Azanaphthalenes

Azanaphthalenes

JOURNAL OF MOLECULAR SPECTROSCOPY (1966) 25-33 19, Azanaphthalenes Part I. Huckel Orbital S. C. WAIT, Department Energy of Chemistry, levels,...

459KB Sizes 0 Downloads 40 Views

JOURNAL

OF MOLECULAR

SPECTROSCOPY

(1966)

25-33

19,

Azanaphthalenes Part I. Huckel Orbital S. C. WAIT, Department

Energy

of Chemistry,

levels,

JR.

wave functions

JOHN

ASD

Rensselaer

Calculations* W. WEsLEYt

Polytechnic

Institute,

and charge densities

Troy, New I7ark

are reported

for 74 aza-

naphthalenes. Calculations were performed using the Huckel method. Comparison of the lowest singlet-singlet transition w-ith that calculated by the Pariser-Parr method is given for 21 compounds. INTROl>UCTION

The prediction of spectral hransitions and chemical properties of heterocyclic molecules is receiving increasing attention. Recent works by Streitweiser (1)) Pullman and Pullman (Z), and a monograph edited by Lowdin and Pullman (3) summarize the current status of both a priori and semiempirical approaches to these problems. As part of a research program designed to study the spectral properties of heterocyclic molecules related to naphthalene, calculations of the energy levels and charge densities have been performed for naphthalene and all 74 azanaphthalenes which do not, have nitrogen atoms along the rent’ral bond. HUCKEL

ORBITAL

CALCULATIONS

The basis of the Huckel orbital m&hod is well known (l-3) and will not be repeated here. The assumptions made in the present work are (i) the Coulomb integrals, olc are the same for all carbon atoms, (ii) the Coulomb integrals for all the nitrogen atoms are given by o(N = (Ye+ 0.5p [the value 0.5 seems to be a good starting point in the calculat,ions and has been extensively used (1, ,$)I, (iii) the resonance integrals, &c , pCN , and PNN all have t’he same value. Symmetry factoring of the 10 X 10 energy matrix was not undertaken prior to solution of the eigen-problem on an IRM 709-O computer. The energy levels calculated are given in Table 1 and t,he charge densities are given in Table 2.l The numbering of the atoms is given in Fig. 1. For t,h(> sake of presenbing a syst’e* This investigation was supported in part by Public Health Service Research Grant! Number CA-07993 from the National Cancer Institute. t Participant in the National Science Foundation Research Participation for High School Teachers Program at Rensselaer Polytechnic Institute in 1965. 1Complete tables including orbital coefficients are available from the authors. 25

