Backscattering coefficients of H, D, and He ions from solids

Backscattering coefficients of H, D, and He ions from solids

ATOMIC DATA AND NUCLEAR BACKSCATTERING T. TABATA,t*$ DATA TABLES COEFFICIENTS 28,493-530 (1983) OF H, D, AND HE IONS FROM SOLIDS* R. ITO,§ Y. ...

2MB Sizes 0 Downloads 74 Views

ATOMIC

DATA AND NUCLEAR

BACKSCATTERING T. TABATA,t*$

DATA TABLES

COEFFICIENTS

28,493-530

(1983)

OF H, D, AND HE IONS FROM SOLIDS*

R. ITO,§ Y. ITIKAWA,?”

N. ITOH,?,”

and K. MORITA?’

tbrstitute of Plasma Physics Nagoya University, Chikusa-ku Nagoya 464, Japan §Radiation Center of Osaka Prefecture Sakai, Osaka 593, Japan

Experimental data on the number-backscattering coefficient RN, the energy-backscattering coefficient RE, and the mean fractional energy rE of backscattered particles are tabulated for H, D, and He ions normally incident on elemental solids. References through 198 1 are covered. The dependence of RN and RE on incident energy is shown graphically for energies from about 10 eV to 100 keV by plotting the experimental data and the empirical formulas of Tabata et al. Graphs are provided for 36 elemental targets of atomic numbers from 6 to 92.

* Work performed under the joint research program of data compilation at the Research Information Center, Institute of Plasma Physics, Nagoya University (a preliminary version of this compilation was published as a report (IPPJ-AM- 18) of the Center) $ Permanent address: Radiation Center of Osaka Prefecture, Sakai, Osaka 593, Japan II Present address: Institute of Space and Astronautical Science, Komaba, Meguro-ku, Tokyo 153, Japan ’ Permanent address: Department of Crystalline Materials Science, Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya 464, Japan

0092-640X/83 $3.00 Copyright 0 1983 by Academic Press, Inc. All rights of reproduction in any form reserved.

493

Atomic

Data and Nuclear

Data Tables.

VM. 28. NO. 3. May 1983

T. TABATA

et al.

Backscattering of H, D, and He Ions

CONTENTS

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . ..........,........... .... ... The Empirical Formulas Discussion of Results . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

495 495 495 496

EXPLANATION

OF TABLES

. . . . . . . . . . . . . . . . . . . . . . _. . . . . .

499

EXPLANATION

OF GRAPHS

.. . . . . .. . . . . . . . . . . . . . . . . . .

499

REFERENCES

FOR TABLES

TABLES.

AND GRAPHS

...... ..

.. . .

500

Experimental Data on Number- and Energy-Backscattering Coefficients RN and RE and on the Mean Fractional Energy of Backscattered Particles rE = RE/RN I.

Experimental Data on RN, RE, and rr for H Ions on C toPb . . . . . . . . . . .. . . . . . .. . . . . . . .. . . . . .. . . . . C Nb

II.

Al MO

Si Ag

Ti Ta

Fe W

Ni Au

Cu Pb

Zr

Experimental Data on RN, RE, and rr for D Ions on C to Au . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C

III.

Ti

Fe

Ni

Nb

MO

W

GRAPHS.

Mg Co Nb Te

Al Ni MO Ta

Si Cu Pd W

Ti Zn Ag Pt

V Ga Cd Au

Numberand Energy-Backscattering and RE

502

Au

Experimental Data on RN, RE, and ra for He Ions on C to Pb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C Fe Zr Sb

501

Cr Ge In Pb

502

Mn Se Sn

Coefficients

RN

I.

RN and RE vs Energy for H Ions on C to U

... ... .

504

II.

RNandREvsEnergyforDIonsonCtoU

. . . .. . . . .

513

. . . .. .

522

III.

RN and RE vs Energy for He Ions on C to U C Mg Fe Co Zr Nb Sb Te Pt Au

Al Ni MO Ba Pb

Si Cu Pd Nd U

494

Ti Zn Ag Gd

V Ga Cd Er

Cr Ge In Ta

Mn Se Sn W

Atomic

Data and Nuclear

Data Tables.

Vol. 23. No. 3. May 1933

T. TABATA

et al.

Backscattering of H, D, and He Ions

INTRODUCIION

Data on the backscattering of light ions are important in many fields of research. For instance, in thermonuclear-fusion reactor development,’ backscattering is relevant to the recycling of plasma particles from the first wall, while in studies of particle-solid interaction, low-energy ion scattering is used for the analysis of surface compositions and structures.2 The main features of the backscattering may be described in terms of the following parameters:

RN of D ions on MO by Braganza et al.*: the targets used

were polycrystalline but had a preferred (100) orientation, yielding data systematically lower than the results of other authors. Previous compilations of experimental data on RN and RE are given in the reports ORNL-5207/Rl (Ref. 9) and IPP 9/32 (Ref. lo), both issued in 1979. The tabulations in the IPP report contain only results obtained by its authors. Differences between the ORNL and the present compilations are: (1) the latter covers more recent literature; (2) when a reference presents data only in graphical form, numerical data communicated by its authors are used in the present compilation as far as possible; and (3) the graphs in the present paper show original experimental data along with the curves of the empirical formulas, while the graphs of the ORNL report show only smoothed curves obtained from the data. As for various methods of measuring RN and RE, we refer the reader to the excellent review article written by Mashkova. ’ ’

(1) the number-backscattering coefficient RN defined as the ratio of the total number of backscattered particles, charged and neutrals, to the number of primary particles; (2) the energy-backscattering coefficient RE defined as the ratio of the total energy backscattered to the total incident energy; (3) the mean fractional energy rE of backscattered particles. The last parameter is expressed by the ratio of the former two: rE = &I&. (1)

The Empirical Formulas

In this paper we compile experimental data on these three parameters in tabular form. Additionally, graphs of RN and RE vs incident energy are given which plot the experimental data along with values derived from the empirical formulas proposed by Tabata et al.3 The incident particles considered are H, D, and He ions. No cutoff has been set on the incident energy in compiling the data. The geometrical condition has been restricted to the basic case where ions are normally incident on a target of effectively semi-infinite thickness. The targets considered are amorphous or polycrystalline solids of elemental materials except for stainless steel, the data for which have been compiled in place of the data for iron. References up to the end of 198 1 have been covered. The following data are not included for the reasons given:

To a rough approximation, the data on RN and RE agree with the scaling law predicted by asymptotic theories, that is the transport theory’**” and the single-collision model.‘4.‘5 (A comprehensive review of theoretical studies on the backscattering of light ions from solids is also found in Mashkova’s article.’ ‘) The scaling law states that for a given projectile, RN and RE are, respectively, independent of the target material when these quantities are plotted as a function of the Thomas-Fermi reduced energy t. In a more refined model, deviations from the simple scaling law, found experimentally,‘6 should be considered. Schou et al.” explained the observed deviations as the effect of the so-called Z, oscillations of the electronic stopping power. This explanation, combined with a consideration of the assumptions underlying the scaling law, led Tabata et al. to assume a modified scaling law3 to develop the empirical formulas for RN, RE, and rE given in the Appendix. The empirical formulas for RN and RE were plotted in the graphs of the present paper for the region of energies from 10 eV to 100 keV. For some combinations of projectile and target material, the formulas give erroneous values greater than unity at low energies. In such cases, the empirical formulas are plotted down to the energy where the value reaches unity.

