN80E BIE75E CAR88]" BIE75E 9.I6E-06 8.16E-06 1.004E-5 LINS0T CAR88T
BIE73E
0.3138 0.3138 0.3140 0.0521 3.62E-05 3.014E-5 0.0152 0.0156 0.0152 0.0290 0.0299 0.0299 0.0167 00152 0.0183 9.03E-03 6.85E-03 0.0109 0.0599
0.0614 0.06137 0 45E-03 9.45E-03 0.0522 0.0522 2.83E-03 2.83E-3 0.80E-03 9.80E-03 0.0830 0.0850 0.08298 9.t8E-03 8.35E-03 9.81E-3 0.0269 0.0251 0.0287 7.44E-03 6.64E-03 8.546E-3 5.47E-03 3.47E-03 0,0438 0.0438
COR70E
3dS4a(3D)4d
3dl°( I S)Od
reference
COR7OE
180.9 204 169 17.9E6
339.9
Aii(6Aj,] (to's-')
3dl°OS)4p
3dt°(~S)Td
transition probability
reference (E.X)
LINSOT
Atomic Data and Nuclear Data Tables, Vol. 61, No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper stale j
Ilifetime of app. lev. I
lower config.
config.
state i E, cm -~
] g,
. . . . length
I traasition probability I asciUst . . . . . . . gth
,%
eference (E.)~) Aji(~Aii} reference
(nm)
(t0%-'}
fii(6fii)
(A~,)
reference (f,,)
3d~4~(ZD)4d
3d94s(ZD)4p
3d94a( 3 D)4d
3d94s(~D)4p
3da4~(aD)4d
3d94sI3D)4p
3dg4.s(3D)4d
3d94s(3D)4p
3d94s(a D)4d
3d94s(ZD)4p
3dr°(1S)Od
3dt°(IS)4p
3d,O(=SI6d
3dl°(I S)4p
3da4,9(3D )4d
3dS4~(3D)4p
2.70E-03
3d94,~(3D)4d
3d~4s(ZD)4p
I.lTE-03 2.79E-3 5.73E-03 4.77E-03
3d94a(aD)4d
3d94~(3D)4p
3d94,~(3D)4d
3d~4s(aD)4p
3d'~4d(3D)4p
3d94s2
LI.NSOT
XEY66E 2.40!14E15200:~7O46E' "015000.1543000 10151 BUC67E 2.50E-5
KO%% 6BE 2.33E-05 3d94s( aD )4d
3d94s(~D)4p
3d94a(a D}4d
3d94s(~D)4p
3dS4a(3D}4d
3d94a(~D)4p
3dS4,~(aD }4d
3d~4s(3D)4p
3d~4s(3D)4d
3d~4s( ] D)4p
3d94s(~ D)4d
3d~4~(ZD)4p
3d94s(aD)4d
3d~4.,~(ZD)4p
3dS 4a(aD)4d
3d94a(3D)ap
3d94s( aD )4d
3da4.q(3D)4p
3d94J(ZD )4d
3da4s(aD)4p
3d~4.~(~D)4d
3d94s( aD )4p
3d~4.*(aD )4d
3,03E-03 3.40E-03 2.776E-3 0.0126
COR62E CORTOE
3d~4.~(aD)4p
3dS4a(~D)4d
72104.80
3d94.s(aD)4p
3d94.~(~D)4d
71178.19
3dO4.~(aD)4p
44963.~.2
3dS4s( ~D )4d
72066.97
3dq'4s(aD)4p
45879.31
71127.81
3494,~(aD)4p
44963,22
3d~4s(~D)4d I
|3
Atomic Data and NuclearData Tables,Vol. 61, NO. 1, September1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper state j
Ili~timeo'"PP 'evLI
lower s t a t e
co,fig;.
config.
3dm(Z$)Ta
3d]°(zS)4p
3dS4a(aD )4d
3dS4,.J(JD)4p
3d"4a(aD )4d
3d94s(~D)4p
3dm(~S)7a
3dlO(IS)4p
3da4a(aD }4d
3d94s(]D)4p
3d94a(a D}4d
3dg4s(3D)4p
3d94s( a D}4d
3d94s(ZD)4p
3d94s( a D)4d
3d94s(3D)4p
3d94a(aD )4d
3d94~(3D)4p
3d94s( aD )4d
3d94s(3D)4p
3d94s( aD )4d
3d~4s(ZD)4p
3d~4s(aD)4d
3d94s(ZD)4p
3d~4s(JD)55
3d94~(~D)4p
3dS4s( :JD )4d
3d~4s(ZD)4p
3d94s(a D)4d
3d94.~(aD)4p
3d94s(a D)4d
3d~4a(aD)4p
3da4s( aD )4d
3d94s(ZD)4p
3d94s(a D)4d
3da4,q(aD)4p
3die(IS)4]"
3dJ°( I S)4p
3dtO(tS)Sd
3dl°( I S)4p
3d~4s( 3D )4d
3d~4s(3D)4p
3d948(SD)4d
3dS4,~(aD)4p
3d94a(aD)4d
3d94~(aD)4p
3d~°( ~S)Sd
3din( I S}4p
3d Lo(LS)Sd
3dt°(IS)4p
3d94.~(aD)Ss 3da4s( aD )5s
3da4.~(aD}4p 3d~4~(aD}4p
3d94~(aD)4d
3d94.~i:~D)4p
3d94.~(aD)4d
3d94,~(aD )4p
i
]4
I
.... le.,th
I ..... i,i°op.ob.b,,i., I o~c,l, ......... at'.
Atomic Data and Nuclear Data Tables. Vol. 61. No. 1. September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu l
FABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper state
j
lifetime
of upp. lev.[
lower
confiK.
config.