WAIT,

26

JR. AND

WESLEY

Table 1 Energy Levels by Huckel Orbital Calculation

*

-2.303

-2.267

-2.282

-2.251

-2.247

-2.229

-2.226

-2.243

-2.244

-1.618

-1.593

-1.549

-1.531

-1.507

-1.550

-1.577

-1.533

-1.522

-1.565

-1.303

-1.232

-1.290

-1.212

-1.229

-1.186

-1.141

-1.209

-1.222

-1.145

-l.coo

-1.000

-0.920

-0.919

-0.917

-1.OQO

-1.000

-0.912

-0.918

-1.000

-0.618

-0.527

-0.576

-0.454

-0.495

-0.414

-0.450

-0.498

-0.484

-0.460

0.618

0.703

0.646

0.714

0.732

0.764

0.807

0.738

0.727

0.812

1.000

I.000

1.078

1.081

1.078

1.000

l.COO

1.086

1.079

1.000

1.303

1.384

1.319

1.386

1.435

1.515

1.430

1.386

1.410

1.459

1.618

1.669

1.733

1.776

1.750

1.686

1.746

1.794

1.781

1.712

2.303

2.363

2.340

2.410

2.399

2.414

2.410

2.391

2.392

2.416

-123

-124

-125

-126

-127

-128

-135

-23

26

-27

-2.230

-2,266

-2.259 -2.260 -2.235 -2.214 -2.207 -2.225 -2.226 -2.211 -2.203

-1.482

-1.477

-1.464

-1.453

-1.468

-1.522

-1.471

-1.446

-1.500

-1.493

-1.279

-1.254

-1.284

-1.210

-1.180

-1.115

-1.158

-1.211

-1.131

-1.139

-0.794

-0.874

-0.837

-0.786

-0.916

-0.906

-0.870

-0.833

-0.915

-0.916

-0.559

-0.522

-0.547

-0.447

-0.353

-0.393

-0.417

-0.424

-0.388

-0.414

0.699

0.666

0.683

0.762

0.777

0.822

0.742

0.746

0.819

0.832

1.123

1.196

1.147

1.128

1.083

1.087

1.196

1.162

1.082

1.083

1.343

1.323

1.363

1.444

1.532

1.431

1.386

1.426

1.465

1.495

1.826

1.833

1.828

1.840

1.779

1.856

1.884

1.872

1.823

1.816

2.389

2.370

2.371

2.457

2.460

2.449

2.432

2.433

2.456

2.441

-136

137 138 ---------

145

146

235

236

1234

1236

1235

-2.221

-2.221

-2.206

-2.185

-2.201

-2.224

-2.241

-2.202

-2.206

-2.188

-1.433

-1.424

-1.485

-1.532

-1.488

-1.464

-1.391

-1.396

-1.382

-1.446

-1.208

-1.210

-1.138

-1.081

-1.169

-1.199

-1.255

-1.173

-1.154

-1.110

-0.836

-0.865

-0.911

-1.000

-0.910

-0.792

-0.747

-0.773

-0.747

-0.778

-0.473

-0.443

-0.436

-0.359

-0.384

-0.474

-0.515

-0.323

-0.414

-0.380

0.782

0.747

0.848

0.892

0.794

0.794

0.727

0.805

0.801

0.875

1.154

1.200

1.094

l.ooo

1.088

1.124

1.230

1.136

1.232

1.128

1.456

1.438

1.480

1.550

1.520

1.417

1.365

1.566

1.457

1.496

1.858

1.855

1.810

1.755

1.812

1.886

1.916

1.847

1.940

1.916

2.422

2.423

2.445

2.459

2.438

2.431

2.412

2.513

2.473

2.489

+ Ener ies in terms of Beta. The lowest energy levels are at the bottom of each co9urn for a given molecule.

27

AZANAPHTHALENES

Table 1 (Continued)

1238

1245

-2.207

-2.192

-2.167

-2.184

-1.349

-1.427

-1.457

-1.S98

1237

1246 ---e

1248

1256

-2.184

-2.168

-1.388

-1.450

1247

1267

1257

1258

-2.185

-2.181

-2.163

-2.204

-1.467

-1.427

-1.475

-1,388 -1.158

-1.203

-1.119

-1.071

-1.139

-1.168

-1.077

-1.038

-1.112

-1.063

-0.729

-0.786

-0.906

-0.862

-0.833

-0.914

-0.868

-0.830

-0.898

-0.745

-0.366

-0.304

-0.403 0.803

-0.410

-0.384

-0.308

-0.315

-0.330

-0.296

-0.330

0.784

0.881

0.907

0.799

0.820

0.899

0.829

0.861

0.900

1.251

1.136

1.094

1.200

1.167

1.084

1.197

1.163

1.088

1.233

1.454

1.496

1,554

1.532

1.555

1.586

1.431

1.500

1.551

1.427

1.935

1.902

1.858

1.890

1.883

1.837

1.953

1.918

1.873

1.971

2.474

2.493

2.496

2.478

2.478

2.498

2.480

2.474

2.491

2.463

1268

1278 ---------1357

1358

1367

1458

1467

2367

45678

35678 -2.170

-2.185

-2.191

-2.177

-2.158

-2.199

-2.137

-2.178

-2.220

-2.154

-1.412

-1.419

-1.391

-1.455

-1.345

-1.500

-1.428

-1.281

-1.385

-1.307

-1.100

-1.126

-1.135

-1.077

-1.197

-1.000

-1.147

-1.252

-1,OM)