RN and RE of H ions on Nb by Verbeek4: the data at

higher energies are much lower than the results of other authors, and new values were reported later from the same laboratory.5 Part of the data (corresponding to c > 6, where c is the Thomas-Fermi reduced energy) on RE of H ions by Tanaka et al.? the data are systematically higher due to the effect of secondary electrons. RN of D ions on C from the nuclear reaction method of Staudenmaier et al.‘: results from the reemission technique with smaller uncertainties are given in the same paper.

Discussion of Results

Experimental data on RN and RE of light ions are now available, in favorable cases, for incident energies 495

Atomic

Data and Nuclear

Data Tables,

Vol. 28. NO 3. May 1983

T. TABATA

et al.

Backscattering of H, D, and He Ions

TABLE A. Number of Tables I-III for H, D, and Percentage rms Points from the

down to 50 eV and up to 75 keV. Below 1 keV, data are scarce in spite of their importance in fusion research. In this energy region, Monte Carlo simulations using the binary collision approximation (BCA) to predict the data were performed by several authors. The results were taken into account to some extent in the derivation of the empirical formulas of Tabata et a1.3 In the energy region where experimental and Monte Carlo studies overlap, the results show moderately good agreement.‘0.‘8-20 However, it has been pointed out*‘*** that the simulation using the BCA and without taking the effect of the surface field into consideration breaks down for energies below about 100 eV. New theoretical approaches and experimental checks are required at these energies. From the graphs in the present paper, it can be seen that in some cases the empirical formulas show erroneous trends and systematic deviations from the experimental data. One of the erroneous trends was mentioned at the end of the previous subsection. The other is seen in the figures for H and D ions on C, where the formula for RN predicts a slight increase of RN with increasing energy at low energies. An example of systematic deviations is seen for the case of H on Ta, where the data on RN and RE are lower, on the average, than the values of the empirical formulas by about 30%. Possible causes for these deviations are discussed in Ref. 3. On the whole, however, agreement between the empirical formulas and the data is satisfactory. This supports the validity of the assumed modified scaling law, and the formulas can serve as a convenient means of interpolating and extrapolating the data on RN, RE, and rE. The lower bound to the region of validity of the formulas was originally estimated3 to be c _N 10d3. From the graphical presentation here, it is seen to be somewhat higher for D and He ions, that is about 3 X 10e3 for D and 2 X IO-* for He ions. Errors claimed in the original literature for the data on RN and RE, where available, range from 2% to 50% and lie mostly between 10% and 30%. Table A shows the number n of data points compiled and the relative root mean square (rms) deviation 6 of the data points from the empirical formulas. These values of 6, lying between 6% (or of He ions) and 30% (RN of He ions), can be considered to indicate upper limits to the rms errors of the data because of the possible presence of systematic errors in the formulas, and they are consistent with the experimental errors stated.

Data Points n Compiled in and He Ions, Respectively, Deviation 6 of the Data Empirical Formulas

RN

Projectile H ion D ion He ion

RE

k

n

6 (96)

n

L (9%)

n

6 @a)

102 44 16

26 24 30

141 27 140

18 13 28

79 26 13

22 IO 6

TABLE B. Values for Projectile-Dependent Coefficients Used in Eqs. (Al) and (A16) Constant

H ion

D ion

He ion

aI

0.375 0.107 0.64 0.0338

0.300 0.316 0.282 0.0121

0.197 0.416 0.148 0

0.872 0.306 0.50

0.872 0.465 0.273

0.872 0.470 0.262

a2 a3 a4

b, b2 b3

The formula for RN is written as Rp, = [S&T,

+ SJ]a,/[ta2(1

+

u3c

+ w*)],

(Al)

where S, is an approximate expression for the electronic stopping power in which the Z2 oscillation is neglected and the mass M2 of the target atom is assumed to be much greater than the mass M, of the projectile, S, is the nuclear stopping power, and S, is an accurate expression for the electronic stopping power including the 22 oscillation. The coefficients ai (i = 1,2, 3,4) are constants for a given projectile and are given in Table B. The Thomas-Fermi reduced energy t is defined as t = 32.5EM2/[(Z:I

+ Z;“)(MI

+ M2)Z,Z2],

(A2)

where E is the incident kinetic energy of the projectile in keV and Z, , M, and Z2, M2 are the atomic and mass numbers of the projectile and the target material, respectively. For S,, the expression given by the theory of Lindhard, Scharff, and Schiott23 is used:

Appendix

s, = 0.0793Z:‘3~;“2(~2f~,)c

In this appendix we present the empirical formulas of Tabata et al3 for RN and &. The formula for RE can be obtained from these formulas by use of Eq. (1).

112 .

(A3)

For S,,, we use the formula proposed by Kalbitzer et a1.24 with the coefficients determined by Ziegler,25 496

Atomic

Data and Nuclear

Data Tables,

Vol. 28. NO. 3. May 1983

T. TABATA

et al.

Backscattering

of H, D, and He Ions

for

t < 0.01,

= 1.7~“~ In (t + e)/(l + 6.8~ + 3.4t312)

for

0.01 GtG

= In (0.47~)/2c

for

c> 10,

S” = 1.593t’12

where e is the base of the natural logarithm. For S,, the semiempirical D ions) and by Ziegle?’ (He ion) are used2’:

(A4) 10,

(A5) (W

formulas given by Andersen and Ziegler26 (H and

(1) H and D ions Se = A&Elf2 l/S, = l/SLl + l/&f,

for

1 < E < 10 keV/amu,

for

10 < E < 1000 keV/amu,

(A7) 648)

where S,, = A2KE0.45 > S,,, = (A&/E) K = O.l18(M,

(A9)

In (1 + AJE + A5E),

+ M2)(2:‘3

(AlO)

+ Z:‘3)“2/Z,Z2M,,

The formula

(Al 1)

for rr is given by

t-E = 1 - b,/(l + b2t-h3),

E is the incident energy per projectile mass expressed in units of keV/amu, and the symbols Ai (i = 1, 2, . . . , 5) denote coefficients whose values are given for each element in Ref. 26. The values for three elements of technological interest are quoted in Table C.

6416)

where b, is a constant independent of the projectile and the target material, and b2 and b3 are constants for a given projectile. Values of these constants are shown in Table B.

(2) He ion we

=

lISL2

+

lSH2

for 1 f E < 1000 keV,

References for Introduction

6412)

where S,, = B,KEB2, S,,, = (B&/E’)

1. G. M. McCracken 889 (1979)

(A13) In (1 + B4/E’ + B5E’),

2. T. M. Buck, in Methods ofSurface Analysis, edited by A. W. Czanderna (Elsevier, New York/Amsterdam, 1975) p. 75

(A14)

E’ = E/1000,

and P. E. Stott, Nucl. Fusion 19,

(A15)

E is the incident energy in keV, and the symbols Bi (i= 1,2,. . ., 5) denote coefficients whose values are given for each element in Ref. 25. Some examples are shown in Table C.