3d94s(~D)5~
3d94s( '~D)4p
3d94~(~D)$s 3d94s( aD )4d
3dg4s()D)4p 3d94s(lD)4p
3dY4a(1D)5~
3d94.~(aD)4p
3d~4s(aD)SJ
3da4s(aD)4p
3d~4s( I O)5.~
3d~4a(~D)4p
3d94s(I D)$s
3dg4s(~D)4p
3d94a(3D)Ss
3d94a(aD)4p
3d94s(J D)Ss 3d94s(~D)Ss
3d94~( 3 D)4p 3ds4a(aD)4p
3d; 4s() D)Ss
3d94~(3D)4p
3d94s(t D)Ss
3d94~(aD)Jp
3d94s(]D)Ss
3d94~(~D)4.u
3d94s(aD)Ss
3d94~(aD)4p
3d~4s(3D)5s
3d94.s(~D)4p
3dtO (I S)fi,~
3d1°( t S)4p
3d~4s(ID)5~
3dg-l~(JD)4p
3d94s(ZD )Ss
3d94s(aD)4p
3dS4,s( I D)5~
3d94,~( a D)4p
3dla ( I S)6.~
3din( I S)4p
3d94~( a D)5.~
3dS 4.~(J D)Jp
3dO4,~{JD ).Ip
3d94~(~ D)5~
3d°4s(a D)4p
3d'~4~(-~D )5.~
3dS4,*(aD]4p
3dg4.~(~ D)Ss
3d94.s(~D)4p
3d~4~(~ D}5.~
3d94~(aD)4p 3d~4.~(aD)4p
15
Atomic Data and Nuclear Data Tables, Vol. 61, No, 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation o f Tables lifetime of upp. lev,
upper state j config.
Ej
gj
r,(6r,)
refe,e,~ce
| o ~ r slate i config.
(~,) (cm-')
{rim)
3d94s(ID)ss
67142.70
6
3d94s(ZD)4p
3d'4s(aD)Ss
64657.80
6
3d94s(ZD)4p
3d~4s(3D)Ss
62403.32
8
3dt4s(zD)Ss
62948.29
6
3d94s(3D)4p
3d~4a(lD)Ss
67142.70
6
3dS4a(ZD)4p
3dg4s(SD)Ss
64472.30
2
8d94a(3D)4p
7.9(5) CED84E
3d94s(3D)Ss
83584.57
4
3d94a(ZD)4p
54657.80
6
3dS4a(ZD )4p
3dte(IS)4p
30783,69
4
3d94a(3D)Ss
64472.30
2
3dLe(]s)gs
59647.88
2
3dZO(ZS)4d
6294&29
6
49935.20
4
LIN80T =AR88T ~AL78E ZL'R76E BEZ83E BL'C66E ZAR69E ZL-N67E KRE75E ~dAL78E LEV66E :URSST ffAN83E
transition probability Ajt(TAjt)
i reference
(A,,)
oscillator oscillat strength ftj(6f~j)
reference (f,~)
(10'a-l)
3d*4a 2
3d94a(3D)4p 283(19) 306.1 240
12.16 11.4(10) 11(2) 14.5(6) 66.2(34) 9.69 ]3.00829
:AR87E
3dg4s(ZD)4p
40113.99
3dg4s(ZD)4p
42302.47
3d t o (t S)4p
30535,30
LIN80T ~AR88T
LIN~T ~ED84E
SUR76E OSHglE ~.[ALTSE ~AR88T ZUR88T
3d94s(SD)Ss
62948.29
6
3d94s(zD)4p
43726.19
3d94a(=D)Ss 3dle(IS)4d
63584.57 49942.06
4 6
3d94s(3D)4p 3dlO(IS)4p
44406.27 30783.69
49935.20
4
3din( t S)4p
30783.69
3d~4a(3D)Ss
63984.~7
4
3dS4a(3D)4p
44544.15
3d94s(3D)Ss
62403.32
8
3d94s( z D)4p
43513,95
3d'O(IS)9a
59647.88
2
283(19) CARSTE ~TE 3dg4.~(ZD)4p
40943.73
3d'°(IS)4d
reference
3d94s(3D)4p
3d94s(3D)Ss
3d94s(ZD)Ss
A
(E,~)
(n,)
~.97~ 6.68 7.0(12) 7.6(7) 7.5(6) 7.0 7.17(6) 7.2(3) 7.24(15) 7.2(10) 7.2(7} 7.o6942 7.1(2)
wavelength 8,
12.29 11.6(10) 11(2) 14.2(13) 45.0(42) 9.82 13.11160 12.16 11.4(10} 11(2) 14.5(6) 66.2(34) 9.69 13.09829
LIN80T ~ED84E ZL'R76E OSHglE ~.IAL76E ZAR88T -'UR88T LINgOT CED84E ZUR76E OSHglE ~[AL76E ZAR88T ~URg8T
7.9(5)
CED84E
306,1 240
LINSOT CAR88T 7.9(5) CED84E 34E
3dg4~(3D)Ss
62403.32
3d~4s(ZD)4p
43726.19
3dS4s(3D)Ss
63584.57 I 4
3d94a(ZD)4p
44915.61
3d~4a(3D)Ss
64472,30
I 2
3d94a(3D)4p
45621.00
3dg4s(ZD)Ss
64472.30
2
3d94s(3D)4p
45879,31
3d94a(aD)Ss
62948.29
6
3ds4a(3D)4p
44406.27
8
] 6
Atomic Data and Nuclear Data Table~, Vol. 61, No. 1, September 1995
K. FU. M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper state j
lifetime of upp. lev.]
lower
conflg.
config.
3d '° (~S)8s
3d94~(3D)4p
3d94s(3D)Ss
3d94s(3D)4p
3d94s(~ D)Ss
3dS4~(3D)4p
3dS4s(3 D)Ss
3d~4a(~D)4p
ad'o(xS)Ss
3de4s(aD)4p
3dl°C I 5)4p
3d°4s z
3d94s(JD)Ss
3d94s( ~D )4p
3d1°(Xs)gs
3d~4s{ aD )4p
3d~U(~S)4p
3d94s 7
3dtQ(xS)gp
3dto(tS)5s
3dt°(IS)gp
3dt°(tS)$s
3d=°(t 5}7.~
3d94s(3D)4p
3d~°('S18~
3d94s(~D)4p
3d to (; S)Sp
3dle( tS)Ss
3dl°(t $)8p
3dt°(a S)$.s
3dS-t~(~ D)4d
3d94s( I D)4p
3dg4.t{3 D)Sz
3d94s(3D)4p
3dt°(IS)Ts
3d~4s(~D)4p
3dO4s( I D)4p
3d]°(aS)Ss
3d94~{3D }qd
3d94s(I D)4p
3dS4.~{~ D}4d
3d~4s( I D)4p
3d94J(3D}4d
3d94s(=D)4p
3dS4~(3 D}4d
3d94.~(tD)4p
3d° 4s( 3D )4d
3d94s(I D)4p
3d04~( I D}4p
3d=a(j S)5~
3dS4.s(~ D)4d
3d94.~(t D)4p
]7
Atomic Data and Nuclear Data Tables, Vot. 61. No. i, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
]'ABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper state j
[lifetime of upp" lev'l
lower stale i
eortfig.
config.
