ATOMIC
DATA AND NUCLEAR
BACKSCATTERING T. TABATA,t*$
DATA TABLES
COEFFICIENTS
28,493-530
(1983)
OF H, D, AND HE IONS FROM SOLIDS*
R. ITO,§ Y. ITIKAWA,?”
N. ITOH,?,”
and K. MORITA?’
tbrstitute of Plasma Physics Nagoya University, Chikusa-ku Nagoya 464, Japan §Radiation Center of Osaka Prefecture Sakai, Osaka 593, Japan
Experimental data on the number-backscattering coefficient RN, the energy-backscattering coefficient RE, and the mean fractional energy rE of backscattered particles are tabulated for H, D, and He ions normally incident on elemental solids. References through 198 1 are covered. The dependence of RN and RE on incident energy is shown graphically for energies from about 10 eV to 100 keV by plotting the experimental data and the empirical formulas of Tabata et al. Graphs are provided for 36 elemental targets of atomic numbers from 6 to 92.
* Work performed under the joint research program of data compilation at the Research Information Center, Institute of Plasma Physics, Nagoya University (a preliminary version of this compilation was published as a report (IPPJ-AM- 18) of the Center) $ Permanent address: Radiation Center of Osaka Prefecture, Sakai, Osaka 593, Japan II Present address: Institute of Space and Astronautical Science, Komaba, Meguro-ku, Tokyo 153, Japan ’ Permanent address: Department of Crystalline Materials Science, Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya 464, Japan
0092-640X/83 $3.00 Copyright 0 1983 by Academic Press, Inc. All rights of reproduction in any form reserved.
493
Atomic
Data and Nuclear
Data Tables.
VM. 28. NO. 3. May 1983
T. TABATA
et al.
Backscattering of H, D, and He Ions
CONTENTS
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . ..........,........... .... ... The Empirical Formulas Discussion of Results . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
495 495 495 496
EXPLANATION
OF TABLES
. . . . . . . . . . . . . . . . . . . . . . _. . . . . .
499
EXPLANATION
OF GRAPHS
.. . . . . .. . . . . . . . . . . . . . . . . . .
499
REFERENCES
FOR TABLES
TABLES.
AND GRAPHS
...... ..
.. . .
500
Experimental Data on Number- and Energy-Backscattering Coefficients RN and RE and on the Mean Fractional Energy of Backscattered Particles rE = RE/RN I.
Experimental Data on RN, RE, and rr for H Ions on C toPb . . . . . . . . . . .. . . . . . .. . . . . . . .. . . . . .. . . . . C Nb
II.
Al MO
Si Ag
Ti Ta
Fe W
Ni Au
Cu Pb
Zr
Experimental Data on RN, RE, and rr for D Ions on C to Au . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C
III.
Ti
Fe
Ni
Nb
MO
W
GRAPHS.
Mg Co Nb Te
Al Ni MO Ta
Si Cu Pd W
Ti Zn Ag Pt
V Ga Cd Au
Numberand Energy-Backscattering and RE
502
Au
Experimental Data on RN, RE, and ra for He Ions on C to Pb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C Fe Zr Sb
501
Cr Ge In Pb
502
Mn Se Sn
Coefficients
RN
I.
RN and RE vs Energy for H Ions on C to U
... ... .
504
II.
RNandREvsEnergyforDIonsonCtoU
. . . .. . . . .
513
. . . .. .
522
III.
RN and RE vs Energy for He Ions on C to U C Mg Fe Co Zr Nb Sb Te Pt Au
Al Ni MO Ba Pb
Si Cu Pd Nd U
494
Ti Zn Ag Gd
V Ga Cd Er
Cr Ge In Ta
Mn Se Sn W
Atomic
Data and Nuclear
Data Tables.
Vol. 23. No. 3. May 1933
T. TABATA
et al.
Backscattering of H, D, and He Ions
INTRODUCIION
Data on the backscattering of light ions are important in many fields of research. For instance, in thermonuclear-fusion reactor development,’ backscattering is relevant to the recycling of plasma particles from the first wall, while in studies of particle-solid interaction, low-energy ion scattering is used for the analysis of surface compositions and structures.2 The main features of the backscattering may be described in terms of the following parameters:
RN of D ions on MO by Braganza et al.*: the targets used
were polycrystalline but had a preferred (100) orientation, yielding data systematically lower than the results of other authors. Previous compilations of experimental data on RN and RE are given in the reports ORNL-5207/Rl (Ref. 9) and IPP 9/32 (Ref. lo), both issued in 1979. The tabulations in the IPP report contain only results obtained by its authors. Differences between the ORNL and the present compilations are: (1) the latter covers more recent literature; (2) when a reference presents data only in graphical form, numerical data communicated by its authors are used in the present compilation as far as possible; and (3) the graphs in the present paper show original experimental data along with the curves of the empirical formulas, while the graphs of the ORNL report show only smoothed curves obtained from the data. As for various methods of measuring RN and RE, we refer the reader to the excellent review article written by Mashkova. ’ ’
(1) the number-backscattering coefficient RN defined as the ratio of the total number of backscattered particles, charged and neutrals, to the number of primary particles; (2) the energy-backscattering coefficient RE defined as the ratio of the total energy backscattered to the total incident energy; (3) the mean fractional energy rE of backscattered particles. The last parameter is expressed by the ratio of the former two: rE = &I&. (1)
The Empirical Formulas
In this paper we compile experimental data on these three parameters in tabular form. Additionally, graphs of RN and RE vs incident energy are given which plot the experimental data along with values derived from the empirical formulas proposed by Tabata et al.3 The incident particles considered are H, D, and He ions. No cutoff has been set on the incident energy in compiling the data. The geometrical condition has been restricted to the basic case where ions are normally incident on a target of effectively semi-infinite thickness. The targets considered are amorphous or polycrystalline solids of elemental materials except for stainless steel, the data for which have been compiled in place of the data for iron. References up to the end of 198 1 have been covered. The following data are not included for the reasons given:
To a rough approximation, the data on RN and RE agree with the scaling law predicted by asymptotic theories, that is the transport theory’**” and the single-collision model.‘4.‘5 (A comprehensive review of theoretical studies on the backscattering of light ions from solids is also found in Mashkova’s article.’ ‘) The scaling law states that for a given projectile, RN and RE are, respectively, independent of the target material when these quantities are plotted as a function of the Thomas-Fermi reduced energy t. In a more refined model, deviations from the simple scaling law, found experimentally,‘6 should be considered. Schou et al.” explained the observed deviations as the effect of the so-called Z, oscillations of the electronic stopping power. This explanation, combined with a consideration of the assumptions underlying the scaling law, led Tabata et al. to assume a modified scaling law3 to develop the empirical formulas for RN, RE, and rE given in the Appendix. The empirical formulas for RN and RE were plotted in the graphs of the present paper for the region of energies from 10 eV to 100 keV. For some combinations of projectile and target material, the formulas give erroneous values greater than unity at low energies. In such cases, the empirical formulas are plotted down to the energy where the value reaches unity.
RN and RE of H ions on Nb by Verbeek4: the data at
higher energies are much lower than the results of other authors, and new values were reported later from the same laboratory.5 Part of the data (corresponding to c > 6, where c is the Thomas-Fermi reduced energy) on RE of H ions by Tanaka et al.? the data are systematically higher due to the effect of secondary electrons. RN of D ions on C from the nuclear reaction method of Staudenmaier et al.‘: results from the reemission technique with smaller uncertainties are given in the same paper.