3. T. Tabata, R. Ito, K. Morita, and Y. Itikawa, Jpn. J. Appl. Phys. 20, 1929 (1981) 4. H. Verbeek, J. Appl. Phys. 46, 2981 (1975) 5. W. Eckstein, F. E. P. Matschke, and H. Verbeek, J. Nucl. Mater. 63, 199 (1976) 6. S. Tanaka, Y. Murakami, and T. Shibata, Jpn, J. Appl. Phys. 17, 183 (1978)

TABLE C. Selected Values for Target-Dependent Coefficients Used in Eqs. (A7) through (A14) Coefficient

2&

42Mo

14W

3.5198 00 3.963E 00 6.065E 03 1.243E 03 7.782E3-03

6.425E 00 7.248E oo 9.545E 03 4.802E 02 5.367E-03

4.574E 00 5.144E 00 1.593E 04 4.424E 02 3.1448-03

00 1 01 01 00

9.276E 00 4.18E-01 1.571E 02 8.03aE oo 1.29E 00

6.335E 00 4.825E3-01 2.551E 02 2.834E oo a.22aE-01

5.013E 4.707E-0 8.55aE 1.6558 3.211E

7. G. Staudenmaier, J. Roth, R. Behrisch, J. Bohdansky, W. Eckstein, P. Staib, S. Matteson, and S. K. Erents, J. Nucl. Mater. 84, 149 (1979) 8. C. Braganza, G. Carter, and G. Farrell, Nucl. Instrum. Methods 132, 679 (1976) 9. E. W. Thomas, S. W. Hawthorne, F. W. Meyer, and B. J. Farmer, Oak Ridge Natl. Lab. Rept. ORNL5207/Rl ( 1979) 10. W. Eckstein and H. Verbeek, Max-Planck Plasma Phys. Rept. IPP 9/32 (1979) 11. E. S. Mashkova, 497

Atomic

Inst.

Radiat. Eff. 54, 1 (198 1) Data and Nuclear

Data TBMBS. Vol. 28. No. 3. May 1983

T. TABATA

12. R. Weissmann (1973)

and P. Sigmund,

13. J. B&tiger and K. B. Winterbon, (1973) 14. G. M. McCracken 661 (1969) 15. J. Vukanic (1976)

e.t al.

Backscattering of H, D, and He Ions

Radiat. Eff. 19, 7

2 1. M. T. Robinson, in Proceedings, Plasma Edge Experiments and Modeling Workshop, UCLA, June 45, 2980, PPG510, p. 12

Radiat. EE 20, 65

22. D. P. Jackson, Radiat. Eff. 49, 233 (1980) 23. J. Lindhard, M. Scharff, and H. E. Schiott, Kgl. Danske Videnskab. Selskab., Mat.-Fys. Medd. 33, No. 14 (1963)

and N. J. Freeman, J. Phys. B 2,

and P. Sigmund,

Appl. Phys. 11, 265

16. G. Sidenius and T. Lenskjaer, Nucl. Instrum. ods 132, 673 (1976) 17. J. Schou, H. Sorensen, and U. Littmark, Mater. 76 and 77, 359 (1978)

24. S. Kalbitzer, H. Oetzmann, H. Grahmann, Feuerstein, Z. Phys. A 278, 223 (1976)

Meth-

25. J. F. Ziegler, Helium Stopping Powers and Ranges in All Elements (Pergamon, Elmsford, N. Y., 1978)

J. Nucl.

26. H. H. Andersen and J. F. Ziegler, Hydrogen Stopping Powers and Ranges in All Elements (Pergamon, Elmsford, N. Y., 1977)

18. 0. S. Oen and M. J. Robinson, Nucl. Instrum. Methods 132, 647 (1976)

27. We use the formulas for S, also at energies below the regions of validity stated. Since these formulas are utilized so as to account only for the relative importance of the Z2 oscillations of the electronic stopping power, the resulting error in RN due to the uncertainty in S, is considered to be small.

19. J. E. Robinson, K. K. Kwok, and D. A. Thompson, Nucl. Instrum. Methods 132, 667 (1976) 20. M. W. Schleehauf and C. N. Manikopoulos, Eff. 54, 149 (1981)

and A.

Radiat.

498

Atomic

Data and Nuclear

Data Tables.

Vol. 28. No. 3. May 1993

T. TABATA

et al.

Backscattering of H, D, and He Ions

EXPLANATION TABLE

I.

Experimental

TABLE

II.

Experimental

TABLE

III.

Experimental

RE, and ti for H Ions on C to Pb Data on RN, RE, and r~ for D Ions on C to Au Data on RN, RE, and rE for He Ions on C to Pb

Data on RN,

Target and Data Source Energy RN RE rE

OF TABLES

Chemical symbol of target and reference code for data source (see References for Tables and Graphs) Energy of incident ion in eV Number-backscattering coefficient Energy-backscattering coefficient Mean fractional energy of backscattered particles rE

=

&~RN

Notes on experimental data (1) From AN76, only the data on RE of H ions incident on Pb and those of He ions incident on Si, Ag, Ta, and Pb were adopted. Other data included in AN76 originally appeared in SI76 or were revised in S076. (2) The data from EC79 include those reported earlier in the following publications: W. Eckstein and H. Verbeek, J. Nucl. Mater. 76 and 77, 365 (1978); W. Eckstein, F. E. P. Matschke, and H. Verbeek, J. Nucl. Mater. 63, 199 (1976). (3) Numerical data for the following sources were provided by courtesy of the authors: H176, OVSO, SC78, S176, S076, and TA78. (4) The following data were collected after the values of adjustable parameters in the empirical formulas had been determined: B076, OV80, ST79, TA78, TH80, and the data for stainless steel from EC79.

EXPLANATION NumberGRAPH

I.

GRAPH

II.

GRAPH

III.

OF GRAPHS

and Energy-Backscattering

Coefficients RN and RF_

RN and RE vs Energy for H Ions on C to U RN and RE vs Energy for D Ions on C to U RN and RE vs Energy for He Ions on C to U Ordinate Abscissa Legend

Number-backscattering coefficient RN (right-hand scale) Energy-backscattering coefficient RE (left-hand scale) Incident ion energy in eV Incident ion-target combination and symbol with reference code for data source (see References for Tables and Graphs)

499

Atomc

Data end Nuclear

Data Tables,

Vd

28. No. 3, May 1983

T.TABATA etal.

BackscatteringofH, D,and He Ions

REFERENCES AN76

H. H. Andersen, J. Appl.

B076

J.

EC79

Phys.

5, J.

Mater.

IPP

GRAPHS

G. Sidenius,

115

M. K. Sinha,

and H. Sdrensen,

and W. Ottenberger,

J.

(1976)

and H. Verbeek, 9/32

AND

13 (1976) Roth,

63,

W. Eckstein Rep.

HI76

T. Lenskjaer,

Bohdansky,

Nucl.

FOR TABLES

Max-Planck

Inst.

Plasma

Phys.

(1979)

D. Hildebrandt

and R. Manns,

Phys.

Status

Solidi

a -38, K155

(1976) 0V80

S. H. Overbury, Nucl.

SC78

J. &

sI76

Schou,

ST79

529

H. S$rensen,

G. Sidenius

and T. Lenskjaer,

Proc.

Jillich,

(Pergamon,

1976

G. Staudenmaier,

84,

J.

149

Nucl.

Symp.

J.

-76

Nucl.

Instrum.

Plasma

Oxford,

Roth,

1977)

R. Behrisch,

S. Matteson,

Mater.

Methods

132,

Wall p. J.

Interaction, 437 Bohdansky,

and S. K. Erents,

W. J. Nucl.

(1979)

Y. Murakami,

and T.

Shibata,

Jpn.

1176

(1980)

J. Appl.

Phys.

183 (1978)

TH80

E. W. Thomas:

VE80

H. Verbeek, Phys.

Int.

P. Staib,

S. Tanaka, 17, -

J.

(1980)

and U. Littmark,

H. S$rensen,

Mater.

and R. S. Thoe,

(1976)

Eckstein,

TA78

93 & 94,

S. Datz,

359 (1978)

77,

673 so76

Mater.

P. F. Dittner,

-51,

J.

Appl.

W. Eckstein, 1783

Phys.