3d~4a(3D)4d
3d94s( ]D)4p
3dte(ts)9a
3dS4s(aD)4p
3dt4a(3D}4d
3d94a(tD)4p
3dg4a(3D)4d
3d94a( sD)4p
3d34s(~D)4d
3d94s(] D)4p
3d~4a(3D)4d
3d94a( I D)4p
3dle(~S)Tp
3d~°(~S)5~
3dte(]S)Sa
3dS4a(]D)4p
3d"4a(]D}4d
3d94~(sD)4p
3dD4s(3D)4d
3dlO(IS)7p
3dS4a(3D)4d
3d~4~( I D)4p
3die (t S)Ta
3d94a(3D)4p
3d94a(3D}4d
3d~4~(aD)4p
3dl°(I S)Tp
3dto(t S)Ss
3dS4a(aD)4d
3ds4~(ID)4p
3dl°(IS)9a
3de4~(aD)4p
3dl°[tS)Os
3d94s(ZD)4p
3alto(I S)8a
3d94s(3D)4p
3dl°(Is)9s
3d94J(3D)4p
3dS4.~(tD)4p
3dta(tS}5~
3dl°( I S)8~
3dS4a(~D)4p
3dla( ] S}es
3dS4a(~D)4p
3dl°(lS)Ba
3dS4a(aD)4p
3dlo(ts)Sa
3dlO(l S)4p
3ds°(lS)S.~
3d~4a(aD}4p
3dlO(Is)~a
3d'°(IS)4p
3dl°(t S)T.~
3ds4s(3 D)4p
3dl°(sS)6a
3d94a(~D)4p
]8
I
. . . . length
I . . . . ition probability I oseilla~. . . . . . . gth
Atomic Data and Nuclear Data Tables, Vol. 61, No, 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper
~wer~
con6g,
con6g.
3dZ°(IS)6p
3die( I S)Sa
3dZ°(IS)7a
3d94a(:ID)4p
3dl°(IS)Gp
3dt°(IS)Sa
3dl°(IS)Ts
3d94s(3D)4p
3dX°(IS)Ta
3d94.z(~D)4p
3dZ°(IS)8d
3di°(JS)5p
3dZ°(iS)8d
3dl°(IS)5p
M~o(ts)Sd
3dh°(~S)Sp
3d1°(IS)6~
3d~4~(3D)4p
3dZ°(xS)Ts
3d94a(3D)4p
3dl°CtS)9J
3dl°(JS)5p
3dI°(Is)gs
3dl°(JS)Sp
3dl°(Is)gp
3dtO(IS)4d
3dl°(Is)gp
3di°(IS)4d
3dl°(tS)9p
3dl°(IS)4d
3dl°(lS)Td
3dl°(JS)Sp
3dl°(IS)Td
3dlo(Is)sp
3dl°(lS)Td
3dl°(Js)sp
3dlO(IS)Sp
3dt°(IS)4d
3dZ°(IS)Sp
3di°(IS)4d
3dJ°(JS)Sp
3dl°(IS)4d
3dlo(IS)Ss
3dl°( j S)Sp
3dln(zS)8s
3dlo(Is)sp
3dZo(ZS)6d
3dte(IS)5p
19
Atomic Data and Nuclear Data Tel~es, Vol. 61, No. 1. September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
T A B L E I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper state j config. Ej
lifetime of upp. lev. r/{Sr/) reference
g)
(cm-')
(as)
lower state i confi8. Ei
(~'J)
(cm -t)
3d'°('S) ~
I 578~a.05 I 4 I 5n.oe ILL, soT]
3dl°('S)Sp
3d'a('S)6d
I S~883.05 141 st.o8 ILLWaOTI
3a'°('S)Sp
3d'°('S)e,
I 5=~878 12l 82:~8 J LIXS0T I 3dSdd(aV)4p
3d'S('S)TP
I 57948'71 I~1
zd,o(,s)vp
I STray1 I 4 i 1179 I LIXS0T I 3dt°('S) 4d
3dt°('$)SJ 3dt°(tS)sJ 3dln(IS)Sf 3dt°(=$}6a
57905.20 57908.70 57905,20 52848.75
11>~ I LIXsoTI
6 8 6 2
136.0 135.6 136.0 52.78
3d'°('S)~#
3d'°('S) v~
I 5os71.39 121 1005 I Ll.~aoT[
ad"('s}sp
3d'°(IS)7a
I 56671.39 12 [ 100.5
4
3dJ°(tS)6s
52848.75
2
3d,,(,s)8,
(E,A)
( 108~-' )
(Aj~)
(f,j)
ILIXSOTI 3dl°(IS)Sp
407.2 LINSOT [ 3dZ°(tS)6a 22.7 ICARaST L23(8) ZER94E
52.78 LISSOT
3dS4a(aD)4p
I 5284875 121 5~v8 I L]XaoTI 3d'4,(=O)4p
52.78 LINSOT
3dg4a(~D)4p
3dt°('S)6a
~,2848.T5
2
3dm(IS)8p
59275.33
3dl°(~SJsp
49383.26
4 I 2:967 LIN80T [ 3dZo(LS)6,~ CAR88T [ 31('2) ZER94E J 2 38.75 LINSOT 3dt°(I S)5.~ 19,5 CAB88T
....
(nm)
LINSOT 3d'O(mS)4d I LIN80T 3dta(ZS)4d LINSOT 3dJ°(:S)4d LINSOT 3dSda(3D)4p
I 87410.31 I 2 I 337.7 [LLWa0TI
50070.50
wavelength transition probabilitYreferenceoscillator strength A reference Aji(SA~i} fij(bfij) referene~
ad=o('s)4d
3d'°('S)VP
3dtO(lS)9p
I 8, d
r
20
Atomic Data and Nuclear Data Tables, Vol. 61, No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables lifetime of upp. lev
upper stale j config,
EI
,(6rj)
(em -a)
(ns) L2(21 .1(35)
'.9(421
3dtO(t S)Sp
18.76 Z3(21
~0382.95
12(2) 16.5 '.1(35) r.9(42)
3dt°(IS)5d
i5391.29
3dZo(tS)Sd
~5307.67
27.13
[NgOT
26{2)
.*D64E I ~BS6T J SHgIE [
3dl°(IS)Sd
:t.s(s~,) 26.80
55387.57
5r(2) 25(3) 24.8 3dt°{tS)6s
0.9(17) 4.s(31} 52.78
52848.75
55(3) 45.9
9.3(251 8.2(4g' 6.0(711
4,o(73'~
3d1°(; 5)66
52848.75
52.78
53(3) 43.0 9.3(25' ~8.2(48 16.0(71
~4.o(73
3dlO(IS)4f
55429.80
3diO(~ S)4f
55429.80
3dtO(IS)4f 3dle(I S)8d
55426.30 60066.33
3dlO(;S)Bd
60065,51
3dl°(ISJTp
~7948.71
4
3dl°(IS)6p
55027.74
2
70.23 70.23 70.44 137.5 121 137.3 IbO(9) 127 117.9 5.76 17.0(45 15.0(12
184.9 19.5
23(5)
3dlO(1518d
60065.51
25.1(IC 137.3
1~0(0! 127 3dl°(I S)0a
3diO(IS)6p
3dtO( t S)6p
59647.88 54784.06
54764.6~
3dl°(~S}Op
60085.2{
3dtO{IS)p
60070,61
3diU(t S ) O p
60070.61
3d'"(' S)gd
601169.3;
306,1 283(19 240 352,5 492
(£,x)
[erence
(f.)