Discussion of Results
Experimental data on RN and RE of light ions are now available, in favorable cases, for incident energies 495
Atomic
Data and Nuclear
Data Tables,
Vol. 28. NO 3. May 1983
T. TABATA
et al.
Backscattering of H, D, and He Ions
TABLE A. Number of Tables I-III for H, D, and Percentage rms Points from the
down to 50 eV and up to 75 keV. Below 1 keV, data are scarce in spite of their importance in fusion research. In this energy region, Monte Carlo simulations using the binary collision approximation (BCA) to predict the data were performed by several authors. The results were taken into account to some extent in the derivation of the empirical formulas of Tabata et a1.3 In the energy region where experimental and Monte Carlo studies overlap, the results show moderately good agreement.‘0.‘8-20 However, it has been pointed out*‘*** that the simulation using the BCA and without taking the effect of the surface field into consideration breaks down for energies below about 100 eV. New theoretical approaches and experimental checks are required at these energies. From the graphs in the present paper, it can be seen that in some cases the empirical formulas show erroneous trends and systematic deviations from the experimental data. One of the erroneous trends was mentioned at the end of the previous subsection. The other is seen in the figures for H and D ions on C, where the formula for RN predicts a slight increase of RN with increasing energy at low energies. An example of systematic deviations is seen for the case of H on Ta, where the data on RN and RE are lower, on the average, than the values of the empirical formulas by about 30%. Possible causes for these deviations are discussed in Ref. 3. On the whole, however, agreement between the empirical formulas and the data is satisfactory. This supports the validity of the assumed modified scaling law, and the formulas can serve as a convenient means of interpolating and extrapolating the data on RN, RE, and rE. The lower bound to the region of validity of the formulas was originally estimated3 to be c _N 10d3. From the graphical presentation here, it is seen to be somewhat higher for D and He ions, that is about 3 X 10e3 for D and 2 X IO-* for He ions. Errors claimed in the original literature for the data on RN and RE, where available, range from 2% to 50% and lie mostly between 10% and 30%. Table A shows the number n of data points compiled and the relative root mean square (rms) deviation 6 of the data points from the empirical formulas. These values of 6, lying between 6% (or of He ions) and 30% (RN of He ions), can be considered to indicate upper limits to the rms errors of the data because of the possible presence of systematic errors in the formulas, and they are consistent with the experimental errors stated.
Data Points n Compiled in and He Ions, Respectively, Deviation 6 of the Data Empirical Formulas
RN
Projectile H ion D ion He ion
RE
k
n
6 (96)
n
L (9%)
n
6 @a)
102 44 16
26 24 30
141 27 140
18 13 28
79 26 13
22 IO 6
TABLE B. Values for Projectile-Dependent Coefficients Used in Eqs. (Al) and (A16) Constant
H ion
D ion
He ion
aI
0.375 0.107 0.64 0.0338
0.300 0.316 0.282 0.0121
0.197 0.416 0.148 0
0.872 0.306 0.50
0.872 0.465 0.273
0.872 0.470 0.262
a2 a3 a4
b, b2 b3
The formula for RN is written as Rp, = [S&T,
+ SJ]a,/[ta2(1
+
u3c
+ w*)],
(Al)
where S, is an approximate expression for the electronic stopping power in which the Z2 oscillation is neglected and the mass M2 of the target atom is assumed to be much greater than the mass M, of the projectile, S, is the nuclear stopping power, and S, is an accurate expression for the electronic stopping power including the 22 oscillation. The coefficients ai (i = 1,2, 3,4) are constants for a given projectile and are given in Table B. The Thomas-Fermi reduced energy t is defined as t = 32.5EM2/[(Z:I
+ Z;“)(MI
+ M2)Z,Z2],
(A2)
where E is the incident kinetic energy of the projectile in keV and Z, , M, and Z2, M2 are the atomic and mass numbers of the projectile and the target material, respectively. For S,, the expression given by the theory of Lindhard, Scharff, and Schiott23 is used:
Appendix
s, = 0.0793Z:‘3~;“2(~2f~,)c
In this appendix we present the empirical formulas of Tabata et al3 for RN and &. The formula for RE can be obtained from these formulas by use of Eq. (1).
112 .
(A3)
For S,,, we use the formula proposed by Kalbitzer et a1.24 with the coefficients determined by Ziegler,25 496
Atomic
Data and Nuclear
Data Tables,
Vol. 28. NO. 3. May 1983
T. TABATA
et al.
Backscattering
of H, D, and He Ions
for
t < 0.01,
= 1.7~“~ In (t + e)/(l + 6.8~ + 3.4t312)
for
0.01 GtG
= In (0.47~)/2c
for
c> 10,
S” = 1.593t’12
where e is the base of the natural logarithm. For S,, the semiempirical D ions) and by Ziegle?’ (He ion) are used2’:
(A4) 10,
(A5) (W
formulas given by Andersen and Ziegler26 (H and
(1) H and D ions Se = A&Elf2 l/S, = l/SLl + l/&f,
for
1 < E < 10 keV/amu,
for
10 < E < 1000 keV/amu,
(A7) 648)
where S,, = A2KE0.45 > S,,, = (A&/E) K = O.l18(M,
(A9)
In (1 + AJE + A5E),
+ M2)(2:‘3
(AlO)
+ Z:‘3)“2/Z,Z2M,,
The formula
(Al 1)
for rr is given by
t-E = 1 - b,/(l + b2t-h3),
E is the incident energy per projectile mass expressed in units of keV/amu, and the symbols Ai (i = 1, 2, . . . , 5) denote coefficients whose values are given for each element in Ref. 26. The values for three elements of technological interest are quoted in Table C.
6416)
where b, is a constant independent of the projectile and the target material, and b2 and b3 are constants for a given projectile. Values of these constants are shown in Table B.
(2) He ion we
=
lISL2
+
lSH2
for 1 f E < 1000 keV,
References for Introduction
6412)
where S,, = B,KEB2, S,,, = (B&/E’)
1. G. M. McCracken 889 (1979)
(A13) In (1 + B4/E’ + B5E’),
2. T. M. Buck, in Methods ofSurface Analysis, edited by A. W. Czanderna (Elsevier, New York/Amsterdam, 1975) p. 75
(A14)
E’ = E/1000,
and P. E. Stott, Nucl. Fusion 19,
(A15)
E is the incident energy in keV, and the symbols Bi (i= 1,2,. . ., 5) denote coefficients whose values are given for each element in Ref. 25. Some examples are shown in Table C.
3. T. Tabata, R. Ito, K. Morita, and Y. Itikawa, Jpn. J. Appl. Phys. 20, 1929 (1981) 4. H. Verbeek, J. Appl. Phys. 46, 2981 (1975) 5. W. Eckstein, F. E. P. Matschke, and H. Verbeek, J. Nucl. Mater. 63, 199 (1976) 6. S. Tanaka, Y. Murakami, and T. Shibata, Jpn, J. Appl. Phys. 17, 183 (1978)
TABLE C. Selected Values for Target-Dependent Coefficients Used in Eqs. (A7) through (A14) Coefficient
2&
42Mo
14W
3.5198 00 3.963E 00 6.065E 03 1.243E 03 7.782E3-03
6.425E 00 7.248E oo 9.545E 03 4.802E 02 5.367E-03
4.574E 00 5.144E 00 1.593E 04 4.424E 02 3.1448-03
00 1 01 01 00
9.276E 00 4.18E-01 1.571E 02 8.03aE oo 1.29E 00
6.335E 00 4.825E3-01 2.551E 02 2.834E oo a.22aE-01
5.013E 4.707E-0 8.55aE 1.6558 3.211E
7. G. Staudenmaier, J. Roth, R. Behrisch, J. Bohdansky, W. Eckstein, P. Staib, S. Matteson, and S. K. Erents, J. Nucl. Mater. 84, 149 (1979) 8. C. Braganza, G. Carter, and G. Farrell, Nucl. Instrum. Methods 132, 679 (1976) 9. E. W. Thomas, S. W. Hawthorne, F. W. Meyer, and B. J. Farmer, Oak Ridge Natl. Lab. Rept. ORNL5207/Rl ( 1979) 10. W. Eckstein and H. Verbeek, Max-Planck Plasma Phys. Rept. IPP 9/32 (1979) 11. E. S. Mashkova, 497
Atomic
Inst.
