Applied Soft Computing Journal 84 (2019) 105705
Contents lists available at ScienceDirect
Applied Soft Computing Journal journal homepage: www.elsevier.com/locate/asoc
Backtracking search heuristics for identification of electrical muscle stimulation models using Hammerstein structure Ammara Mehmood a , Aneela Zameer b , Naveed Ishtiaq Chaudhary c , ∗ Muhammad Asif Zahoor Raja d , a
Department Department c Department d Department b
of of of of
Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan Computer and Information Sciences, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan Electrical Engineering, International Islamic University, Islamabad, Pakistan Electrical and Computer Engineering, COMSATS University Islamabad, Attock Campus, Attock 43600, Pakistan
article
info
Article history: Received 18 June 2018 Received in revised form 7 July 2019 Accepted 2 August 2019 Available online 19 August 2019 Keywords: Electrical muscle stimulation Parameter estimation Hammerstein systems Backtracking search optimization Heuristic computing
a b s t r a c t The electrical muscle stimulation models (EMSMs) are effectively described through Hammerstein structure and are used to restore the functionality of paralyzed muscles after spinal cord injury (SCI). In the present study, global search efficacy of evolutionary computing paradigm through backtracking search algorithm (BSA) is exploited for parameter estimation of EMSMs. The approximation theory in mean squared error sense is used for the construction of a merit function for EMSMs based on deviation between optimal and approximated parameters. Variants of BSA are designed based on memory size and population dynamics for the minimization problem of EMSMs having cubic spline as well as sigmoidal nonlinearities. Comparative studies by means of rigorous statistics establish the worth of scheme for effective, accurate, reliable, robust and stable identification of EMSMs in rehabilitation scenarios of SCI. © 2019 Elsevier B.V. All rights reserved.
1. Introduction The volitional activity of muscle is affected from spinal cord injury (SCI) and causes the reduction in the cross-sectional area of the muscle by almost 45% in the first few weeks of SCI [1]. The persons suffering from SCI experience twice more lifetime fracture risk than non-SCI individuals [2]. In order to prevent post SCI atrophy, i.e., to stop the gradual decline in the effectiveness of muscle after SCI, rehabilitation interventions are required. After SCI, electrical muscle stimulation (EMS) is an effective scheme that induces muscle hypertrophy, i.e., an increase in muscle mass and cross-sectional area, improves torque output and combats fatigue [3–5]. EMS is also useful for restoration of functional tasks such as standing and reaching. The countless applications of electrical stimulation for rehabilitation of SCI individuals [3–6] motivated the researchers to design control systems with real-time adjustment of the stimulus parameters for accommodating the changes in the muscle output. In order to effectively adapt the stimulus parameters in real-time situation, the mathematical models are required to identify the muscle torque output. The research community has ∗ Corresponding author. E-mail addresses:
[email protected] (A. Mehmood),
[email protected] (A. Zameer),
[email protected] (N.I. Chaudhary),
[email protected] (M.A.Z. Raja). https://doi.org/10.1016/j.asoc.2019.105705 1568-4946/© 2019 Elsevier B.V. All rights reserved.
proposed different models for muscle [7–9] and investigation has been carried out to model muscle dynamics with blockoriented Hammerstein–Wiener structures [10–12]. In a detailed study conducted at the rehabilitation center of the Southampton university, it was concluded that Hammerstein control autoregressive (H-CAR) structure is an effective model for paralyzed muscle dynamics under electrical stimulus conditions [12–14]. Hammerstein model consists of two blocks, first block corresponds to nonlinearity of the system and followed by a second block that represents the linear characteristics. In case of EMS, the nonlinear block represents the isometric recruitment curve, i.e., the static gain relation between the activation level of stimulus and the output torque, when the muscle is at fixed length. While the linear block represents EMS dynamic response [14]. After muscle modeling, the next step is to estimate the parameters of Hammerstein structure representing EMS [12]. Research community has growing interest to develop efficient methodologies for parameter estimation of nonlinear systems [15–17] in particular represented with Hammerstein structure. Ding contributed significantly for Hammerstein system identification and developed various stochastic gradient and least squares strategies based on hierarchical principle, multi innovation theory, auxiliary model, parameter separation idea and decomposition technique [18–24]. Recently, fractional calculus based adaptive algorithms were successfully applied to parameter
2
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
Fig. 1. Workflow diagram of proposed study.