-1.139

-0.864

-0.822

-0.861

-0.910

a.747

-1.000

-0.790

-0.655

-0.771

-0.728

-0.357

-0.331

-0.372

-0.332

-0.438

-0.281

-0.368

-0,500

-0.273

-0.292

0.848

0.831

0.845

0.919

0.826

1.000

0.864

0.781

0.939

0.837

1.204

1.169

1,215

1.103

1.232

1.000

1.126

1.307

1.139

1.252

1.480

1.483

1,520

1.583

1.461

1.637

1.532

1.375

1.600

1.572

1.908

1,919

1,890

1.842

1.951

1.780

1.918

2.000

1.921

1.948

2.479

2.488

2.467

2.484

2.456

2.500

2.470

2.444

2.543

2.527

34568 34567 ----~--~~~

34678

34578

24670

24578

24568

24567

23678

23578

-2.143

-2.170

-2.165

-2.142

-2.160

-2.137

-2.137

-2.163

-2.183

-2.159

-1.377

-1.334

-1.381

-1.394

-1.328

-1.360

-1.356

-1.317

-1.272

-1.315

-1.062

-1.097

-1.036

-1.006

-1.110

-1.071

-1.059

-1.100

-1.153

-1.134

-0.819

-0.729

-0.744

-0.862

-0.728

-0.829

-0.860

-0.746

-0.654

-0.745

-0.249

-0.320

-0.322

-0.267

-0.346

-0.287

-0.263

-0.355

-0.395

-0.305

0.920

0.884

0.891

0.909

0.900

0.969

0.918

0.934

0.855

0.877

1.170

1.252

1.233

1.204

1.254

1.167

1.219

1.232

1.309

1.234

1.592

1.500

1.500

1.556

1.527

1.602

1.597

1.527

1.465

1.556

1.944

1.995

2.010

1.960

1.983

1.928

1.923

1.977

2.030

1.987

2.524

2.519

2.513

2.522

2.508

2.516

2.518

2.512

2.490

2.503

WAIT, JR. AND WESLEY

28

Table 1 (Continued)

14678

14578

345678

245678

235678

234678

234578

234568

234567

145678

-2.140

-2.116

-2.127

-2.121

-2.143

-2.141

-2.117

-2.118

-2.146

-2.099

-1.404

-1.424

-1.306

-1.266

-1.191

-1.271

-1.304

-1.284

-1.212

-1.359

-1.046

-1.000

-1.005

-1.055

-1.131

-1.029

-1.006

-1.044

-1.090

-0.972

-0.778

-0.897

-0.728

-0.727

-0.651

-0.653

-0.744

-0.727

-0.650

-0.769

-0.295

-0.229

-0.218

-0.244

-0.275

-0.310

-0.240

-0.234

-0.312

-0.201 1.058

0.944

0.998

0.973

0.960

1.313

1.315

1.234

1.255

1.309

1.140

1.580

1.531

1.602

1.607

1.531

1.659

1.995

2.046

2.073

2.027

2.020

2.065

1.961

2.564

2.559

2.546

2.540

2.550

2.552

2.545

2.573

134568 ----

2345678

1345678

12345678

-2.091

-2,091

-2.099

-2.072

-2.050

-1.335

-1.328

-1.180

-1.245

-1.118

-0.953

-1.am

-1.005

-0.951

-0.940

-0.860

-0.811

-0.649

-0.727

-0.647

-0.171

-0.183

-0.207

-0.148

-0.118

l.ooO

1,047

1.023

1.069

1.118

1.228

1.170

1.316

1.256

1.318

1.650

1.672

1.625

1.681

1.697

1.972

1.964

2.092

2.043

2.118

2.559

2.560

2.585

2.594

2.623

0.969

l.OQO

0.947

0.982

0.905

11136

1.106

1.252

1.254

1.587

1.647

1.601

1.622

1.947

1.882

2.020

2.525

2.532

matic set of results, all molecules are numbered in the same manner regardless of the preferred order. The energy levels in Table 1 are presented as illustrated below for 1,2_diazanaphthalene. 12 -2.251 -1.531 - 1.212 -0.919 -0.454 0.714 1.081 1.386 1.776 2.410