Radiat. Eff. 54, 1 (198 1) Data and Nuclear
Data TBMBS. Vol. 28. No. 3. May 1983
T. TABATA
12. R. Weissmann (1973)
and P. Sigmund,
13. J. B&tiger and K. B. Winterbon, (1973) 14. G. M. McCracken 661 (1969) 15. J. Vukanic (1976)
e.t al.
Backscattering of H, D, and He Ions
Radiat. Eff. 19, 7
2 1. M. T. Robinson, in Proceedings, Plasma Edge Experiments and Modeling Workshop, UCLA, June 45, 2980, PPG510, p. 12
Radiat. EE 20, 65
22. D. P. Jackson, Radiat. Eff. 49, 233 (1980) 23. J. Lindhard, M. Scharff, and H. E. Schiott, Kgl. Danske Videnskab. Selskab., Mat.-Fys. Medd. 33, No. 14 (1963)
and N. J. Freeman, J. Phys. B 2,
and P. Sigmund,
Appl. Phys. 11, 265
16. G. Sidenius and T. Lenskjaer, Nucl. Instrum. ods 132, 673 (1976) 17. J. Schou, H. Sorensen, and U. Littmark, Mater. 76 and 77, 359 (1978)
24. S. Kalbitzer, H. Oetzmann, H. Grahmann, Feuerstein, Z. Phys. A 278, 223 (1976)
Meth-
25. J. F. Ziegler, Helium Stopping Powers and Ranges in All Elements (Pergamon, Elmsford, N. Y., 1978)
J. Nucl.
26. H. H. Andersen and J. F. Ziegler, Hydrogen Stopping Powers and Ranges in All Elements (Pergamon, Elmsford, N. Y., 1977)
18. 0. S. Oen and M. J. Robinson, Nucl. Instrum. Methods 132, 647 (1976)
27. We use the formulas for S, also at energies below the regions of validity stated. Since these formulas are utilized so as to account only for the relative importance of the Z2 oscillations of the electronic stopping power, the resulting error in RN due to the uncertainty in S, is considered to be small.
19. J. E. Robinson, K. K. Kwok, and D. A. Thompson, Nucl. Instrum. Methods 132, 667 (1976) 20. M. W. Schleehauf and C. N. Manikopoulos, Eff. 54, 149 (1981)
and A.
Radiat.
498
Atomic
Data and Nuclear
Data Tables.
Vol. 28. No. 3. May 1993
T. TABATA
et al.
Backscattering of H, D, and He Ions
EXPLANATION TABLE
I.
Experimental
TABLE
II.
Experimental
TABLE
III.
Experimental
RE, and ti for H Ions on C to Pb Data on RN, RE, and r~ for D Ions on C to Au Data on RN, RE, and rE for He Ions on C to Pb
Data on RN,
Target and Data Source Energy RN RE rE
OF TABLES
Chemical symbol of target and reference code for data source (see References for Tables and Graphs) Energy of incident ion in eV Number-backscattering coefficient Energy-backscattering coefficient Mean fractional energy of backscattered particles rE
=
&~RN
Notes on experimental data (1) From AN76, only the data on RE of H ions incident on Pb and those of He ions incident on Si, Ag, Ta, and Pb were adopted. Other data included in AN76 originally appeared in SI76 or were revised in S076. (2) The data from EC79 include those reported earlier in the following publications: W. Eckstein and H. Verbeek, J. Nucl. Mater. 76 and 77, 365 (1978); W. Eckstein, F. E. P. Matschke, and H. Verbeek, J. Nucl. Mater. 63, 199 (1976). (3) Numerical data for the following sources were provided by courtesy of the authors: H176, OVSO, SC78, S176, S076, and TA78. (4) The following data were collected after the values of adjustable parameters in the empirical formulas had been determined: B076, OV80, ST79, TA78, TH80, and the data for stainless steel from EC79.
EXPLANATION NumberGRAPH
I.
GRAPH
II.
GRAPH
III.
OF GRAPHS
and Energy-Backscattering
Coefficients RN and RF_
RN and RE vs Energy for H Ions on C to U RN and RE vs Energy for D Ions on C to U RN and RE vs Energy for He Ions on C to U Ordinate Abscissa Legend
Number-backscattering coefficient RN (right-hand scale) Energy-backscattering coefficient RE (left-hand scale) Incident ion energy in eV Incident ion-target combination and symbol with reference code for data source (see References for Tables and Graphs)
499
Atomc
Data end Nuclear
Data Tables,
Vd
28. No. 3, May 1983
T.TABATA etal.
BackscatteringofH, D,and He Ions
REFERENCES AN76
H. H. Andersen, J. Appl.
B076
J.
EC79
Phys.
5, J.
Mater.
IPP
GRAPHS
G. Sidenius,
115
M. K. Sinha,
and H. Sdrensen,
and W. Ottenberger,
J.
(1976)
and H. Verbeek, 9/32
AND
13 (1976) Roth,
63,
W. Eckstein Rep.
HI76
T. Lenskjaer,
Bohdansky,
Nucl.
FOR TABLES
Max-Planck
Inst.
Plasma
Phys.
(1979)
D. Hildebrandt
and R. Manns,
Phys.
Status
Solidi
a -38, K155
(1976) 0V80
S. H. Overbury, Nucl.
SC78
J. &
sI76
Schou,
ST79
529
H. S$rensen,
G. Sidenius
and T. Lenskjaer,
Proc.
Jillich,
(Pergamon,
1976
G. Staudenmaier,
84,
J.
149
Nucl.
Symp.
J.
-76
Nucl.
Instrum.
Plasma
Oxford,
Roth,
1977)
R. Behrisch,
S. Matteson,
Mater.
Methods
132,
Wall p. J.
Interaction, 437 Bohdansky,
and S. K. Erents,
W. J. Nucl.
(1979)
Y. Murakami,
and T.
Shibata,
Jpn.
1176
(1980)
J. Appl.
Phys.
183 (1978)
TH80
E. W. Thomas:
VE80
H. Verbeek, Phys.
Int.
P. Staib,
S. Tanaka, 17, -
J.
(1980)
and U. Littmark,
H. S$rensen,
Mater.
and R. S. Thoe,
(1976)
Eckstein,
TA78
93 & 94,
S. Datz,
359 (1978)
77,
673 so76
Mater.
P. F. Dittner,
-51,
J.
Appl.
W. Eckstein, 1783
Phys.