(rim)
3dl°(tS]~a
1157,21 1
,60LI
~,IX60T
9.IL55 LL";60T 0.111 [ CARggT
3d=O(IS)Sp
9382.95
t 66,.1.4
LIN80T
1.06780 [
~HglE ~HglE
~.L78E ] ~N00E I
3.9(17)
I
osci||ator strength i(6fij)
fference
LRgTE ;R76E kR88"I
~.5~to)
26,80 37(2) 25(3) 24.8
A
,.,-i) :RZOE ;I-ISlE ;H?IE N80T
transition probability
wavelength
erence
L.o(5o)
25.4 }.9(20 r.z(43)
lower state i
AL78E] lN80T ARg7E ED84E
[NS0T
I 3dl°(IS)Sp
9382.95
1665.4
LLNg0T
l.O1134
[Ng0T
3dt°(~S)~p
i9385.26
1665.4
LINg0T
0.05669
INg0T
i$600.86
1711.74 CA R88I
5.10E-4
AR88"I
$836433
1812.91 CARflg~
4.22E.3
ARg8"]
49935.20 49942.06 49942.06 54?84.06
1820.0
LISg0I
LISg0"I
0.1329 0.009479
,IN'g0]
1822.2 1823.4 1893.1
LINg0'I LIN80"I
0.1420 0.0042?5
.|.%'80"I
54784.06
1893,4 I LIN801
7.103E-4
~,lN80']
52848.75
LINGO'
0,007371 7.73E-3
~[NgO']
~Rgg"f SHglE AL78E INg0T
AR87E EDg4E ARggT $HgIE AL78E INg0T 3d'a4s(tD)4p AR67E ARS&T pSHgIE ISHgIE [AL76E [AL78E .INgOT 3d94s(t D)4p AR87E ARgST ~SHglE ~SHglE [AL78E [AL78E .IN80T 3dm(IS)4d ,INgOT 3eUo(IS}4d ,INgOT 3dl°(I S)4d ANg0T 3dl°(I S)6p ;ARgg"I .INg0T 3dl°(l$)6p ;AR87E ~AR88"I ,lN60T 3dt°QS)6s :AR88"I "ER82E .~ER94E LINgOT 3d=°(IS)4d 7AR88"I /ER82E ~.ER94E LINaOT 3dt°(IsJ6p :'AR87[ ?AR86"] LINg0? 3dto(t S)6p
LIN80"I -"A R88'~
6.2(6: 5.2(s: 352,5 4.92
~'ER821 ZER94I LIN80I ~AR88"
62(6 5.2(s
VERB21
343.2 8,51
ZERg41 LINGO'] CAR88"
51(5;
ZERgql
407.'.. 22.7 123(6 407.1 22.7 123[6 137.,
LINg0"I CAR66' ZERO4] LIN80"] CAR88'
:AR88'
LINGO
0,008055
LINgO'J
55027.74
LINgo
0.004186
LINg0~
54784.05
LIN8O
0.003660
5,93E-5
LINg07 :AR88
3d~°(ISJ4d
49935.20
LINgC
0.001165
LINg0"
3diu(tS)4d
49042.O6
LINGO
0.01055
LINg0'
3dlO(ISJsd
55387,67
LINg(
3.088E-4
LINg0'
3dl~(~S)sd
55387.67
LINgI
4.H3E-5
LINgD
3dlV{ i S)Sd
55391.29
LIN8(
4.344E-4
LINg0
3dl"(Is)4f
55426.30
LINgl
1.008E-4
LINg0
ZERO4] LIS80"]
.[Ng0"I
49935.20
:ARB?/ 2AR88q
,IN'80'I
2 |
Atomic Data and Nuclear Data Tal:d~, Vcd. 61, No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper state j config.
Ilifetime of upp, lev. I
lower state i config.
E, (cm-l)
3dS°(zS)ad
3dlO(aS)4j '
55429.80
3dl°(zS)Bd
3dt°(t S)4,f
55429.80
3dZ°(Z$)ga
3dZe(ZS)6p
55027.74
3d~u(zS)Tp
3dJO(mS)6s
52848.75
3dte(t S)Td
3dZ°(t S)6p
~4784.06
3dl°(IS)Td
3dm(ZS)6p
54784.06
3dze(zS)Td
3d=°(I S)gp
5~,027.74
3dl°(tS)ap
3dtO(IS)Sd
55387.67
3dtO(~S)gp
3dt°(t S)Sd
55387.67
3dm(tS)ap
3dl°(IS)Sd
55391.29
3dl°(IS)Td
3dl°(l S)4f
55426.30
3d:°(=S)Td
3d1°(IS)4f
5542g.80
3d J°( IS)7d
3dl°(=S)4/
55429.80
3alsO(is)as
3dlO(IS)6p
54784.06
3dZ°(ls)aa
3d'°(1S)6p
55027,T4
3dS4~( =D)4p
3dt°(t S)6a
.~284g.75
3dl°(t S)6s
3dZ°(lS)Sp
49382.95
Od~°(IS)6a
3dl°(lS)Sp
49382.95
3dZO()S)9p
3dt°(tS)Ta
56671.39
3dle(J S)9p
3dl°(~ S)Ts
56671.39
3d]e(IS)9a
3d94s(=D)4p
~6343.T4
3da°(t S)6d
3dt°(J S)6p
54784.06
3dl°(lS)6d
3dt°(2S)6p
54784.06
3dl0(IS)Ss
43L37.21
3d94s(ZD)4p 3dl°(lS)Ss
3dS4s(3D}4p
wave]ength g, I I
transition probability
"~
reference
Aj;(/~Ajl)
reference
(rim)
(E,A)
( 10ss- )
(Aj,)
oscillator strength fij(6fii)
reference (fij)
40t13.99
22
Atomic Data and Nuclear Data Tables, Vol. 61, NO. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL,and K. WIESEMANN
Cu I
TABLE I, Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables lifetime of upp. lee.