Highest energy unoccupied orbital

Occupied orbitals in the ground state Lowest energy occupied orbital

Table 2 * Charge Densities from Huckel Orbital Calculation

2

-12

-13

-17

1

1.000

1.216

1.000

0.896 1.198 1.100 0.841 0.902 0.899 0.881 0.895

l.OOC

1.008 0.947 0.950 1.206 0.902 0.993

0.895

-14

-15

-16

Naphthalene

-18

1.119 1.223 1.151 1.205 1.219 1.201 1.226 0.883

1.009 0.993 1.011

1.000

0.932

1.000

0.988 1.003 0.991

1.000

1.003 0.984 0.987 1.003 0.907 0.899 1.201 0.949

l.ooO

0.984

1.000

1.013 0.984 0.998 1.016 1.002 0.945

1.021 0.909

l.COO

0.957 1.004 0.957 0.934 0.958 0.958

0.932 0.961 0.912

1.000

1.002 0.976 0.977 1.005 0.958

1.009 0.930 0.030

1.151 0.945 0.917 0.935 0.922

0.973 1.002

1.000 0.983 0.969

1.205 0.885 0.997 0.922

0.987 0.993

0.930

1.011

1.183 0.883

0.958 1.005 0.977

1.226

1.003

-23

-26

0.899

0.898

1.151

1,183 1.198 1.043 1.108 1.103

1.084 1.099 1.086 0.844 0.950 0.936 0.951

1.191

27 --

123

124 -

125 -

126 --

127

128

-135

0.880 1.119 1.049 1.107 1.122 1.102 1.132 1.213

1.151

0.946

0.899

0.993 1.012 0.039

1.159 0.951

0.921 0.941 0.927

0.842

0.986

0.898

1.005 1.208 0.885 l.ooO 0.923

1.191

0.983

1.183 0.930 0.986 0.969 0.002

0.930 1.151 0.849 0.935

1.012 0.976

1.186 0.934 0.996 0.898

0.983

0.946 1.198 0.969 0.986

0.992 0.930

0.906

0.993 0.880 0.999 0.986

0.929

0.980

0.900

0.980

0.980 0.952 0.980

-136

-137

1.007 0.937 0.958 0.958 0.934

138 -

145 -

0.931 0.934

146 -

235

1.182 0.870 0.977

1.007 0.891 1.214 0.948 0.961 0.914

0.900 0.954

236

1234

1.226

1.209 1.233 1.140 1.154 0,890 0.902

0.825

0.841 0.826 0.906 0.886

1.206

1.191 1.208 0.888

0.902

0.816

0.831 0.822

1.163

1.136 0.912 0.885

0.869

0.982 0.907

1.217 0.897 1.203 0.883 0.909

1.152

1.201

0.948

1.169 0.869 0.996 0.933 0.992

1.024

0.912

0.910

0.937 0.889

1.009

0.981

1.228 0.934 0.959

1236

1235

1.058 1.122 1.109

1.135 1.051 1.026 1.046

1.134 1.150 1.051 1.151 1.136

0.915

1.011 0.884

0.934

0.978 0.962

1.187 0.881

1.058 0.824

1.183 0.969

0.851

0.872 1.193 1.186 0.882

0.929 0.969 0.915 0.977

1.011 0.920 0.995 0.989

1.008 0.932

0.934 0.981

0.913 0.937

1.007 0.914 0.961

0.955 0.933

0.935 0.983 0.933 0.984 0.936

See Figure 1 and text for numbering of atoms in molecules.

WAIT,JR.

30

AND

WESLEY

Table 2 (Continued) 1246

1247

1248

1256

1257

1258

1267

1237

1238 --

1.104 1.043

1.131 1.039 1.051 1.032 1.063 1.109 1.091 1.121 1.105 1.027 1.111 1.090 1.107 1.093 1.085 1.102 1.088 1.084

1.137

1.152 0.835 0.849 0.834 0.852 0.935 0.921 0.938 0.934

0.839

0.830 1.171 1.142 1.162 1.147 0.934 0.954 0.940 0.924

0.985

0.910 1.220 0.898 1.014 0.936 1.109 1.216 1.142 0.891

1245

0.932

0.995 0.865 1.170 0.917 0.978 1.085 0.828 0.887 1.138

1.169

0.866 0.995 0.933 1.186 0.879 0.935 1.190 0.883 1.134

0.894

1.215 0.918 0.995 0.878 1.204 0.934 0.824 1.149 0.897

0.940

0.892 0.959 0.936 0.961 0.916 0.936 0.962 0.916 0.937

0.957

0.981 0.887 0.934 0.909 0.931 0.936 0.911 0.935 0.957.