51,
and R. S. Bhattacharya,
J. Appl.
(1980)
5ocl
Atomic
Data and Nudum
Data Tablee. Vol. 23. No. 3, May 1333
T. TABATA
TABLE
Target & Data source C
EC73
1.5 2.5 5.0 7.5 1.0
E E E E E
3 3 3 3 4
l.O3E-1 4.5 E-2 1.6 E-Z 8.3 E-3 5.0 E-3
C
OV80
1.0 1.2 1.5 2.0 2.5 3.0
E E E E E E
3 3 3 3 3 3
1.13E-1 7.5 E-2 6.4 E-2 5.5 E-2 4.7 E-Z 3.5 E-2
Al
S176
1.0 1.5 2.0 3.0
E E E E
4 4 4 4
2.5 2.0 1.1 5.3
E-2 E-2 E-2 E-3
4.3 3.1 1.9 1.0
Si
EC79
5.0
E 3
3.0
E-2
8.42~-3
Ti
8076
1.0 1.3 1.7 2.0 3.0 4.0 5.0 6.0 8.0
E E E E E E E E E
2.2 1.8 1.8 1.4 9. 6. 4. 4.5 4.
E-l E-l E-l E-l E-2 E-2 E-2 E-2 E-2
3.54E-2 1.36E-2 4.27E-3 2.273-3 1.44E-3
E-3 E-3 E-3 E-3
rE 3.44E-1 3.03E-1 2.67E-1 2.55E-1 2.87E-1
1.75E-1 1.55E-1 1.72E-1 l.EVE-1
EC79
6.67E 2 2.5 E 3 5.0 E 3 1.0 E 4
4. E-l l.l5E-1 7.0 E-2 3.3 E-2
1.34E-1 4.37E-2 2.363-2 3.773-3
3.34E-1 3.80E-1 3.3?E-1 2.961-1
Fe
EC79
2.5 5.0 7.5 1.0 1.25E 1.5
P E E E
3 3 3 4 4 E 4
1.63E-1 l.lOE-1 7.9 E-2 6.5 E-2 5.7 E-2 4.1 E-2
6.30E-2 3.723-2 2.7 E-2 2.0 E-2
3.86E-1 3.383-l 3.40E-1 3.11E-1
1.2
E-2
3.01E-1
Fe
S176
1.0 1.5 2.0 3.0
E E E E
6.3 4.9 4.0 2.5
1.471-2 l.OlE-2 7.0 E-3 3.4 E-3
2.21E-1 2.07E-1 l.ElE-1 1.90E-1
Fe
TA78
1.0 1.5
E 4 E 4
E-2 E-2 E-2 E-2
1.5 1.2
E-2 E-2
Ni
EC79
1.5 5.0 7.5 1.0 1.5
E E E E E
3 3 3 4 4
l.$VE-1 1.37E-1 9.0 E-2 8.5 E-2 3.7 E-2
7.123-2 4.883-2 3.083-2 3.023-2 l.l2E-2
CU
S176
5. 7.5 1.0 1.5 2.0 3.0
E3 E E E E E
3 4 4 4 4
1.40E-1 l.O5E-1 8.5 E-2 6.4 E-2 5.2 E-2 3.3 E-2
3.761-2 2.753-2 2.01E-2
TA78
1.0 1.5
E 4 E 4
B076
2.0 3.0 4.0 6.0 8.0
E E E E E
3 3 3 3 3
2.9 1.9 1.6 1.3 6.
Nb
EC79
5.0 7.5 1.0 1.5
E E E E
3 3 4 4
l.O5E-1 8.5 E-2 7.3 E-2 4.7 E-2
4.34E-2 3.133-2 2.83E-2 1.733-2
4.13E-1 3.6815-l 3.873-l 3.68E-1
Nb
5176
1.0 1.5 2.0 3.0
E E E E
4 4 4 4
7.213-2 4.9 E-2 4.1 E-2 2.7 E-2
1.661-2 l.OOE-2 7.8 E-3 4.8 E-3
2.3OE-1 2.10E-1 2.01E-1 1.89E-l
CU
Nb
SO76
l.OOE 1.34E 1.67E 2.00E 2.663 3.00E 3.333 @.OOE 4.50E 5.00E 6.00E 7.00E 8.00E V.OOE l.OOE
3 3 3 3 3 3 3 3 3 3 3 3 3 3 4
1.33E-2
l.O2E-2 6.0 E-3 2.0 1.6
Target & oata soucce
E E E E E
3 3 3 4 4
1.45E-1 l.OVE-1 3.2 E-2 7.09E-2 5.2 E-2
6.21E-2 4.10E-2 3.22E-2 2.37E-2 1.5VE-2
4.28E-1 3.76E-1 3.50E-1 3.34E-1 3.06E-1
MO
S176
1.0 1.5 2.0 3.0
E E E E
4 4 4 4
8.7 6.4 5.0 3.1
2.07E-2 1.38E-2 l.OBE-2 6.2 E-3
2.43E-1 l.V5E-1 2,15E-1 2.04E-1
MO
TA78
1.0 1.5 2.0 2.5
E E E E
4 4 4 4
Ag
S176
1.0 1.5 2.0 3.0
E E E E
4 4 4 4
A9
SO76
1.5 2.0 2.6 3.0 3.3 4.0 5.0 6.0
E E E E E E E E
3 3 3 3 3 3 3 3
S176
1.0 1.5 2.0 3.0
E E E E
4 4 4 4
w
EC79
5.0 7.5 1.0 1.25E 1.5
AU
EC79
AU
2.1 1.7 1.4 1.0 1.34E-1 l.OOP-1 7.9 E-2 4.8 E-2
E-2 E-2 E-2 E-2
3.10E-2 2.13E-2 1.54E-2 3.4 E-3
2.36E-1 2.07E-1 2.01E-1 Z.lOE-1
l.l6E-1 l.OBE-1 l.OlE-1 8.5 E-2 8.7 E-2 6.6 E-2 5.8 E-2 5.0 E-2 3.30E-2 2.5OE-2 1.88E-2 1.25E-2
2.54E-1 2.48E-1 2.24E-1 2.44E-1
E 3 E 3 E 4 4 E 4
1.68E-1 1.65E-1 1.23E-1 l.lVE-1 l.O7E-1
7.06E-2 6.60E-2 4.67~-2 4.46~-2 3.85E-2
4.20E-1 4.00E-1 3.80E-1 3.75E-1 3.60E-1
2.5 5.0 8.0 9.0 1.0 1.6
E E E E E E
3 3 3 3 4 4
3.20E-1 2.51E-1 l.V7E-1 2.11E-1 2.07E-1 1.34E-1
1.37E-1 9.74E-2 7.50E-2 7.42E-2 7.35E-2 4.45E-2
4.28E-1 3.88E-1 3.81E-1 3.52E-1 3.55E-1
S176
5.0 7.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0
E E E E E E E E E
3 3 4 4 4 4 4 4 4
3.10E-1 2.70E-1 2.30E-1 l.VOE-1 1.55E-1 1.35E-1 1.25E-1 3.9 E-2 8.4 E-2
9.5 E-2 7.5 E-2 6.09E-2 4.33E-2 3.50E-2 3.10E-2 2.551-2 l.V6E-2 1.51E-2
3.30E-1 3.12E-1 2.70E-1 2.60E-1 2.25E-1 Z.lOE-1 Z.OOE-1 l.VVE-1 1.79E-1
AU
SO76
1.17E 1.33E 1.67E 1.75E 2.00E 2.338 2.51E 3.00E 3.3 E 3.51E 4.51E 5.00E 6.02E 7.00E 8.00E V.OOE l.OOE
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4
AU
VE80
5.0 8.0
E 3 E 3
Pb
AN76
3.0 3.5 4.0 4.5 4.5 5.0 5.7 5.7 6.0 6.0 6.2 6.5
E E E E E E E E E E E E
E-2 E-2
E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2 E-2
E-2 E-2 E-2 E-2
1.32E-1 l.OlE-1 8.7 E-2 5.1 E-2
E-l E-l E-l E-l E-2
8.0 7.4 7.9 6.2 5.7 5.2 5.0 4.9 4.0 2.8 2.6 2.8 3.1 1.7 1.8
%
2.5 5.0 7.5 1.0 1.5
4.48E-1 3.56E-1 3.42E-1 3.552-l 3.04E-1
2.273-l l.VVE-l l.V6E-1 l.VEE-l
Energy cev1
EC79
Z.ElE-1
Ti
4 4 4 4
501
Backscattering of H, D, and He Ions
I. Experimental Data on RN, RE, and rE for H Ions on C to Pb See page 499 for Explanation of Tables
Energy cm
3 3 3 3 3 3 3 3 3
et al.
for
All the stainless
data listed steel.