upper state j
Ierenec
eonfig,
(r~
itransition probability
wavelength
lower :
A
eollfig.
reference (E, X)
3dt°(IS]Td
3dS4e( a D)4p
3dS4a(~D)4p 3dm(~s)gp
3dl°( ( S)8d 3d'°(tS)Sp
refereace (A.)
oscillator strength ~)(6~i)
[referencelf,)
(10% -~)
am) ALT8E [Ng0T ~.R87E ~.P,ggT EDg4E kRSgT EE90E RE75E ~.RSgT EEg0E INs0T hR88'r ER04E IN 802" ARgTE AP,88"I IN89T
A~(~Ajt)
3d'°( ~S)6p
3490.0
3die( =S}Sn
,646.97
3dlo(IS)Ss
~725.78
3dlO(]S)Ts
3771.0
3d~O(tS)7p
3779.0
3dlP(tS)Ts
3840.3
3d~°(IS)Sd
3904.7
3d~O(IS)Sd
3010.2
3dl°(IS)5d 3dlO(tS)Sd
3dle(IS)4J
3972.1 3972.3 3977.9 4050.6
3d~°(~S)4J
4056.3
3dt°[ts)4f
4O59.7
3dl°(IS)7p
44872
3dS4s( t D)4p
4494.38
3d94d¿3DI4p
4~59.96
3dl°( I S)6d
4561.7
3dZO(t 5)6s
45893
LIN80T
3dt°(I S)6d
4592,3
I.IN80T
3dwttS)6d
4596,6
~.|_Xg0T
3ttl°( =5)5 f
4627.2
LIN80T
3dtU(IS)Sf
4629.0
LI.X8OT
3d~°l~S)SJ
46343
LINg0"i"
3d~O(t S)7p
4722.3
LINgo"/'
3d~( I S)?p
4724.1
LINgUT
3dlO(tS)Sd
4922.1
LINgO'f
ARggl
ER94E ,INGOT A Rg8"I ER82E ER94E ,INGOT AR88"I 'ER82E ER94E .INgoT .IN80"f .INg0"f .IN80"[ 'AR8g~ ;ED841
3o'"o(t $)7p
3d~UllS)Tp
3d~u(t S)s[ 3dt°(I 5)5I"
3d*o(~S)sI 3dr°( t S)6d
3dt°(IS)Sd
)SH811 lALTg]
3dl°(~ S)6d
3d Io(15)9/7
60085.20
3dX°(IS)6p
55027.74
3dl°( t S)Op
30070.60
3dl°l l S) p
30070.60
3dlO(~S)gd
50066.33
.IN80"l ~AR88q ~EDg4] )$1181] IAL78] LINgO'I ?AR87] ?ARgg" :ED84] LINg0"I ?AR87', ?ARgff LIN80'] .~AR87 ?ARg8' LINg0"! ?ARgg ,lAL78 dAL78 LINg0" 7AR88 EER94 LINS0" .~AR88 ~'ER82 ZER94 LINGO' .'2ARB8 ZER94 LINGO' ~AR88 2ER94 LINg0
~0065,51
C.-kR88 LINGO'
3dlO(LS)Td
4
3dt°(IS)s 3dlO( I S)8s
3dL°(LS)SS
3d*°{=S)gd 3dt~[ t S)gd
60000.33
3dtO[I S)gd
60005,33
3d~ll(I S)8d
90095,51
3dtO[*S)Tp
57419,31
CARS~ CAR8~ LIN80 CAR8~ LINgo CARg~ LI.N89 CAIn81 CARS" LIN89 CARS1 VERB;
23
Atomic Data and Nuclear Data Tables, VoL 61, No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper state j
ifetime of upp. lev.[
lower
eoafig.
con£g.
3d D4a( ! D)4p
3d'°('S)Ts
3di° ( i S)6p
3dl°(I 5}6,~
3dle(tS)Ts
3dl°( I S}~p
3die (z S)7d
3diD( I S)Tp
5de4.~(3D)4p
3d1°(IS)Ss
3dl°(IS)Tp 3de4J(t D)4p
3dZ°(t S}Ta
3dlO[lS)Ta
3d'°(tS)Op
3dr°{ 1S)9p
3dZO(ts)Sa
3d'°[ *S)gp
3d'o('S)Sa
3d'°(~ S)ep
3dto('S)6d
3ds4a(3D)4p
3d'°('S)S:
3dtO(t S}8p
3dm(IS)6d
3d'°('S]8"p
3diO(iS)6d
3d'°( 'S)Td
3d'o('S)Sf
3dtO(IS)Td
3a'o('S)sl
3dto(tS)Td
3d'o(~s)sj "
3d'°( l S)7d
3dlO(:S)Tp
~o(~ S)Td
3dlO(IS)Tp
3dm(ZS)9s
3d94s( t D)4p
3dl°(IS)Tp
3d*e(I S)Ts
3dto(ts)Ss
3dl°(1S)Tp
3dle(tS)gs
3d94s( I D)4p
3dtO(Zs)9p
3die (tS)Td
3dl°(IS)~,s
3d94s(3D)4p
3d~°(~S)gp
3dlo(IS)Td
3dlo(lS)9p
3dln[IS)Td
24
Atomic: Data and Nuclear Data Tables, Vol. 61, No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper state j
lower,
ffedme of upp. lev.
eonfig.
config.
3dl°(IS)8d
3dtO(a$)8p
3di°( I S)Sd
3dl°(aS)Sp
3di°(I S)Sp
3dZ°(zS)Bs
3dL°(IS)7p
3dl°(IS)Ta
3d l°(~ S)Sd
3dl°(l S)Sp
3dl°(IS)Sp
3d~°( ~S)Sa
3dl°(xS)8s
3dtO(ZS)7p
3dZO(ZS)Sd
3dm(I S)6p
3dlO(t S)5d
3da°{15)6p
3dl°(IS)4d
3dt°(zS)Sp
3dln(I S)4d
3dt°(ZS}Sp
3dlO(IS)4d
3d~°(;S)6d
3dl°{IS)Tp
3dl°(t S)9p
3dX°(tS)9~
3dtO(lS)9p
3dt°{;S)O~
3d;O(JS)Os
3dtnCIS)Bp
3dtO(xS)Sd
3di°CtS)6p
3dl°(t S)Ts
3dn4s(tD)4p
3dl°(t S)9s
3d~O(t S)Sp
3dlO(Is)gs
3d ~4a(i D)4p
25
Atomic Data and Nuclear Data Tables, Vol. 61, No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE I. Cu I States, Wavelengths, and Absolute Transition Probabilities and Oscillator Strengths See page 5 for Explanation of Tables upper
lower
config,
config.