51,

and R. S. Bhattacharya,

J. Appl.

(1980)

5ocl

Atomic

Data and Nudum

Data Tablee. Vol. 23. No. 3, May 1333

T. TABATA

TABLE

Target & Data source C

EC73

1.5 2.5 5.0 7.5 1.0

E E E E E

3 3 3 3 4

l.O3E-1 4.5 E-2 1.6 E-Z 8.3 E-3 5.0 E-3

C

OV80

1.0 1.2 1.5 2.0 2.5 3.0

E E E E E E

3 3 3 3 3 3

1.13E-1 7.5 E-2 6.4 E-2 5.5 E-2 4.7 E-Z 3.5 E-2

Al

S176

1.0 1.5 2.0 3.0

E E E E

4 4 4 4

2.5 2.0 1.1 5.3

E-2 E-2 E-2 E-3

4.3 3.1 1.9 1.0

Si

EC79

5.0

E 3

3.0

E-2

8.42~-3

Ti

8076

1.0 1.3 1.7 2.0 3.0 4.0 5.0 6.0 8.0

E E E E E E E E E

2.2 1.8 1.8 1.4 9. 6. 4. 4.5 4.

E-l E-l E-l E-l E-2 E-2 E-2 E-2 E-2

3.54E-2 1.36E-2 4.27E-3 2.273-3 1.44E-3

E-3 E-3 E-3 E-3

rE 3.44E-1 3.03E-1 2.67E-1 2.55E-1 2.87E-1

1.75E-1 1.55E-1 1.72E-1 l.EVE-1

EC79

6.67E 2 2.5 E 3 5.0 E 3 1.0 E 4

4. E-l l.l5E-1 7.0 E-2 3.3 E-2

1.34E-1 4.37E-2 2.363-2 3.773-3

3.34E-1 3.80E-1 3.3?E-1 2.961-1

Fe

EC79

2.5 5.0 7.5 1.0 1.25E 1.5

P E E E

3 3 3 4 4 E 4

1.63E-1 l.lOE-1 7.9 E-2 6.5 E-2 5.7 E-2 4.1 E-2

6.30E-2 3.723-2 2.7 E-2 2.0 E-2

3.86E-1 3.383-l 3.40E-1 3.11E-1

1.2

E-2

3.01E-1

Fe

S176

1.0 1.5 2.0 3.0

E E E E

6.3 4.9 4.0 2.5

1.471-2 l.OlE-2 7.0 E-3 3.4 E-3

2.21E-1 2.07E-1 l.ElE-1 1.90E-1

Fe

TA78

1.0 1.5

E 4 E 4

E-2 E-2 E-2 E-2

1.5 1.2

E-2 E-2

Ni

EC79

1.5 5.0 7.5 1.0 1.5

E E E E E

3 3 3 4 4

l.$VE-1 1.37E-1 9.0 E-2 8.5 E-2 3.7 E-2

7.123-2 4.883-2 3.083-2 3.023-2 l.l2E-2

CU

S176

5. 7.5 1.0 1.5 2.0 3.0

E3 E E E E E

3 4 4 4 4

1.40E-1 l.O5E-1 8.5 E-2 6.4 E-2 5.2 E-2 3.3 E-2

3.761-2 2.753-2 2.01E-2

TA78

1.0 1.5

E 4 E 4

B076

2.0 3.0 4.0 6.0 8.0

E E E E E

3 3 3 3 3

2.9 1.9 1.6 1.3 6.

Nb

EC79

5.0 7.5 1.0 1.5

E E E E

3 3 4 4

l.O5E-1 8.5 E-2 7.3 E-2 4.7 E-2

4.34E-2 3.133-2 2.83E-2 1.733-2

4.13E-1 3.6815-l 3.873-l 3.68E-1

Nb

5176

1.0 1.5 2.0 3.0

E E E E

4 4 4 4

7.213-2 4.9 E-2 4.1 E-2 2.7 E-2

1.661-2 l.OOE-2 7.8 E-3 4.8 E-3

2.3OE-1 2.10E-1 2.01E-1 1.89E-l

CU

Nb

SO76

l.OOE 1.34E 1.67E 2.00E 2.663 3.00E 3.333 @.OOE 4.50E 5.00E 6.00E 7.00E 8.00E V.OOE l.OOE

3 3 3 3 3 3 3 3 3 3 3 3 3 3 4

1.33E-2

l.O2E-2 6.0 E-3 2.0 1.6

Target & oata soucce

E E E E E

3 3 3 4 4

1.45E-1 l.OVE-1 3.2 E-2 7.09E-2 5.2 E-2

6.21E-2 4.10E-2 3.22E-2 2.37E-2 1.5VE-2

4.28E-1 3.76E-1 3.50E-1 3.34E-1 3.06E-1

MO

S176

1.0 1.5 2.0 3.0

E E E E

4 4 4 4

8.7 6.4 5.0 3.1

2.07E-2 1.38E-2 l.OBE-2 6.2 E-3

2.43E-1 l.V5E-1 2,15E-1 2.04E-1

MO

TA78

1.0 1.5 2.0 2.5

E E E E

4 4 4 4

Ag

S176

1.0 1.5 2.0 3.0

E E E E

4 4 4 4

A9

SO76

1.5 2.0 2.6 3.0 3.3 4.0 5.0 6.0

E E E E E E E E

3 3 3 3 3 3 3 3

S176

1.0 1.5 2.0 3.0

E E E E

4 4 4 4

w

EC79

5.0 7.5 1.0 1.25E 1.5

AU

EC79

AU

2.1 1.7 1.4 1.0 1.34E-1 l.OOP-1 7.9 E-2 4.8 E-2

E-2 E-2 E-2 E-2

3.10E-2 2.13E-2 1.54E-2 3.4 E-3

2.36E-1 2.07E-1 2.01E-1 Z.lOE-1

l.l6E-1 l.OBE-1 l.OlE-1 8.5 E-2 8.7 E-2 6.6 E-2 5.8 E-2 5.0 E-2 3.30E-2 2.5OE-2 1.88E-2 1.25E-2

2.54E-1 2.48E-1 2.24E-1 2.44E-1

E 3 E 3 E 4 4 E 4

1.68E-1 1.65E-1 1.23E-1 l.lVE-1 l.O7E-1

7.06E-2 6.60E-2 4.67~-2 4.46~-2 3.85E-2

4.20E-1 4.00E-1 3.80E-1 3.75E-1 3.60E-1

2.5 5.0 8.0 9.0 1.0 1.6

E E E E E E

3 3 3 3 4 4

3.20E-1 2.51E-1 l.V7E-1 2.11E-1 2.07E-1 1.34E-1

1.37E-1 9.74E-2 7.50E-2 7.42E-2 7.35E-2 4.45E-2

4.28E-1 3.88E-1 3.81E-1 3.52E-1 3.55E-1

S176

5.0 7.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0

E E E E E E E E E

3 3 4 4 4 4 4 4 4

3.10E-1 2.70E-1 2.30E-1 l.VOE-1 1.55E-1 1.35E-1 1.25E-1 3.9 E-2 8.4 E-2

9.5 E-2 7.5 E-2 6.09E-2 4.33E-2 3.50E-2 3.10E-2 2.551-2 l.V6E-2 1.51E-2

3.30E-1 3.12E-1 2.70E-1 2.60E-1 2.25E-1 Z.lOE-1 Z.OOE-1 l.VVE-1 1.79E-1

AU

SO76

1.17E 1.33E 1.67E 1.75E 2.00E 2.338 2.51E 3.00E 3.3 E 3.51E 4.51E 5.00E 6.02E 7.00E 8.00E V.OOE l.OOE

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4

AU

VE80

5.0 8.0

E 3 E 3

Pb

AN76

3.0 3.5 4.0 4.5 4.5 5.0 5.7 5.7 6.0 6.0 6.2 6.5

E E E E E E E E E E E E

E-2 E-2

E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2

E-2 E-2 E-2 E-2

1.32E-1 l.OlE-1 8.7 E-2 5.1 E-2

E-l E-l E-l E-l E-2

8.0 7.4 7.9 6.2 5.7 5.2 5.0 4.9 4.0 2.8 2.6 2.8 3.1 1.7 1.8

%

2.5 5.0 7.5 1.0 1.5

4.48E-1 3.56E-1 3.42E-1 3.552-l 3.04E-1

2.273-l l.VVE-l l.V6E-1 l.VEE-l

Energy cev1

EC79

Z.ElE-1

Ti

4 4 4 4

501

Backscattering of H, D, and He Ions

I. Experimental Data on RN, RE, and rE for H Ions on C to Pb See page 499 for Explanation of Tables

Energy cm

3 3 3 3 3 3 3 3 3

et al.

for

All the stainless

data listed steel.