3.32E-1
1.55E-1 1.44E-1 1.43E-1 l.lEE-1 1.38E-1 l.l7E-1 1.40E-1 1.20E-1 l.l3E-1 l.OVE-1 8.9 E-2 8.1 E-2 7.4 E-2 7.0 E-2 7.4 E-2 5.8 E-2 5.6 E-2 2.17E-1 1.74E-1
4 4 4 4 4 4 4 4 4 4 4 4
9.2 7.0
E-2 E-2
4.22E-1 4.0 E-l
2.3 E-2 1.7 E-2 1.9 E-2 1.7 E-2 1.4 E-2 1.3 E-2 l.O6E-2 9.7 E-3 l.O7E-2 1.22E-2 9.7 E-3 l.l7E-2
for
the
Fe target
are
actually
502
T. TABATA et al.
TABLE
Target & Data Source
Energy (em
II. Experimental
Data on R N, RE, and rE for D Ions on C to Au See page 499 for Explanation of Tables
R
R
r
C
EC79
2.5 5.0 7.5
E 3 E 3 E 3
5.5 1.8 1.4
E-2 E-2 E-2
C
ova0
1.0 1.2 1.5 2.0 2.5 3.0
E E E E E E
3 3 3 3 3 3
6.7 4.6 5.0 4.4 4.1 3.6
E-2 E-2 E-2 E-2 E-2 E-2
E E E E E
1 2 2 2 3
2.6 1.6 1.2 1.2 7.
E-l E-l E-l E-l E-2
2 3 3 3 4 4
1.8 E-l 1.35E-1 8.4 E-2 5.6 E-2 5.2 E-2 2.4 E-2
7.691-2 5.813-2 3.26E-2 1.85E-2 1.683-2 7.98E-3
4.27E-1 4.30E-1 3.883-l 3.31E-1 3.243-l 3.32E-1
2.261-l l.lZE-1 1.05E-1
4.903-2
4.37E-1
C
ST79
5.0 1.0 2.5 5.0 1.0
Ti
EC79
6.6lE 2.5 5.0 7.5 1.0 1.5
E E E E E
Fe
EC79
2.5 5.0 7.5
E 3 E 3 E 3
Fe
THEO
1.25E 2.5 5.0 7.0 1.0
E E E E
2 2 2 2 3
5.0 4.2 4.0 3.7 3.2
Energy (ev)
2.09E-2 6.253-3 3.823-3
3.793-l 3.47E-1 2.73E-1
E-l E-l E-l E-l E-l
TABLE Target & Data Source
Target 6 Data Source
Energy (ev) 1.69E-1 1.30E-1 9.8 E-2 8.5 E-2 6.4 E-2
7.813-2 5.373-2 3.531-2 3.093-2 2.18E-2
+E 4.623-l 4.13E-1 3.60E-1 3.63E-1 3.40E-1
E 3 E 3
2.21E-1 1.69E-1
8.14E-2 5.153-2
3.683-l 3.05E-1
2.5 5.0 7.5 1.0 1.5
E E E E E
3 3 3 4 4
1.29E-1 l.lZE-1 l.O9E-1 8.4 E-2 6.1 E-2
5.783-2 4.273-2 3.823-2 2.893-2 1.99E-2
4.48E-1 3.81E-1 3.50E-1 3.44E-1 3.273-l
EC79
5.0 7.5 1.0 1.5
E E E E
3 3 4 4
Z.llE-1 1.93E-1 1.74E-1 1.31E-1
9.033-2 7.973-2 6.683-2 4.64E-2
4.283-l 4.13E-1 3.843-l 3.543-l
SO76
3.17E
All the stainless
data listed steel.
Ni
EC79
2.5 5.0 7.5 1.0 1.5
E E E E E
Nb
EC79
2.5 5.0
MO
EC79
w
AU
for
3 3 3 4 4
1.30E-1
3
for
the
Fe target
are
Data on R N, RE, and rE for He Ions on C to Pb See page 499 for Explanation of Tables
%
C
HI76
1.2 E 4 1.45E 4
7. 5.5
E-3 E-3
MY
HI76
1.2 E 4 1.45E 4
8. 6.
E-3 E-3
Al
HI76
1.2 E 4 1.45E 4
8. 6.
E-3 E-3
Si
AN76
2.5 3.0 3.5 4.0 5.0 5.5 6.0 6.0 7.0
4 4 4 4 4 4 4 4 4
6.7 5.0 5.5 4.6 4.0 4.9 5.3 5.0 2.8
E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3 E-3
8.5 6.5
E-3 E-3
rE
Target & Data Source
Energy (.a)