3d94a(t O)4p
3dto(|S)Ss
3dz°(ZS)Sp
3dJe(IS)Td
3dm(l$)'rp
,3d~0(=S)6d
3dt°(t$)Tp
3dt°(t$)Gd
3dlO(IS)4/ 3d10(1$)4] 3~t°(tS)Sp
3dl°(IS)Sd 3di°(IS)Sd 3dm(~$)Td
3dZ°(IS)Sp
3dlo(JS)?d
3dZ°(l$)9p
3dlO(|$)$d
3dZ°(|S)sf 3dlU(IS)~f 3dZ°(ZS)Sf 3d'°( ~$)9p
3daO(lS)6d 3dlO(IS)6d 3dm('S)Od 3dm(~Sled
3dt°(t$)gp
3d~o(,$)8d
3d%8(=D)4p
26
Atomic Data and
Nur.Jear Data Tables,
Vol. 61, No. 1, September 1995
K . b-U, M. J O G W I C H , M. K N E B E L , a n d K. W I E S E M A N N
Cu I
TABLE II. Relative Transition Probabilities and Oscillator Strengths in Cu I See page 5 for Explanation of Tables
canfig.
E'j,
1
lower state ['
upper state j'
g~1
config,
(cm-')
E'~,
wig. [ g},
A'
(~.,-')
I
upper state j ¢onfi$.
4
3di°(zS)4s
O.
2 216.51
3dO4s(SD)4p 45879.31
4
3dZ°(lS)4s
0.
2 217.89
3dD4s(S~)4p 45821.00 2
3dl°(zS)4s
O.
2 1218.17"
2 3dZ°(xS)4s
O,
2 222,57
3d%s(~D)4p]4544,15 [4 3dl°(zS)4s
O.
2 224.43
3d~4s(SD)4F40943.73
2
3dZ°(ZS)4s
0,
2 244.16
3dP4s(SD)4p:s,0113.99
4 3dl°(zS)4s
0.
2 249,21
D)4p46589.34 3d%s(SD)4p45879.31 3d°4s(SD)4p 44963.22 3d94s(SD)4p 46598.34
6 4
lower state ] 8j
coafig.
(era -1)
(ore)
3d94s(SD)4p 46172.84
Ej
3d]°(1S)4p
El
(cm-')
30535.30 2 3dZ°(lS)4s
0.
~i
wig.
trans, prob.
A
iA'/Areference
3d 48(
3d94s( 3D)4p 44406.27 3d°4s(SD)4p 46172.84 3d°4s(SD)4p 45879.31 3d~4s(SD)4p 43726.19 3d94s(SD)4p 43513.95 3d~4s(~D)4p 44544.15 3d94s(SD)4p 44406.27 3dt°(tS)4p 30783.09
3d|°(IS)dp 41153.43 3d]°(1S)5d 55387.67 ~d~4s(3Do)5~ 62948.29
3d94s(3D 1)5~64472.30 3d°4s(SD~)5~ 3584.57 3dt°(~S)6s
2848.75
3d°4s(3D~)5~ ,3584.57 3d~4s(3Ds)5~ 52403.32 3de4s(aD2)5~ 53584.57 3d%s(3Ds)5~ ~2403.32 3d~O(~S)4p 30783.69 3d~°(~S)4d 49935.20 3dl°(tS)4p 30783.69 3d~°(~S)4p 30783.59 3d~°(tS)4p t0535.30
8 6 6 4 4 6 8 4 6 4
3dV4s 2 3d°4a 2
3de4s2 3de4s 2 3d°48~ 3d°482 3dg4s 2 3de4a 2 3d°482 3dB4s2
3d~4s2 3dl°(I5)4s
11202.57 11202.57 L1202.57 13245.42 L1202.57 13245.42 L3245.42 11202.57 11202.57 13245.42 13245.42 0.
6 6 6 4 6 4 4 6 6 4 4 2
282.44 3dl°(]S)4p 30783.69 4 288,29 296,12 299.74 301.08 303.61 306,34 307.38 309,40 : 319.41 320.82 324,75 3dZ°(1S)4p 30535.30 2
3d9482 11202.57 6 333.78 3d~O(1S)4p 30783.69 8 4 3dW(IS)4p 30535.30 2 402.26 6 I 3d°4s(~D)4p39018.65 6 417.78 2 3d94s(SD)4p40943.73 2 424.90 4 3de4s(SD)4p 40943,73 2 441.55 2 3dt°(IS)4p 30783.69 4 453.08 2 3dg4s(SD)4p 41562.90 6 453.97 8 3de4s(SD)4p 40909.14 I0 465.11 4 3de4s(SD)4p 42302.47 4 469.75 8 3d°4s(SD)4p 41153.431 8 470.46 3d~4s2 11202.571 6 510.55 3dZ°(zS)4p 30783.69 4 4 3dZ°(~S)4p 130535.30 2 515.32 3dl°(ZS)4p 30783.69 3d°4s 2 113245.42 4 570.02 3dl°(zS)4p 30783.69 4 3d94s 2 13245,42 4 570.02 3dl°(~S)4p 30783.69 4 3d°4s 2 13245.42 4 578.21 2
2'7
4
3dS4s2
3dl°(ZS)4s
2 327.40
3d94s2
4 3dl°(tS)4s 4 3d~4s 2 4 3dl°(tS)4s 4 3d9482
11202.57 [6 510.55
O.