3.32E-1

1.55E-1 1.44E-1 1.43E-1 l.lEE-1 1.38E-1 l.l7E-1 1.40E-1 1.20E-1 l.l3E-1 l.OVE-1 8.9 E-2 8.1 E-2 7.4 E-2 7.0 E-2 7.4 E-2 5.8 E-2 5.6 E-2 2.17E-1 1.74E-1

4 4 4 4 4 4 4 4 4 4 4 4

9.2 7.0

E-2 E-2

4.22E-1 4.0 E-l

2.3 E-2 1.7 E-2 1.9 E-2 1.7 E-2 1.4 E-2 1.3 E-2 l.O6E-2 9.7 E-3 l.O7E-2 1.22E-2 9.7 E-3 l.l7E-2

for

the

Fe target

are

actually

502

T. TABATA et al.

TABLE

Target & Data Source

Energy (em

II. Experimental

Data on R N, RE, and rE for D Ions on C to Au See page 499 for Explanation of Tables

R

R

r

C

EC79

2.5 5.0 7.5

E 3 E 3 E 3

5.5 1.8 1.4

E-2 E-2 E-2

C

ova0

1.0 1.2 1.5 2.0 2.5 3.0

E E E E E E

3 3 3 3 3 3

6.7 4.6 5.0 4.4 4.1 3.6

E-2 E-2 E-2 E-2 E-2 E-2

E E E E E

1 2 2 2 3

2.6 1.6 1.2 1.2 7.

E-l E-l E-l E-l E-2

2 3 3 3 4 4

1.8 E-l 1.35E-1 8.4 E-2 5.6 E-2 5.2 E-2 2.4 E-2

7.691-2 5.813-2 3.26E-2 1.85E-2 1.683-2 7.98E-3

4.27E-1 4.30E-1 3.883-l 3.31E-1 3.243-l 3.32E-1

2.261-l l.lZE-1 1.05E-1

4.903-2

4.37E-1

C

ST79

5.0 1.0 2.5 5.0 1.0

Ti

EC79

6.6lE 2.5 5.0 7.5 1.0 1.5

E E E E E

Fe

EC79

2.5 5.0 7.5

E 3 E 3 E 3

Fe

THEO

1.25E 2.5 5.0 7.0 1.0

E E E E

2 2 2 2 3

5.0 4.2 4.0 3.7 3.2

Energy (ev)

2.09E-2 6.253-3 3.823-3

3.793-l 3.47E-1 2.73E-1

E-l E-l E-l E-l E-l

TABLE Target & Data Source

Target 6 Data Source

Energy (ev) 1.69E-1 1.30E-1 9.8 E-2 8.5 E-2 6.4 E-2

7.813-2 5.373-2 3.531-2 3.093-2 2.18E-2

+E 4.623-l 4.13E-1 3.60E-1 3.63E-1 3.40E-1

E 3 E 3

2.21E-1 1.69E-1

8.14E-2 5.153-2

3.683-l 3.05E-1

2.5 5.0 7.5 1.0 1.5

E E E E E

3 3 3 4 4

1.29E-1 l.lZE-1 l.O9E-1 8.4 E-2 6.1 E-2

5.783-2 4.273-2 3.823-2 2.893-2 1.99E-2

4.48E-1 3.81E-1 3.50E-1 3.44E-1 3.273-l

EC79

5.0 7.5 1.0 1.5

E E E E

3 3 4 4

Z.llE-1 1.93E-1 1.74E-1 1.31E-1

9.033-2 7.973-2 6.683-2 4.64E-2

4.283-l 4.13E-1 3.843-l 3.543-l

SO76

3.17E

All the stainless

data listed steel.

Ni

EC79

2.5 5.0 7.5 1.0 1.5

E E E E E

Nb

EC79

2.5 5.0

MO

EC79

w

AU

for

3 3 3 4 4

1.30E-1

3

for

the

Fe target

are

Data on R N, RE, and rE for He Ions on C to Pb See page 499 for Explanation of Tables

%

C

HI76

1.2 E 4 1.45E 4

7. 5.5

E-3 E-3

MY

HI76

1.2 E 4 1.45E 4

8. 6.

E-3 E-3

Al

HI76

1.2 E 4 1.45E 4

8. 6.

E-3 E-3

Si

AN76

2.5 3.0 3.5 4.0 5.0 5.5 6.0 6.0 7.0

4 4 4 4 4 4 4 4 4

6.7 5.0 5.5 4.6 4.0 4.9 5.3 5.0 2.8

E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3

8.5 6.5

E-3 E-3

rE

Target & Data Source

Energy (.a)