1268

1278 1357 ----w-e--

1.135

1.116 1.199 1.224 1.210 1.153 1.139 0.888 0.921 0.998

1358

1367

1458

1467

2367

45678 35678

1.071

1.082 0.844 0.829 0.825 0.889 0.886 1.133 0.978 0.917

0.951

0.939 1.177 1.194 1.190 0.889 0.886 1.133 0.863 1.170

0.910

0.928 0.843 0.831 0.818 1.153 1.139 0.888 1.206 0.881

0.818

0.928 1.199 1.126 0.876 1.153 0.902 0.888 1.071 1.040

1.194

0.939 0.844 0.905 1.152 0.889 1.137 1.133 1.036 1.051

0.824

1.082 1,177 0.872 1.118 0.889 1.137 1.133 1.054 1.034

1.222

1.116 0.843 1.166 0.914 1.153 0.902 0.888 1.048 1.059

0.892

0.916 0.938 0.891 0.911 0.915 0.937 0.958 0.933 0.912

0.982

0.955 0.938 0.963 0.985 0.915 0.937 0.958 0.891 0.937

34568

34567 34678 34578 24678 24578 24568 24567 23678 23578 Pm-------

0.942

0.913 0.937 0.921 0.826 0.813 0.829 0.807 0.899 0.885

0.923

0,937 0.921 0.938 1.177 1.193 1.179 1.193 1.118 1.137

1.084

1.069 1.085 1.070 0.828 0.812 0.827 0.811 1.136 1.121

1.103

1.118 1.094 1.123 1.201 1.227 1.212 1.222 0.878 0.903

1.044

1.117 0.833 1.156 0.852 1.174 1.065 1.134 0.826 1.145

1.089

1.025 1.136 0.833 1.122 0.820 1.077 1.010 1.135 0.834

0.837 1.150

1.140 1.029 1.093 1.046 1.110 0.852 1.151 1.026 1.090 0.827 1.111 1.037 1.095 1.023 1.131 0.816 1.107 1.035

0.910

0.958 0.915 0.937 0.940 0.962 0.934 0.985 0.914 0.939

0.918

0.895 0.938 0.891 0.913 co.865 0.894 0.869 0.959 0.910

31

AZANAPHTHALENEY

Table 2 (Continued)

1467n

14578 --

345678

245670 --

235678

234678 234778 --------

234560

234567

145676

1.151

1.138

0.924

0.813

0.888

0.835

0.822

0.039

0.816

1.141

('.869

0.885

0.923

1.179

1.121

1.122

1.139

1.125

1.138

0.868

0.087

0.869

1.068

0.811

1.121

1.029

1.012

1.029

1.010

0.868

1.129

1.155

1.106

1.214

0.888

1.098

1.124

1.107

1,120

1.141

0.041

1.160

1.053

1.073

1.043

0.835

1,158

1.047

1.120

1.06a

1.139

0.838

1.034

1.019

1.034

1.122

0.820

1.074

1.010

1.039

1.030

1.096

1.037

1.054

1.034

1.029

1.093

0.837

1.138

1.039

1.122

1.052

1.046

1.031

1.043

1.098

1.024

1.134

0.816

1.060

0.894

0.917

0.913

0.936

0.913

0.916

0.940

0.912

0,961

0.692

0.938

0.889

0.894

0.869

0.913

0.916

0.869

0.897

0.872

0.892

134578

134568

2345678

1345678

12345678

1.144

1.163

0.822

1.148

1.063

0.836

0.821

1.125

0.820

1.020

1.076

1.091

1.011

1.074

1.020

1;051

1.032

1.110

1.034

1.043

1.144

1.032

1.056'

1.041

1.043

0.836

1.091

1.019

1.037

1.020

1.076

0.821

1.037

1.021

1.020

1.051

1.163

1.032

1.060

1.043

0.892

0.866

0.915

0.869

0.073

0.092

0.919

0.873

0.896

0.073

The entries, k, in Table 1 can t’hen be converted to energy using the relation E = cx + A$. Since both cx and /3 are negative, the most positive value of 1;corresponds t’o the lowest orbital energy. The charge densities in Tablr 2 start with aton 1 :lt the top and end with atom 10 at t,hc bottom. DISCXMSION