:efereuce
(.,,I)
I
3d~4s(3D)4p144915.61
osc. str. f'/y
2 327.40
11202.57 6 510.55
0.327 OST65E 0.43 LVOTOE 0.497 OST65E 0.75 LVOTOE 0.403 OST65E 0.33 LVO 70E 0.0089 OST65E 0.15 LVO70E 0.0145 OST65E 0.013 LVO70E 0,0052 OST65E 0.048 LVO70E 0.0265 IOST65E 0.029 LVO70E 2.0(3) ZET83E 0.1(2) ZET83E ~0.03(101ZET83E .24(4) ZET83E ).22(2) ZETS3E ).48[8) ZET83E 3.47(8) ZET83E }.045(5'. ZET83E L079(8'. ZETS3E 3.24C6) ZETS3E ).093(1~ ~ET83E 2.0 LVO70E 1.927 OST65E 0.11(1) ZET83E
5.04 DIC64E 0.80 DIC64E 13.08 DIC64E 2.22 DIC64E ?.06 DIC64E 6.04 DIC64E 27 DIC64E 2.74 DIC64E 3.575 DIC64E 0. 2 324.?5 0.014 BIE75E 11202.57 0 510.55 57 DIC64E 0. 2 324.75 0.002(~BIE75E 0.13(2) ZET831~ 11202.57 6 510.55 0.54(9) ZET831~
Atomic Data and Nuclear Data Tables, Vol. 61, No. 1, September 1995
K.-FU, M. JOGWICH, M. KNEBEL,and K. WlESEMANN
Cu I
TABLE III. Annotated List of References for the Compiled Data in Tables I and II See page 5 for Explanation of Tables ALL57E:
ASH67E: BEL58E: BEL70E: BEN90E:
BEZ83E:
BIE75E:
BRO78E:
BUC66E: BUC67E: CAR87E:
CAR88T: CAR89E: CED84E:
COR62E:
COR70E:
CUN67E: CUR76E: CUR89T:
Allen, C.W., and Asaad, A.S. (1957) Mont. Not. Roy. Astron. Soc. 117, 36 (arc emission measurements / absolute oscillator strengths log (gifij), values as corrected by Corliss (COR70E).) Ashenfelter, R.C. (1967) (from Ref. BELTOE) unpublished (atomic beam absorption / absolute oscillator strengths) Bell, G.D., Davis, M.H., King. R.B., and Routly, P.M. (1958) Astrophys. J. 127, 775 (atomic beam absorption/absolute oscillator strengths) Bell, D.G., Tubbs, E.F. (1970) Astrophys. J. 159, 1093 (atomic beam absorption / absolute oscillator strengths) Bengtsson, J., Larsson, J., Svanberg, S., WahlstrSm, C.-G. (1990) Phys. Rev. A 41, 233 (pulsed level-crossing spectroscopy at short laser wavelengths / absolute lifetimes) Bezugslov, N.N., Gorshkov, V.N., Osherovich, A.L., Phekhotkina, G.L. (1982) Opt. Spectrosc. (USSR) 53, 239 (delayed-coincidence technique / absolute lifetimes) Bielski, A. (1975) J. Quant. Spectros. Radiat. Transfer 15, 463 (critical survey of experimentally-determined transition probabilities, "best values", level-crossing technique / absolute lifetimes) Brown, R.J., Parsons, M.L., (1978) Spectrochim. Acta 33 B, 777 (absorption in air acetylene flame using Cu line source and continuum source / relative transition probabilities normalized to A..(327.396 nn) = : 1.39 / absolute transition probabilities) P Bucka, H., Ney, J., and Heppke, G. (1966) Z. Angew. Phys. 20, 354 (levelcrossing technique/absolute lifetimes) Bucka, H., Ney, J., Wirtnik, K.P. (1967) Z. Physik 202, 22 (level-crossing technique / absolute lifetimes) Carlsson, J., D6nszelmann, A., Lundberg, H., Persson, A., Sturesson, L., Svanberg, S. (1987) Z. Physik D 6, 125 (two-step excitation of Cu atoms in atomic beam by dye-lasers / absolute lifetimes; from branching ratios and measured lifetimes: absolute oscillator strengths) Carlsson, J. (1988) Phys. Rev. A 38, 1702 (MCHF-calculations / absolute transition probabilities, absolute lifetimes) Carlsson, J., Sturesson, L., Svanberg, S. (1989) Z. Physik D 12, 287 (delayed-coincidence technique / absolute lifetimes) Cederquist, H., Mannervik, S., Kisielinski, M., Forsberg, P., Martinson, I., Curtis, L.J., Ramanujam, P.S. (1984) Phys. Scr. T8, 104 (beam-foil method / absolute lifetimes) Corliss, C.H. /1962) J. Res. Nat. Bur. Stand. 66 A, 497 (arc emission measurements / relative intensities, absolut% transition probabilities oscillator strengths, values as corrected by CORTOE) Corliss, C.H. (1970) J. Res. Nat. Bur. Stand 74 A, 781 (critical survey of experimentally-determined oscillator strengths, log (gifij), "best values'~ Cunningham, P.T., Link, J.K. (1967) J. Opt. Soc. Am. 57, 1000 (phase shift method / absolute lifetimes) Curtis, L.J., Engman, B., Martinson, I. (1976) Phys. Scr. 13, 109 (beamfoil method / absolute lifetimes) Curtis, L.J., Theodosiou, C.E., (1989) Phys. Rev. A 39, 605 (solution of SchrSdinger equation with experimental energy levels for potentials obtained from Hartree-Slater approximation with core polarization and spin-orbit interaction corrections / lifetimes, oscillator strengths) ~-8
Atomic Data and Nuclear Data Tables, Vol. 61. No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL,and K. WIESEMANN
Cu I
TABLE III. Annotated List of References for the Compiled Data in Tables I and II See page 5 for Explanation of Tables DIC64E:
GAB70E: HAF78T: HAN78E:
HAN83E: KER81E:
KOC68E:
KON82E:
KOW68E: KRE75E:
Dickermann, P.J., Deuel, R.W. (1964) J. Quant. Spectros. Radiat. Transfer 4, 807 (arc emission measurements / relative transition probabilities) Gabla, K., and Kunsiz, M. (1970) Acta Phys. Pol. A37, 391 (review of transition probabilities, absolute transition probabilities) Hafner, P., and Schwarz, W.H.E. (1978) J. Phys. B 11, 2975 (relativistic pseudopotential approach / absolute transition probabilities) Hannaford, P., McDonald, D.C. (1978) J. Phys. B 11, 1177 (atomic absorption measurement / relative oscillator strengths; normalisation to f(324.7 n m ) = 0.43 / absolute oscillator strengths) Hannaford, P., Lowe, R.M. (1983) Opt. Engineering, 22, 532 (atomic lifetimes by laser-induced fluorescence from sputtered metal vapor) Kerkhoff, H., Micali, G., Werner, K., Wolf, A., Zimmermann, P. (1981) Z. Physik A 300, 115 (stepwise collision and laser excitation, delayed coincidence technique / absolute lifetimes) Kock, M., Richter, J. (1968) Z. Astrophys. 69, 180 (arc emission measurements / relative transition probabilities; from relative transition probababilities and known decay times / absolute transition probabilities) also published in WIE80E Kono, A., and Hattori, S. (1982) J. Quant. Spectros. Radiat. Transfer 28, 383 (delayed-coincidence technique / absolute lifetimes; from measured lifetimes and branching ratios ] absolute transition probabilities) Kowalski, J., zu Putlitz, G. (1968) Z. Physik 208, 459 (optical double resonance / absolute lifetimes) Krellmann, H., Siefart, E., and Weihreter, E. (1975) 3. Phys. B 8, 2608 (level-crossing technique / absolute lifetimes, absolute oscillator