CU
SC78
5.0 6.0 7.0 8.0 9.0 1.0
n-l
HI76
1.2 E 4 1.45E 4
4.251-2 3.553-2
Ga
HI76
1.2 E 4 1.45E 4
3.2 2.8
Ge
HI76
1.2 E 4 1.45E 4
3.553-2 3.0 E-2
Se
RI76
1.2 E 4 1.45E 4
3.653-2 3.253-2
21
HI76
1.2 E 4 1.45E 4
2.651-2 2.2 E-2
Nb
HI76
1.2 E 4 1.45E 4
2.85E-2 2.4 E-2
MO
EC79
5.0 1.0 1.5 2.0
E E E E E E
7.9 7.6 6.1 5.6 4.6 3.9
3 3 3 3 3 4
E-2 E-2 E-2 E-2 E-2 E-2
E-2 E-2
Si
HI76
1.2 E 4 1.45E 4
Ti
EC79
5.0 1.0 1.5
Ti
HI76
1.2 E 4 1.45E 4
1.5 1.2
V
HI76
1.2 E 4 1.45E 4
2.1 E-2 1.65E-2
MO
HI76
1.2 E 4 1.45E 4
3.853-2 3.151-2
CK
~176
1.2 E 4 1.45E 4
2.0 E-2 1.55E-2
Pd
HI76
1.2 E 4 1.45E 4
5.0 4.4
Mn
HI76
1.2 E 4 1.45E 4
2.3 1.9
AY
AN76
1.8 2.3 2.8 3.3 3.8 4.3 4.5 4.5 5.0 5.5 6.0 6.5 7.0 7.5
2.9 E-2 2.7 E-2 2.8 E-2 2.0 E-2 1.733-2 1.843-2 1.66E-2 1.53B-2 1.391-2 1.20E-2 l.O9E-2 l.OZE-2 9.5 E-3 8.5 E-3
E 3 E 4 E 4
1.4 9.0 7.0
actually
III. Experimental
s
E E E E E E E E E
Backscattering of H, D, and He Ions
E-l E-2 E-2
2.968-2 2.31E-2
3.293-l 3.30E-1 E-2 E-2
E-2 E-2
Fe
HI76
1.2 E 4 1.45E 4
2.3 E-2 1.853-2
CO
HI76
1.2 E 4 1.45E 4
3.0 2.5
Ni
HI76
1.2 E 4 1.45E 4
3.35E-2 2.85E-2
CU
HI76
1.2 E 4 1.45E 4
4.1 3.5
E-2 E-2
E-2 E-2
E E E E
E E E E E E E E E E E E E E
3 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4 4
l.O2E-1 8.9 E-2 7.4 E-2 6.0 E-2
4.633-2 3.433-2 3.073-2 2.263-2
4.543-l 3.85E-1 4.15E-1 3.763-l
E-2 E-2
T. TABATA et al.
TABLE
III. Experimental
Backscattering of H, D, and He Ions
Data on
RN, RE, and rE for He Ions on C to Pb
See page 499 for Explanation of Tables Target 6 Data source
Energy (@?I
5
%
Ag
HI76
1.2 E 4 1.45E 4
5.9 4.9
Ag
SC78
4.0 4.5 5.0 6.0 7.0 8.0 9.0 1.0
1.31E-1 1.25E-1 1.20E-1 l.l2E-1 l.O2E-1 9.2 E-2 8.5 E-2 7.6 E-2
E E E E E E E E
3 3 3 3 3 3 3 4
Target 6 Data Source
rE E-2 E-Z
Energy (ev) E E E E
3 4 4 4
54
%
1.82E-1 1.59E-1 1.37E-1 1.25E-1
8.873-2 7.233-2 6.623-2 5.253-2
IE 4.883-l 4.553-l 4.833-l 4.20E-1
w
EC79
5.0 1.0 1.5 2.0
w
HI76
1.2 E 4 1.45E 4
5.9 5.1
E-2 E-2
Pt
HI76
1.2 E 4 1.45E 4
5.9 5.0
E-2 E-2
AU
EC79
5.0 1.0 1.6
E 3 E 4 E 4
1.40E-1 1.35E-1 l.l7E-1
Cd
HI76
1.2 E 4 1.45E 4
5.4 4.6
E-2 E-2
In
HI76
1.2 E 4 1.45E 4
4.7 4.0
E-2 E-2
AU
HI76
1.2 E 4 1.45E 4
7.5 6.5
SIl
HI76
1.2 E 4 1.45E 4
4.4 3.9
E-2 E-2
AU
SC78
Sb
HI76
1.2 E 4 1.45E 4
4.5 4.0
E-2 E-2
HI76
5.0 6.0 7.0 8.0 9.0 1.0
E E E E E E
1.38E-1 1.36E-1 1.26E-1 1.26E-1 l.l6E-1 l.O3E-1
1.2 E 4 1.45E 4
4.4 3.7
E-2 E-2
AU
VE80
1.l~ 1.6
E 4 E 4
4.6
E-2
AN76
3.0 3.5 4.0 4.5 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
2.7 E-2 2.5 E-2 2.3 E-2 2.3 E-2 2.2 E-2 2.2 E-2 2.1 E-2 2.1 E-2 1.983-2 1.82E-2 1.723-2 1.60E-2
Pb
AN76
3.0 3.5 3.5 4.0 4.0 4.5 5.0 5.5 6.0 6.5
E E E E E E E E E E
4 4 4 4 4 4 4 4 4 4
3.3 2.9 2.7 2.7 3.0 2.6 2.4 2.1 2.4 1.8
E-2 E-Z E-2 E-2 E-2 E-2 E-2 E-2 S-2 E-2
Pb
HI76
1.2 E 4 1.45E 4
8.1 7.0
E-2 E-2
HI76
E E E E E E E E E E E E
4 4 4 4 4 4 4 4 4 4 4 4
1.2 E 4 1.45E 4
5.3 4.6
E-2 E-2
503
Atomic
3 3 3 3 3 4 1.34E-1 l.llE-1
Data and Nuclear
6.39E-2 5.273-2
Data Tebks
4.73E-1 4.51E-1
E-2 E-2
4.14E-1
Vol 2.3. N0.3.
Msy1983
T. TABATA et al.
GRAPH
Backscattering of H, D, and He Ions
I. RN and RE vs Energy for H Ions on C, Mg, Al, and Si See page 499 for Explanation of Graphs
i-l A 0
0-3
10'
IONS EC79 ova0
ON
C
103
102 ENERGY
104
105
[EL'1
10-3
c3 z El E 5 *
I
_
H
IONSONMG
I I
zlx 10-3
E_
H A
IONS EC79
ON
SI
" t
lo-4
101
102
103 ENERGY
104
101 10'
105
IO2 102
(EVI
103 ENERGY
504
Atcmk
104
105
(EVI
Data a-d Nudesr
Data Tabbe,
Vol. 28. No. 3. May 1082
T. TABATA et al.
GRAPH
I.
Backscattering of H, D, and He Ions
RN and REvs Energy for H Ions on Ti, V, Cr, and Mn See page 499 for Explanation of Graphs 1
o-3
_
H
IONS
:
0 A
8076 EC79
o-4
I
ON
TI
H IONS HIONSONCR
ON
CR
0-3
# Ilid
r
1 / l3llll
102
10’
_
I
103 ENERGY
I ,/II
104
105
10’
102
103
(EVI
ENERGY
104
105
IEVI
100
w z 10-l c
Xl j \
10-Z
r
=l
H : w i5
IONS
ON
V
H
10-3: \
IONS
ON
MN
11
10-41
105
I
101
I1111111
I
III
III, I
102 ENERGY
505
Atomk
,,,,
103
Data and NudWr
d
104
I
,,,,
Lu]1o-5
105
(EV)
Data Tabkq
Vol. 28. No. 3. May 1993
T. TABATA
et al.
Backscattering
and He Ions
of H, D,
GRAPH I. RN and RE vs Energy for H Ions on Fe, Co, Ni, and Cu See page 499 for Explanation of Graphs
I z LL 10-3
H A 0 v
s w
IONS EC79
ON FE
SI76 TR76
Y
:,-44 10’
102
103 ENERGY (EV 1
104
105
10-5
10'
10’
10-l
10-2
102
103 ENERGY I EV 1
10’
105
1 00
m”“““‘““““’
0-l
2 w 0
z
s L
k : ”
H IONS q
v
ON CU
S176 TR76
1
i
Y
0-S 10’
102
103 ENERGY I EV 1
10’
+
105
101
506
102
Atomic
103 ENERGY (EV I
Data and Nuclear
104
Data Tables.
105
Vol. 28. NO. 3. May 1983
T. TABATA et al.
B&scattering of H, D, and He Ions
GRAPH I. RN and RE vs Energy for H Ions on Zn, Ga, Ge, and Se See page 499 for Explanation of Graphs 10’
00
r
o-1
r
o-2
H IONS
-J--l
\
f
ON ZN
H IONS
10'
ON GE
102
103
ENERGY
_
10-4 4 10’
Ii
104
105
[ EV I
IONSONGFI
102
103
ENERGY
104
105
10-S
10-41
’ 10’
I EV I
I 6 ““I’
’ 102
4 8 “I”’ 103
ENERGY
507
Atomic
Data and Nudear
h ’ ’ 11111’ 104
10-S
’ JLulJ 105
I EV I
Data Tables.