Analysis of the results from several viewpoints can be undert,aken. It sl~oulcl be emphasized first, however, that, although Huckel orbital calculations providr a reasonable starting point, further and more refined calculations are needed to draw quantitat.ive conclusions. Such Aculations, including the effect of the lone pair electrons on the nitrogen atoms, arc being undertaken. Favini ri al. (4) have reported calculations for 31 azines including 21 azanaphthalent~s using the Pariser-Pan and Pople method. The energies of the lowest l7r - IT2 electronic transitions calculated by Favini et al. (4) are compared with those from the present work in Table 3. The value of p was chosen as -3.32( e\-. 10 l!mke the Huckel orbital calculation for 1-azanaphthalene agree

32

WAIT,

JR. AND

WESLEY

8

1

7

2

FIG. 1. Numbering

of atoms in azanaphthalenes. TABLE

LOWEST % +

A = Calc - True

Favini et al. (4)

A = Calc - True

Exptl.

4.085 e.v. 4.058 3.879 4.075 3.912 4.171 4.105 4.022 4.224 4.174

0.125 0.148 0.030 0.089 -0.010 0.146 0.170 0.075 0.199 0.084 0.021 -0.435 -0.155

0.125 0.156 0.060 0.134 0.079 0.052 0.225 0.111 0.061 0.110 0.242

3.960 e.v. 3.910 3.849 3.986 3.922 4.025

4.085 3.752 3.909 4.171 4.168 3.952 4.151 3.909 4.155 4.254

4.085 e.v. 4.066 3.909 4.120 4.001 4.077 4.160 4.058 4.086 4.200 4.306 3.817 4.145 4.441

Wesley* Wait 1 2 12 13 14 15 16 17 18 23 27 124 135 136 137 138 145 146 1358 1458

3

b* TRANSITIONS FOR AZANAPHTHALENES

-0.437 0.246 -0.125 0.126 -0.116 0.037 0.393

4.047 4.163 3.973 3.988 4.074 3.844

-0.3io 0.081 -0.167 0.125 0.086 -0.052 -0.037 -0.044 -0.017

3.935 3.947 4.025 4.090 4.064 4.187 4.064 4.608 3.922 4.077 4.025 4.025 4.118 3.861

* fl = 3.321 e.v.

with the more refined calculation for this molecule. It is seen that for the monoand di-azanaphthalenes, the agreement with experiment of the simple Huckel orbital calculation is as good as that obtained by Favini. HoweT*er, the Huckel calculation becomes worse for the triazines. This is most likely d!>e to differences in flCN, pee , and &N which were neglected in the present Cal:: J~tions. It

:c3

AZANAPHTHALEIWS

however, t#hat the Huckcl calculations are, at’ least, qualital~ivcly useful ill I)rrdict,ing electronic sl)ectra of these hcterocyclic systems. The charge densities in Table 2 are of some value in l)redicting t,he positions of electrophilic and nucleophilic attack on t)he het)erocyclic molecules Certainly, without consideration of the at,tacking species and the environment, i.e., solvent, accurate predictions cannot bc made. However, t,hc isolat’ed molecule approximation has found relatively wide acceptance in recent years (2) and in 1hc absence of more complete information is a useful approximat’ion. Det,ailcd discussion and comparison of reactivities is beyond the scope of this paper. Spectroscopic investigations of the electronic transitions of the axanal)hth:tICIICS in the vapor phase are in progress in this laboratory, and the results will bc used to obtain bet,ter semiempirical calculations for t’hcse nitrogen hatcrocycles. is :~~)p:wwt,

'lh assistarrce of the gratefully ackuoaledged. RECEIVED:

Selkember

Reusselacr

Polyiwhrlic

Itrstitlltr

completer

laboratory

staff

is

21, 1965 REFERENCES

1. A. RTREITWIESER, JR., “ Molecular Orbital Theory.” Wiley, New York, 1961. 2. B. PVLLMAN AND A. PTLLMAN, “Quantum Biochemistry. ” Iuterscieuce, New York, 1963. S. “Molecular Orbital5 in Chemistry, Physirs, aud Biology,” (I’. 0. Lowdiu and B. Pullmarl, eds.). Academic Press, Kew York, 1964. 4. (:. FAVINI, I. ~‘ANDONI, AND M. ~IMONETT.~, Thwr~t. Chim. ilcta (kkd.) 3,45 (1965).