strengths) LEV66E: LIN80T:
LVO70E: MAL78E: MCG69T: MEG61E:
MIG78AT:
MIG78BT:
MIG79T:
Levin, L.A. Budick, B. (1966) Bull. Am. Phys. Soc. 11, 455 (absolute transition probabilities; level-crossing technique / absolute lifetimes) Lindgard, A., Curtis, L.J., Martinson, I., Nielsen, S.E. (1980) Phys. Scr. 21, 47 (semiempirical numerical Coulomb approximation / absolute lifetimes, transition probabilities, oscillator strengths) Lvov, B,V. (1970) Opt. Spectrosc. (USSR) 28, 8 (atomic absorption measurements / relative oscillator strengths) Malakhov, Y.I. (1978) Opt. Spectrosc. (USSR) 44, 125 (electron-optical chronography ] absolute lifetimes, measured using different lines) McGinn, G. (1969) J. Chem. Phys. 50, 1404 (pseudopotential approach / absolute oscillator strengths) Meggers, W.F., Corliss, C.H., Scribner, B.F. (1961) Tables of SpectralLine intensities, Nat. Bur. Stand. (U.S.) Monograph 32 U.S. Government Printing Office; Washington D.C. (arc emission measurements / %est values" of oscillator strengths, values as corrected by CORTOE) Migdalek, J., Baylis, W.E. (1978) J. Phys. B ]_1,L 497 (relativistic singleconfiguration Hartree-Fock / absolute oscillator strengths including core-polarization corrections) Migdalek, J. (1978) J. Quant. Spectros. R.adiat. Transfer 20, 81 (semiempirical method including exchange and core-polarization effects / relativistic absolute oscillator strengths) Migdalek, J., Baylis, W.E. (1979) J. Phys. B 12, 1113 (relativistic modelpotential and single configuration Hartree-Fock calculations with and 29
Atomic Data and Nuclear Data Tables, Vol. 61, No. 1, September 1995
K. FU, M. JOGWICH, M. KNEBEL, and K. WIESEMANN
Cu I
TABLE III. Annotated List of References for the Compiled Data in Tables I and II See page 5 for Explanation of Tables
MOI66E: NEY66E: OSHS1E:
OST57E: OST65E:
RIE64E:
without different types of core polarization corrections / oscillator strengths) Moise, N.L. (1966) Astrophys. J. 144, 774 (absorption measurements / absolute transition probabilities) Ney, J. (1966) Z. Physik 196, 53 (level-crossing technique / absolute lifetimes) Osherovich, A.L., Plekhotkina, G.L., Obidin, V.R. (1981) Opt. Spectrosc. (USSR) 50, 576 (multichannel method of delayed coincidence / absolute lifetimes) Ostrovskii, Yu.U., Penkin, N.P. (1957) Opt. Spectrosc. (USSR) 3, 193 (hook method / absolute transition probabilities) Ostroumenko, P.P., Rossikhin, V.S. (1965) Opt. Spectrosc. (USSR) 19, 365 (linear-absorption method / relative oscillator strengths; check against f(324.754 nm)/f(327.396 nm)) Riemann, M. (1964), Z. Physik 179, 38 (arc emission measurements / transition probabilities relative to A.. (521.82 nm); absolute trans31 ition probabilities by normalization to the absolute value A.. (515.1324
rim)) SIE74E:
SLA66E:
STE65T:
SUKTOE: vEEg0E:
VEE93E:
VER82E: WIE80E:
ZER94E:
ZET83E:
Siefart, E., Ney, J., Bucka, H., Bolouri, H. (1974) J. Phys. B 7, 1279 (levelcrossing technique / absolute lifetimes; using absolute lifetimes and relative oscillator strengths / absolute transition probabilities) Slavenas, I.-Yu.¥u. (1966) Opt. Spectrosc. (USSR) 20, 264 (hook method / relative oscillator strengths: normalisation to the f.. (324.755 nm) of OST57E / absolute oscillator strengths) 1j Stewart, J.C., Rotenberg, M. (1965) Phys. Rev. A 140, 1508 (scaled Thomas-Fermi method and Bales/Damgaard method / absolute oscillator strengths) Sukhanova, G.B. Semenova, D.P. (1970) Isv. VUZ. Fizika 11, 147 (transition probabilities method not known, cited from BIE75E) v.d. Veer, W.E., Dbnszelmann, A. (1990) Z.Physik D 17, 159 (atomic Cu beam from hollow cathode discharge and frequency-doubled Nd: YAG laser beam intersecting at a right angle: measurement of fluorescence light / absolute lifetimes; measurements of branching ratios / transition ratios) v.d. Veer, W.E., van blest, R.J.J., Dbnszelmann, A. (1993) Z. Phys. D 25, 201 (laser induced fluorescence of metastable Cu atoms produced in a pulsed hollow cathode discharge/lifetimes) Verolainen, Ya.F., Plekhotkina, G.L., Privalov, V.I. (1982) Opt. Spectrosc. (USSR) 53, 586 (delayed-coincidence method / absolute lifetimes) Wiese~ W.L., Martin, G.A. (1980) "Wavelengths,'and Transition Probabilities for Atoms ans Atomic Ions" NSRDS-NBS 68, Washington D.C. (mainly values from KOC68E, classification of errors) Zerne, R., Larsson, J., Svanberg, S. (1994) Phys. Rev. A 49, 128 (laser fluorescence of Cu atoms evaporated in vacuum and excited by pulsed VUV laser radiation generated by four-wave mixing in krypton gas / observation of optical transients / lifetimes) Zettl, F., Neger, T., J~ger, H. (1984) J. Phys. B 17, 1755 (relative oscillator strengths from hook and emission measurements)
30
Atomic Data and Nuclear Data Tables, Vol. 61. No. 1. September 1995