CU

SC78

5.0 6.0 7.0 8.0 9.0 1.0

n-l

HI76

1.2 E 4 1.45E 4

4.251-2 3.553-2

Ga

HI76

1.2 E 4 1.45E 4

3.2 2.8

Ge

HI76

1.2 E 4 1.45E 4

3.553-2 3.0 E-2

Se

RI76

1.2 E 4 1.45E 4

3.653-2 3.253-2

21

HI76

1.2 E 4 1.45E 4

2.651-2 2.2 E-2

Nb

HI76

1.2 E 4 1.45E 4

2.85E-2 2.4 E-2

MO

EC79

5.0 1.0 1.5 2.0

E E E E E E

7.9 7.6 6.1 5.6 4.6 3.9

3 3 3 3 3 4

E-2 E-2 E-2 E-2 E-2 E-2

E-2 E-2

Si

HI76

1.2 E 4 1.45E 4

Ti

EC79

5.0 1.0 1.5

Ti

HI76

1.2 E 4 1.45E 4

1.5 1.2

V

HI76

1.2 E 4 1.45E 4

2.1 E-2 1.65E-2

MO

HI76

1.2 E 4 1.45E 4

3.853-2 3.151-2

CK

~176

1.2 E 4 1.45E 4

2.0 E-2 1.55E-2

Pd

HI76

1.2 E 4 1.45E 4

5.0 4.4

Mn

HI76

1.2 E 4 1.45E 4

2.3 1.9

AY

AN76

1.8 2.3 2.8 3.3 3.8 4.3 4.5 4.5 5.0 5.5 6.0 6.5 7.0 7.5

2.9 E-2 2.7 E-2 2.8 E-2 2.0 E-2 1.733-2 1.843-2 1.66E-2 1.53B-2 1.391-2 1.20E-2 l.O9E-2 l.OZE-2 9.5 E-3 8.5 E-3

E 3 E 4 E 4

1.4 9.0 7.0

actually

III. Experimental

s

E E E E E E E E E

Backscattering of H, D, and He Ions

E-l E-2 E-2

2.968-2 2.31E-2

3.293-l 3.30E-1 E-2 E-2

E-2 E-2

Fe

HI76

1.2 E 4 1.45E 4

2.3 E-2 1.853-2

CO

HI76

1.2 E 4 1.45E 4

3.0 2.5

Ni

HI76

1.2 E 4 1.45E 4

3.35E-2 2.85E-2

CU

HI76

1.2 E 4 1.45E 4

4.1 3.5

E-2 E-2

E-2 E-2

E E E E

E E E E E E E E E E E E E E

3 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4

l.O2E-1 8.9 E-2 7.4 E-2 6.0 E-2

4.633-2 3.433-2 3.073-2 2.263-2

4.543-l 3.85E-1 4.15E-1 3.763-l

E-2 E-2

T. TABATA et al.

TABLE

III. Experimental

Backscattering of H, D, and He Ions

Data on

RN, RE, and rE for He Ions on C to Pb

See page 499 for Explanation of Tables Target 6 Data source

Energy (@?I

5

%

Ag

HI76

1.2 E 4 1.45E 4

5.9 4.9

Ag

SC78

4.0 4.5 5.0 6.0 7.0 8.0 9.0 1.0

1.31E-1 1.25E-1 1.20E-1 l.l2E-1 l.O2E-1 9.2 E-2 8.5 E-2 7.6 E-2

E E E E E E E E

3 3 3 3 3 3 3 4

Target 6 Data Source

rE E-2 E-Z

Energy (ev) E E E E

3 4 4 4

54

%

1.82E-1 1.59E-1 1.37E-1 1.25E-1

8.873-2 7.233-2 6.623-2 5.253-2

IE 4.883-l 4.553-l 4.833-l 4.20E-1

w

EC79

5.0 1.0 1.5 2.0

w

HI76

1.2 E 4 1.45E 4

5.9 5.1

E-2 E-2

Pt

HI76

1.2 E 4 1.45E 4

5.9 5.0

E-2 E-2

AU

EC79

5.0 1.0 1.6

E 3 E 4 E 4

1.40E-1 1.35E-1 l.l7E-1

Cd

HI76

1.2 E 4 1.45E 4

5.4 4.6

E-2 E-2

In

HI76

1.2 E 4 1.45E 4

4.7 4.0

E-2 E-2

AU

HI76

1.2 E 4 1.45E 4

7.5 6.5

SIl

HI76

1.2 E 4 1.45E 4

4.4 3.9

E-2 E-2

AU

SC78

Sb

HI76

1.2 E 4 1.45E 4

4.5 4.0

E-2 E-2

HI76

5.0 6.0 7.0 8.0 9.0 1.0

E E E E E E

1.38E-1 1.36E-1 1.26E-1 1.26E-1 l.l6E-1 l.O3E-1

1.2 E 4 1.45E 4

4.4 3.7

E-2 E-2

AU

VE80

1.l~ 1.6

E 4 E 4

4.6

E-2

AN76

3.0 3.5 4.0 4.5 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.7 E-2 2.5 E-2 2.3 E-2 2.3 E-2 2.2 E-2 2.2 E-2 2.1 E-2 2.1 E-2 1.983-2 1.82E-2 1.723-2 1.60E-2

Pb

AN76

3.0 3.5 3.5 4.0 4.0 4.5 5.0 5.5 6.0 6.5

E E E E E E E E E E

4 4 4 4 4 4 4 4 4 4

3.3 2.9 2.7 2.7 3.0 2.6 2.4 2.1 2.4 1.8

E-2 E-Z E-2 E-2 E-2 E-2 E-2 E-2 S-2 E-2

Pb

HI76

1.2 E 4 1.45E 4

8.1 7.0

E-2 E-2

HI76

E E E E E E E E E E E E

4 4 4 4 4 4 4 4 4 4 4 4

1.2 E 4 1.45E 4

5.3 4.6

E-2 E-2

503

Atomic

3 3 3 3 3 4 1.34E-1 l.llE-1

Data and Nuclear

6.39E-2 5.273-2

Data Tebks

4.73E-1 4.51E-1

E-2 E-2

4.14E-1

Vol 2.3. N0.3.

Msy1983

T. TABATA et al.

GRAPH

Backscattering of H, D, and He Ions

I. RN and RE vs Energy for H Ions on C, Mg, Al, and Si See page 499 for Explanation of Graphs

i-l A 0

0-3

10'

IONS EC79 ova0

ON

C

103

102 ENERGY

104

105

[EL'1

10-3

c3 z El E 5 *

I

_

H

IONSONMG

I I

zlx 10-3

E_

H A

IONS EC79

ON

SI

" t

lo-4

101

102

103 ENERGY

104

101 10'

105

IO2 102

(EVI

103 ENERGY

504

Atcmk

104

105

(EVI

Data a-d Nudesr

Data Tabbe,

Vol. 28. No. 3. May 1082

T. TABATA et al.

GRAPH

I.

Backscattering of H, D, and He Ions

RN and REvs Energy for H Ions on Ti, V, Cr, and Mn See page 499 for Explanation of Graphs 1

o-3

_

H

IONS

:

0 A

8076 EC79

o-4

I

ON

TI

H IONS HIONSONCR

ON

CR

0-3

# Ilid

r

1 / l3llll

102

10’

_

I

103 ENERGY

I ,/II

104

105

10’

102

103

(EVI

ENERGY

104

105

IEVI

100

w z 10-l c

Xl j \

10-Z

r

=l

H : w i5

IONS

ON

V

H

10-3: \

IONS

ON

MN

11

10-41

105

I

101

I1111111

I

III

III, I

102 ENERGY

505

Atomk

,,,,

103

Data and NudWr

d

104

I

,,,,

Lu]1o-5

105

(EV)

Data Tabkq

Vol. 28. No. 3. May 1993

T. TABATA

et al.

Backscattering

and He Ions

of H, D,

GRAPH I. RN and RE vs Energy for H Ions on Fe, Co, Ni, and Cu See page 499 for Explanation of Graphs

I z LL 10-3

H A 0 v

s w

IONS EC79

ON FE

SI76 TR76

Y

:,-44 10’

102

103 ENERGY (EV 1

104

105

10-5

10'

10’

10-l

10-2

102

103 ENERGY I EV 1

10’

105

1 00

m”“““‘““““’

0-l

2 w 0

z

s L

k : ”

H IONS q

v

ON CU

S176 TR76

1

i

Y

0-S 10’

102

103 ENERGY I EV 1

10’

+

105

101

506

102

Atomic

103 ENERGY (EV I

Data and Nuclear

104

Data Tables.

105

Vol. 28. NO. 3. May 1983

T. TABATA et al.

B&scattering of H, D, and He Ions

GRAPH I. RN and RE vs Energy for H Ions on Zn, Ga, Ge, and Se See page 499 for Explanation of Graphs 10’

00

r

o-1

r

o-2

H IONS

-J--l

\

f

ON ZN

H IONS

10'

ON GE

102

103

ENERGY

_

10-4 4 10’

Ii

104

105

[ EV I

IONSONGFI

102

103

ENERGY

104

105

10-S

10-41

’ 10’

I EV I

I 6 ““I’

’ 102

4 8 “I”’ 103

ENERGY

507

Atomic

Data and Nudear

h ’ ’ 11111’ 104

10-S

’ JLulJ 105

I EV I

Data Tables.