Vol. 28. No. 3. May 1983
T. TABATA et al.
GRAPH
Backscattering of H, ID, and He Ions
I. RN and RE vs Energy for H Ions on Zr, Nb, MO, and Pd See page 499 for Explanation of Graphs
2 = w u
100
;:
H A 0 v
10-3
E
IONS EC79 S176 TR78
ON
MO
1
t
1
lo-4..;
10-5 101
103
102 ENERGY
101
104
105
I EV I
100
H
1 o-4
1o-41
10-S 10’
102
103 ENERGY
104
ON
, I I111111 101
105
IONS
PO
I
I 1 I,,/, 1
102 ENERGY
t EV 1
508
Alomlc
I
I I111111
103
104
4 1 I ~~cLJ1o-s 10s
I EV I
Data find Nuclear
Data Tab&
Vol. 28. NO. 3, May 1983
Backscattering of H, D, and He Ions
T. TABATA et al.
GRAPH
I. RN and RE vs Energy for H Ions on Ag, Cd, In, and Sn See page 499 for Explanation of Graphs
1o-4~
10’
H
IONS
0 v
5176 SO76
,
, ,c,,,,,
ON
H
RG
/
, ,,,,c,,
102
,
103 ENERGY
, t,,,,,,
,
104
ON
IN
, t,,iJlo-5
105
10’
ENERGY
10'
104
105
IEV)
100
10'
10-4
103
103 ENERGY
100
102
102
IEV)
10'
10’
IONS
I
105
0
10'
10-5
102
[EVI
ENERGY
509
Atomic
104
103
Data and NutMar
105
(EV)
Oats Tables,
Vol. 28. NO. 3, May 1983
T. TABATA et al.
Backscattering of H, D, and He Ions
GRAPH I. RN and REvs Energy for H Ions on Sb, Te, Ba, and Nd See page 499 for Explanation of Graphs
H IONS
ON SEI
H IONS
ON BR
10-4i.......... 10’
10-5 103 ENERGY CEV I
102
105
10’
lo1rnl”O
_
H IONS
H IONS
ON TE
zLL 10-3-
_ lo-4
Y
Ei 2
w
I
1o-4
1 I 1 ,,,“,
10’
I
102 102
1 ,#111,1
I
1,
103 ENERGY (EV I
4,111,
104
I
I I ‘1”U
,o-4j
10-S
,
10’
105
510
ON NO
, 11,111,
I
102
Atcmk
,#,,,,,
I
1
I,,#,,
103 ENERGY (EV 1
Oata and Nuclear
II,
104
Data Tables.
I
,<~~wJ~o-5
105
Vol. 29, No. 3. May 1999
T. TABATA
et al.
Backscattering of H, D, and He Ions
GRAPH I. RN and REvs Energy for H Ions on Gd, Er, Ta, and W Seepage499 for Explanation of Graphs
cl2
_
H IONSONGD
:o-,‘;.lo-5 10'
102
103 ENERGY ( EV I
10-4
104
105
I,,,,,,,,,
103
ENERGY
104
104
105
[ EV I
IO'
H IONS A EC79
102
103
ENERGY
100
10’
10-5
102
10’
DN LI
105
I EV 1
511
Atomic
Data and Nuclear
Data Tables,
VOL. 28. No. 3. May 1983
T. TABATA et al.
GRAPH
I.
Backscattering of H, D, and He Ions
RN and RE vs Energy for H Ions on Pt, Au, Pb, and U See page 499 for Explanation of Graphs
H IONS
ON PT
z ’ lx w
0
i
5
10-4 4
, , ,,,a,,, , , t,,,,,, r t ttm
1o-41
10’
102
103 ENERGY (EV I
104
105
RN76
10-3
10’
104
103
102
ENERGY
105
10-5
I EV I
lo1mlOO
10’
A EC79 q
v 0
S176 SO76
VE80
10-4
10-4~10-5
10’
102
103 ENERGY C EV 1
104
105
512
II 110-S 101 101
10-S 102 102
Atomic
103 ENERGY I EV 1
Data and Nudssr
104
Data Tables,
105
Vol. 29. No. 3. May 1993
T. TABATA
GRAPH
Backscattering of H, D, and He Ions
et al.
II. RN and RE vs Energy for D Ions on C, Mg, Al, and Si See page 499 for Explanation of Graphs
w
10-J4
10-S
10’
103
102 ENERGY
104 (EVI
lo’l1O0
I
-
0
IONS
ON
105
lo1m
J
100
MC
z
w 10-37
10-4110’ ENERGY
102
1 o-5
103 104
[EVI
ENERGY
513
Atmk
Data and Ntiear
105
[EVI
Data Tablea. Vol. 29. No. 3. May 1983
T. TABATA et al.
GRAPH
II.
J3ackscatte~ngof H, D, and He Ions
RN and REvs Energy for D Ions on Ti, V, Cr, and Mn See page 499 for Explanation of Graphs
101 ENERGY
102
103 ENERGY I EV I
I EV 1
104
ilo-l:
EIOO iy
glo-l~-l i.5 II-
5
t 10-2
2 2 al I z a: 10-3: ii w
\
-
_
105
1
.D IONS
ON tlN 10-J
ii 5 z
1o-41
10’
102
103 ENERGY I EV I
104
105
514
Atomic
Data and Nuclear
Data Tabbs.
‘Jo!. 28. No. 3, May 1983
Backscattering of H, D, and He Ions
T. TABATA et al.
GRAPH II. RN and REvs Energy for D Ions on Fe, Co, Ni, and Cu See page 499 for Explanation of Graphs
D 0
v
IONS EC79 TM0
ON
FE t; (L w
to-3
5
10-4 10’
102
103 ENERGY
*,-‘I 10'
102
10’
10’
102
I EV 1
103 ENERGY
105-
103 ENERGY
10’
105
1o-5
105-
10’
105
10-41
10’
10-S 102
I EV I
103 ENERGY
515
10’ I EV I
Atomic
f EV 1
Date and Nuclear
Data Tables.
Vd
28. NO. 3, May 1983
T. TABATA et al.
GRAPH
II.
Backscattering of H, D, and He Ions
RN and RE vs Energy for D Ions on Zn, Ga, Ge, and Se See page 499 for Explanation of Graphs
10’
100
z
00
10-l
u
i u
cz 10-l
zu
z
0 z
k
10-l
10-2:
10-3
10-4
b0-2
>
5 IL 10-3 I;’ w
g 2 w
lo-44 10’
10’
102
103 ENERGY t EV 1
104
102
103 ENERGY I EV I
104
105
f5 e 3 z
10-5
105
516
Atomic
Data and Nudaar
Data Tables.
Vol. 28. NO. 3. May 1993
T. TABATA
GRAPH
II.
et al.
Backscattering of H, D, andHe Ions
RN and REvs Energy for D Ions on Zr, Nb, MO, and Pd Seepage499 for Explanation of Graphs
10’
103
102 ENERGY
_ ix
l?z 10-3: w E
,0-4
105
OIONSONNB 0
EC79
5 z I
10’
104 IEVI
I
1111,111
, I l,,,,,
102
1 , ,I,,,,,
103 ENERGY
,
104
, “‘u*o-5
105
IEVI
517
Atomic
Data and Nudear
Data Tebies.
Vd. 28. No. 3. May ,983
T. TABATA
GRAPH
II.
Backscattering of H, D, and He Ions
e.t al.
RN and REvs Energy for D Ions on Ag, Cd, In, and Sn See page 499 for Explanation of Graphs
m I
_
0
IONSONRG
I
z 10-3= [L ii w
: 10-4
1o-4
,
101
,,,,,,,,
I
102
I1111111
,
I1111111
103 ENERGY (EVI
I
10’
L$ 5 z
I #“““10-5
10-4
105
102
103 ENERGY IEVI
104
10-5
102
103 ENERGY (EVI
104
105
10'
100
10’
i.........
10’
,,-44
105
10'
518
102
Atomic
103 ENERGY [EVI
Data and Nwlear
104
Data Tables.