Vol. 28. No. 3. May 1983

T. TABATA et al.

GRAPH

Backscattering of H, ID, and He Ions

I. RN and RE vs Energy for H Ions on Zr, Nb, MO, and Pd See page 499 for Explanation of Graphs

2 = w u

100

;:

H A 0 v

10-3

E

IONS EC79 S176 TR78

ON

MO

1

t

1

lo-4..;

10-5 101

103

102 ENERGY

101

104

105

I EV I

100

H

1 o-4

1o-41

10-S 10’

102

103 ENERGY

104

ON

, I I111111 101

105

IONS

PO

I

I 1 I,,/, 1

102 ENERGY

t EV 1

508

Alomlc

I

I I111111

103

104

4 1 I ~~cLJ1o-s 10s

I EV I

Data find Nuclear

Data Tab&

Vol. 28. NO. 3, May 1983

Backscattering of H, D, and He Ions

T. TABATA et al.

GRAPH

I. RN and RE vs Energy for H Ions on Ag, Cd, In, and Sn See page 499 for Explanation of Graphs

1o-4~

10’

H

IONS

0 v

5176 SO76

,

, ,c,,,,,

ON

H

RG

/

, ,,,,c,,

102

,

103 ENERGY

, t,,,,,,

,

104

ON

IN

, t,,iJlo-5

105

10’

ENERGY

10'

104

105

IEV)

100

10'

10-4

103

103 ENERGY

100

102

102

IEV)

10'

10’

IONS

I

105

0

10'

10-5

102

[EVI

ENERGY

509

Atomic

104

103

Data and NutMar

105

(EV)

Oats Tables,

Vol. 28. NO. 3, May 1983

T. TABATA et al.

Backscattering of H, D, and He Ions

GRAPH I. RN and REvs Energy for H Ions on Sb, Te, Ba, and Nd See page 499 for Explanation of Graphs

H IONS

ON SEI

H IONS

ON BR

10-4i.......... 10’

10-5 103 ENERGY CEV I

102

105

10’

lo1rnl”O

_

H IONS

H IONS

ON TE

zLL 10-3-

_ lo-4

Y

Ei 2

w

I

1o-4

1 I 1 ,,,“,

10’

I

102 102

1 ,#111,1

I

1,

103 ENERGY (EV I

4,111,

104

I

I I ‘1”U

,o-4j

10-S

,

10’

105

510

ON NO

, 11,111,

I

102

Atcmk

,#,,,,,

I

1

I,,#,,

103 ENERGY (EV 1

Oata and Nuclear

II,

104

Data Tables.

I

,<~~wJ~o-5

105

Vol. 29, No. 3. May 1999

T. TABATA

et al.

Backscattering of H, D, and He Ions

GRAPH I. RN and REvs Energy for H Ions on Gd, Er, Ta, and W Seepage499 for Explanation of Graphs

cl2

_

H IONSONGD

:o-,‘;.lo-5 10'

102

103 ENERGY ( EV I

10-4

104

105

I,,,,,,,,,

103

ENERGY

104

104

105

[ EV I

IO'

H IONS A EC79

102

103

ENERGY

100

10’

10-5

102

10’

DN LI

105

I EV 1

511

Atomic

Data and Nuclear

Data Tables,

VOL. 28. No. 3. May 1983

T. TABATA et al.

GRAPH

I.

Backscattering of H, D, and He Ions

RN and RE vs Energy for H Ions on Pt, Au, Pb, and U See page 499 for Explanation of Graphs

H IONS

ON PT

z ’ lx w

0

i

5

10-4 4

, , ,,,a,,, , , t,,,,,, r t ttm
1o-41

10’

102

103 ENERGY (EV I

104

105

RN76

10-3

10’

104

103

102

ENERGY

105

10-5

I EV I

lo1mlOO

10’

A EC79 q

v 0

S176 SO76

VE80

10-4

10-4~10-5

10’

102

103 ENERGY C EV 1

104

105

512

II 110-S 101 101

10-S 102 102

Atomic

103 ENERGY I EV 1

Data and Nudssr

104

Data Tables,

105

Vol. 29. No. 3. May 1993

T. TABATA

GRAPH

Backscattering of H, D, and He Ions

et al.

II. RN and RE vs Energy for D Ions on C, Mg, Al, and Si See page 499 for Explanation of Graphs

w

10-J4

10-S

10’

103

102 ENERGY

104 (EVI

lo’l1O0

I

-

0

IONS

ON

105

lo1m

J

100

MC

z

w 10-37

10-4110’ ENERGY

102

1 o-5

103 104

[EVI

ENERGY

513

Atmk

Data and Ntiear

105

[EVI

Data Tablea. Vol. 29. No. 3. May 1983

T. TABATA et al.

GRAPH

II.

J3ackscatte~ngof H, D, and He Ions

RN and REvs Energy for D Ions on Ti, V, Cr, and Mn See page 499 for Explanation of Graphs

101 ENERGY

102

103 ENERGY I EV I

I EV 1

104

ilo-l:

EIOO iy

glo-l~-l i.5 II-

5

t 10-2

2 2 al I z a: 10-3: ii w

\

-

_

105

1

.D IONS

ON tlN 10-J

ii 5 z

1o-41

10’

102

103 ENERGY I EV I

104

105

514

Atomic

Data and Nuclear

Data Tabbs.

‘Jo!. 28. No. 3, May 1983

Backscattering of H, D, and He Ions

T. TABATA et al.

GRAPH II. RN and REvs Energy for D Ions on Fe, Co, Ni, and Cu See page 499 for Explanation of Graphs

D 0

v

IONS EC79 TM0

ON

FE t; (L w

to-3

5

10-4 10’

102

103 ENERGY

*,-‘I 10'

102

10’

10’

102

I EV 1

103 ENERGY

105-

103 ENERGY

10’

105

1o-5

105-

10’

105

10-41

10’

10-S 102

I EV I

103 ENERGY

515

10’ I EV I

Atomic

f EV 1

Date and Nuclear

Data Tables.

Vd

28. NO. 3, May 1983

T. TABATA et al.

GRAPH

II.

Backscattering of H, D, and He Ions

RN and RE vs Energy for D Ions on Zn, Ga, Ge, and Se See page 499 for Explanation of Graphs

10’

100

z

00

10-l

u

i u

cz 10-l

zu

z

0 z

k

10-l

10-2:

10-3

10-4

b0-2

>

5 IL 10-3 I;’ w

g 2 w

lo-44 10’

10’

102

103 ENERGY t EV 1

104

102

103 ENERGY I EV I

104

105

f5 e 3 z

10-5

105

516

Atomic

Data and Nudaar

Data Tables.

Vol. 28. NO. 3. May 1993

T. TABATA

GRAPH

II.

et al.

Backscattering of H, D, andHe Ions

RN and REvs Energy for D Ions on Zr, Nb, MO, and Pd Seepage499 for Explanation of Graphs

10’

103

102 ENERGY

_ ix

l?z 10-3: w E

,0-4

105

OIONSONNB 0

EC79

5 z I

10’

104 IEVI

I

1111,111

, I l,,,,,

102

1 , ,I,,,,,

103 ENERGY

,

104

, “‘u*o-5

105

IEVI

517

Atomic

Data and Nudear

Data Tebies.

Vd. 28. No. 3. May ,983

T. TABATA

GRAPH

II.

Backscattering of H, D, and He Ions

e.t al.

RN and REvs Energy for D Ions on Ag, Cd, In, and Sn See page 499 for Explanation of Graphs

m I

_

0

IONSONRG

I

z 10-3= [L ii w

: 10-4

1o-4

,

101

,,,,,,,,

I

102

I1111111

,

I1111111

103 ENERGY (EVI

I

10’

L$ 5 z

I #“““10-5

10-4

105

102

103 ENERGY IEVI

104

10-5

102

103 ENERGY (EVI

104

105

10'

100

10’

i.........

10’

,,-44

105

10'

518

102

Atomic

103 ENERGY [EVI

Data and Nwlear

104

Data Tables.