105
10-5
Vol. 28. NO. 3. May 1983
T. TABATA et al.
Backscattering of H, D, and He Ions
GRAPH II. RN and RE vs Energy for D Ions on Sb, Te, Ba, and Nd See page 499 for Explanation of Graphs
10-4 4 10’
102
103 ENERGY
104
105
10-5
IEVI
10’
*o-41
‘
10'
I lllilli
I
I1111111
I
ENERGY
519
Atomic
, I,,,
103
102
Oeta and Nuclear
d
104
,
, “,LLJIo-5
105
CEVI
Data Tables.
Vol. 28. No. 3. May 1983
T. TABATA
GRAPH
II.
et al.
Backscattering of H, D, and He Ions
RN and REvs Energy for D Ions on Gd, Er, Ta, and W See page 499 for Explanation of Graphs 100
1
1
2 100 w G r :: z 10-l
1
10-Z
=
10-l
= w
10-l
2
=
i
0
IONS
ON GO
ENERGY
I EV I
100
10-l
W
”
k 1 o-2
10-Z
!Gi u
10-3
_
& lx
0 IONS
_
ON ER 10-3
10-3
0 IONS 0 EC79
ON W 2 10-4
E
iii w
g EI 2
10-4 1 0'
102
103 ENERGY (EV 1
104
IO5
520
Atomk
Dsta and Nudesr
Data Tebka.
Vol. 28. NO. 3. May’ 1283
T. TABATA et al.
GRAPH
II.
Backscattering of H, D, and He Ions
RN and REvs Energy for D Ions on Pt, Au, Pb, and U See page 499 for Explanation of Graphs
0
IONS
ON
PT
1o-4 ~ 10'
10-5 102
103 ENERGY
_
0
105
104
105
I EV I
IONSONFIU
lo-44
10-4410-5
10’
104
102
103 ENERGY
104
105
10’
i EV I
102
103 ENERGY
521
Atcmic
1o-5
I EV 1
Data and Nuckmr
Data Tabs,
Vol. 28, No. 3, May 1083
T. TABATA et al.
B&scattering of H, D, and He Ions
GRAPH III. RN and RE vs Energy for He Ions on C, Mg, Al, and Si See page 499 for Explanation of Graphs
*O-44*.-5 10'
102
103 ENERGY IEVI
10’
**-‘I
105
101
lo1 mlOO
10’
t
102
103 ENERGY IEVI
10’
105
10-5
[,,,,,.,.,yOO
1
,,-40
10-5 IO’
102
103 ENERGY CEV)
104
105
522
Atmk
Data and Nuc(esr
Data Tableg. Vol. 28. NO. 3. May 1883
B&scattering of H, D, and He Ions
T. TABATA et al.
GRAPH III. RN and RE vs Energy for He Ions on Ti, V, Cr, and Mn See page 499 for Explanation of Graphs
0’
10’ CT 2 IO0 w ”
w u k w
r:
10-l
HE A
EC79
q
HI76
0
IONS
ON
CR
HI76
-
10-41
102
10’
103 ENERGY
101
104
102
10’
105
IEVI
10-S
103
104
ENERGY
105
EV)
100
10-l !g w u
g 100 w ”
HE IONSONMN 0 HI76
I
0
HI76
zl
[L 10-3c ki w
o-4 10-d
I
10’
’
’ 1’1111’ 102
t 4 11111” ENERGY
523
AtomC
4 I 1(‘111’
103
104
10: 105
IEVI
Data and Nuclear
Data TaMeI.
Vol. 20. NO. 3. May 1983
T. TABATA et al.
GRAPH
III.
RN
and
RE
Backscattering of H, D, and He Ions
vs Energy for He Ions on Fe, Co, Ni, and Cu
See page 499 for Explanation of Graphs
-3
HE IONS 0 HI76
ON
FE
zl?L 10-3
r
HE 0
IONS
ON
NI
HI76
w E
I
10-44 10'
10-5 102
104
103 ENERGY
10’
105
102
524
Atomic
104
103 ENERGY
I EV 1
IO5
t EV I
Data arid NudeW
Data Taths.
Vol. 28. NO. 3. May 1033
T. TABATA et al.
GRAPH
Backscattering of H. D. and He Ions
III. RN and RE vs Energy for He Ions on Zn, Ga, Ge, and Se See page 499 for Explanation of Graphs
HE q
IONS
ON
HE
ZN
0
HI76
IONS
ON
GE
HI76
0-3 t
r
HE 0
o-3
IONS
ON
GR
HI76
0
:
1 0-4.
I
10'
HI76
:I
( i-’
1
2 ““1”
102
’
103 ENERGY
’ 1’11’1’
4
i ’ fl1’U
104 IEVI
525
Atomic
Data and Nudaar
Date Tables.
Vol. 28. No. 3. May 1883
T. TABATA et al.
GRAPH
Backscattering of H, D, and He Ions
III. RN and RE vs Energy for He Ions on Zr, Nb, MO, and Pd See page 499 for Explanation of Graphs
!n
_
I
z
[r w
10-3.
m I
HE IONSONMO A
EC79
0
HI76
= 10-4
5 z
E
L
I
, ,,,,,,a,
1o-4l
10’
:
102
103 ENERGY C EV I
104
105
10’
_
HE 0
526
0 ,,,,,,nn
102
IONS
a ,,,,,,,I
103 ENERGY (EV I
a ,t,,tJlo-s 104
105
ON PO
HI76
Atcmk
Data and Nudear
Data Tebks.
Vol. 28. No. 3. May 1983
Backscattering of H, D, and He Ions
T. TABATA et al.
GRAPH
III.
RN and REvs Energy for He Ions on Ag, Cd, In, and Sn See page 499 for Explanation of Graphs 00
10’
HE 0 0 v
IONS
ON RG
RN76 ii176 SC76
ENERGY
t EV I
L
10-l
; ”
ii [r
0
HI76
10-3
Y w
ENERGY
L EV I
ENERGY
527
Atomtc Data and Nudear
I EV I
Data Tables.
Vol 28. No. 3. May 1983
T. TABATA et al.
GRAPH
Backscattering of H, D, and He Ions
III. RN and RE vs Energy for He Ions on Sb, Te, Ba, and Nd See page 499 for Explanation of Graphs
,,-,L.
10-44
10-5
,
10'
103 ENERGY IEVI
102
10’
I I I ,,,,,
102
I
I I 0,111 I
105
10’
102
103 ENERGY [EVI
104
105
10-S
0 I I I1111 I
103 ENERGY
10'
104
105 ENERGY
(EVI
528
Atomk
IEV)
Data and NW&W
Data TalSes. Vol. 2.3. No. 3. May 1933
T. TABATA
GRAPH
III.
et al.
Backscattering of H, D, and He Ions
RN and REvs Energy for He Ions on Gd, Er, Ta, and W See page 499 for Explanation of Graphs
IONS
ON GD 0
0
ON76 HI76
,o-41
10’
103
102
ENERGY
I
_
HE
IONS
104
105
[ EV 1
UN ER
529
Atomic
Data and Nuclear
Data Tables.
Vol. 28. No. 3. May 1983
T. TABATA
GRAPH
III.
et al.
Backscattering of H, D, and He Ions
RN and REvs Energy for He Ions on Pt, Au, Pb, and U See page 499 for Explanation of Graphs
HE 0
IONS
ON
PT
HE
HI76
0 q
HE IONS A EC79 0 HI76 v 0
ON
m 0 z cc10 w 5
flu
SC76 VEBO
ENERGY
(EV
_ -3-
IONS
ON
PB
RN76 HI76
HE
IONSONU
I 7 10-4
:
: z
I
530
Atomic
Dam and Nudea
Data Tablo% Vol. 28. No. 3. May 1983