105

10-5

Vol. 28. NO. 3. May 1983

T. TABATA et al.

Backscattering of H, D, and He Ions

GRAPH II. RN and RE vs Energy for D Ions on Sb, Te, Ba, and Nd See page 499 for Explanation of Graphs

10-4 4 10’

102

103 ENERGY

104

105

10-5

IEVI

10’

*o-41



10'

I lllilli

I

I1111111

I

ENERGY

519

Atomic

, I,,,

103

102

Oeta and Nuclear

d

104

,

, “,LLJIo-5

105

CEVI

Data Tables.

Vol. 28. No. 3. May 1983

T. TABATA

GRAPH

II.

et al.

Backscattering of H, D, and He Ions

RN and REvs Energy for D Ions on Gd, Er, Ta, and W See page 499 for Explanation of Graphs 100

1

1

2 100 w G r :: z 10-l

1

10-Z

=

10-l

= w

10-l

2

=

i

0

IONS

ON GO

ENERGY

I EV I

100

10-l

W



k 1 o-2

10-Z

!Gi u

10-3

_

& lx

0 IONS

_

ON ER 10-3

10-3

0 IONS 0 EC79

ON W 2 10-4

E

iii w

g EI 2

10-4 1 0'

102

103 ENERGY (EV 1

104

IO5

520

Atomk

Dsta and Nudesr

Data Tebka.

Vol. 28. NO. 3. May’ 1283

T. TABATA et al.

GRAPH

II.

Backscattering of H, D, and He Ions

RN and REvs Energy for D Ions on Pt, Au, Pb, and U See page 499 for Explanation of Graphs

0

IONS

ON

PT

1o-4 ~ 10'

10-5 102

103 ENERGY

_

0

105

104

105

I EV I

IONSONFIU

lo-44

10-4410-5

10’

104

102

103 ENERGY

104

105

10’

i EV I

102

103 ENERGY

521

Atcmic

1o-5

I EV 1

Data and Nuckmr

Data Tabs,

Vol. 28, No. 3, May 1083

T. TABATA et al.

B&scattering of H, D, and He Ions

GRAPH III. RN and RE vs Energy for He Ions on C, Mg, Al, and Si See page 499 for Explanation of Graphs

*O-44*.-5 10'

102

103 ENERGY IEVI

10’

**-‘I

105

101

lo1 mlOO

10’

t

102

103 ENERGY IEVI

10’

105

10-5

[,,,,,.,.,yOO

1

,,-40

10-5 IO’

102

103 ENERGY CEV)

104

105

522

Atmk

Data and Nuc(esr

Data Tableg. Vol. 28. NO. 3. May 1883

B&scattering of H, D, and He Ions

T. TABATA et al.

GRAPH III. RN and RE vs Energy for He Ions on Ti, V, Cr, and Mn See page 499 for Explanation of Graphs

0’

10’ CT 2 IO0 w ”

w u k w

r:

10-l

HE A

EC79

q

HI76

0

IONS

ON

CR

HI76

-

10-41

102

10’

103 ENERGY

101

104

102

10’

105

IEVI

10-S

103

104

ENERGY

105

EV)

100

10-l !g w u

g 100 w ”

HE IONSONMN 0 HI76

I

0

HI76

zl

[L 10-3c ki w

o-4 10-d

I

10’



’ 1’1111’ 102

t 4 11111” ENERGY

523

AtomC

4 I 1(‘111’

103

104

10: 105

IEVI

Data and Nuclear

Data TaMeI.

Vol. 20. NO. 3. May 1983

T. TABATA et al.

GRAPH

III.

RN

and

RE

Backscattering of H, D, and He Ions

vs Energy for He Ions on Fe, Co, Ni, and Cu

See page 499 for Explanation of Graphs

-3

HE IONS 0 HI76

ON

FE

zl?L 10-3

r

HE 0

IONS

ON

NI

HI76

w E

I

10-44 10'

10-5 102

104

103 ENERGY

10’

105

102

524

Atomic

104

103 ENERGY

I EV 1

IO5

t EV I

Data arid NudeW

Data Taths.

Vol. 28. NO. 3. May 1033

T. TABATA et al.

GRAPH

Backscattering of H. D. and He Ions

III. RN and RE vs Energy for He Ions on Zn, Ga, Ge, and Se See page 499 for Explanation of Graphs

HE q

IONS

ON

HE

ZN

0

HI76

IONS

ON

GE

HI76

0-3 t

r

HE 0

o-3

IONS

ON

GR

HI76

0

:

1 0-4.

I

10'

HI76

:I

( i-’

1

2 ““1”

102



103 ENERGY

’ 1’11’1’

4

i ’ fl1’U

104 IEVI

525

Atomic

Data and Nudaar

Date Tables.

Vol. 28. No. 3. May 1883

T. TABATA et al.

GRAPH

Backscattering of H, D, and He Ions

III. RN and RE vs Energy for He Ions on Zr, Nb, MO, and Pd See page 499 for Explanation of Graphs

!n

_

I

z

[r w

10-3.

m I

HE IONSONMO A

EC79

0

HI76

= 10-4

5 z

E

L

I

, ,,,,,,a,

1o-4l

10’

:

102

103 ENERGY C EV I

104

105

10’

_

HE 0

526

0 ,,,,,,nn

102

IONS

a ,,,,,,,I

103 ENERGY (EV I

a ,t,,tJlo-s 104

105

ON PO

HI76

Atcmk

Data and Nudear

Data Tebks.

Vol. 28. No. 3. May 1983

Backscattering of H, D, and He Ions

T. TABATA et al.

GRAPH

III.

RN and REvs Energy for He Ions on Ag, Cd, In, and Sn See page 499 for Explanation of Graphs 00

10’

HE 0 0 v

IONS

ON RG

RN76 ii176 SC76

ENERGY

t EV I

L

10-l

; ”

ii [r

0

HI76

10-3

Y w

ENERGY

L EV I

ENERGY

527

Atomtc Data and Nudear

I EV I

Data Tables.

Vol 28. No. 3. May 1983

T. TABATA et al.

GRAPH

Backscattering of H, D, and He Ions

III. RN and RE vs Energy for He Ions on Sb, Te, Ba, and Nd See page 499 for Explanation of Graphs

,,-,L.

10-44

10-5

,

10'

103 ENERGY IEVI

102

10’

I I I ,,,,,

102

I

I I 0,111 I

105

10’

102

103 ENERGY [EVI

104

105

10-S

0 I I I1111 I

103 ENERGY

10'

104

105 ENERGY

(EVI

528

Atomk

IEV)

Data and NW&W

Data TalSes. Vol. 2.3. No. 3. May 1933

T. TABATA

GRAPH

III.

et al.

Backscattering of H, D, and He Ions

RN and REvs Energy for He Ions on Gd, Er, Ta, and W See page 499 for Explanation of Graphs

IONS

ON GD 0

0

ON76 HI76

,o-41

10’

103

102

ENERGY

I

_

HE

IONS

104

105

[ EV 1

UN ER

529

Atomic

Data and Nuclear

Data Tables.

Vol. 28. No. 3. May 1983

T. TABATA

GRAPH

III.

et al.

Backscattering of H, D, and He Ions

RN and REvs Energy for He Ions on Pt, Au, Pb, and U See page 499 for Explanation of Graphs

HE 0

IONS

ON

PT

HE

HI76

0 q

HE IONS A EC79 0 HI76 v 0

ON

m 0 z cc10 w 5

flu

SC76 VEBO

ENERGY

(EV

_ -3-

IONS

ON

PB

RN76 HI76

HE

IONSONU

I 7 10-4

:

: z

I

530

Atomic

Dam and Nudea

Data Tablo% Vol. 28. No. 3. May 1983