identification of Hammerstein systems [25–30]. All these deterministic paradigms have their own perks, applicability and limitations while the stochastic procedures based on global search strength of genetic algorithms, particle swarm optimization, differential evolution, cuckoo search, and gravitational search were also exploited for parameter estimation of Hammerstein systems [31–38] to overcome the limitations of deterministic solver for getting stuck in a local minimum rather more frequently. Stochastic optimization solvers based on artificial intelligence looks promising to explore for accurate reliable and robust solution of the problems arising in nonlinear optics, nanotechnology, astrophysics, plasma physics, atomic physics, electrical conducting solids, bioinformatics, power, and economics [39–47] and reference cited therein. As per our investigations, the recently
proposed stochastics paradigm based on backtracking search optimization algorithm (BSA) has yet not exploited for parameter estimation of nonlinear Hammerstein systems since its introduction by Civicioglu in 2013 [48]. The brilliant performance of BSA is well established over other counterparts for number of applications arising in spectrum of fields such as parameter estimation of photovoltaic models [49], flow shop scheduling problem [50], community detection in complex networks [51], active noise control [52], optimization of controller for induction motors [53], non-convex economic dispatch problems [54], optimal design of power system stabilizers [55], economic emission dispatch problems [56], automatic generation control systems [57], optimization of model for active earth pressure on retaining wall
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
3
Fig. 2. Process flow diagram of standard backtracking search optimization algorithm.
supporting c-Φ backfill [58], stiff constrained optimization problem [59], optimal control problems [60], fed-batch fermentation processes [61] and hydroelectric generators [62]. These are the motivating factors for the authors to explore in estimation of Hammerstein parameters representing the scenarios of EMS through global search efficacy of BSA. The highlights of the contributions in terms of salient features are briefly described as follows:
• Novel application of recently introduced evolutionary computing paradigms based on variants of BSA for accurate, reliable and robust parameter estimation of electrical muscle stimulation model represented through Hammerstein structure. • The population dynamics and memory size of BSA is exploited for design of the variants and the eminence of the proposed scheme is to provide reasonably correct results without estimation of the redundant parameters and equally robust for the low and high noise scenarios of the EMS system. • The performance of the designed methodologies is verified and validated for equally virtuous outcomes for different forms of nonlinearity in first block of the Hammerstein structure based on polynomial, cubic spline and sigmoid type functions. • The consistency of the worthy performance for the variants of BSA is endorsed through multiple trials based statistics in terms of local and global performance measures on accuracy and complexity. Remaining paper is organized as follows: the proposed design methodology for mathematical formulation of EMS system and its
optimization mechanism based on BSA is presented in Section 2; in Section 3, performance metrics to evaluate the performance of the proposed method are presented; in Section 4, discussion on the simulation results for single best run as well as on statistics through large dataset are provided through single and supporting objective based fitness functions; while conclusions are listed in the last section. 2. Design methodology Proposed methodology consists of two parts; in the first part, an overview of EMS system along with development of the cost function is presented, while in the second part, optimization procedure of BSA is described for parameter estimation of EMSM. The process workflow diagram of the proposed methodology is shown graphically in Fig. 1. 2.1. Electrical muscle stimulation modeling The dynamics of EMS are modeled through H-CAR structure and mathematically it is written as [12–14] y (t ) =
R (z ) S (z )
f (u (t )) +
1 S (z )
n (t ) ,
(1)
where u(t) and y(t) represent model input and output, respectively and n(t) is disturbance noise. R(z) and S(z) are the polynomials defined as R (z ) = r1 z −1 + r2 z −2 + · · · + rnr z −nr ,
(2)
S (z ) = 1 + s1 z −1 + s2 z −2 + · · · + sns z −ns
(3)
4
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
Fig. 3. Results for Iterative adaptation of merit function by the variants of BSAs along with analysis through different performance indices for the EMS system in Example 4.1.
m−2 ∑
Let f (u) is the nonlinear function of system input, representing the nonlinear activation dynamics of a muscle. In case of polynomial type nonlinearity, f (u) is described as
f (u) =
f (u) = β1 u + β2 u2 + β3 u3 + · · · + βm um ,
Assuming one knot in the cubic spline function at 150, Eq. (6) becomes
(4)
while the nonlinear function represented by sigmoid and cubic spline functions are respectively defined as [12]: f (u) = β1 .
eβ2 u − 1 eβ2 u + β3
βi |u − ui+1 |3 + βm−1 + βm u + βm+1 u2 + βm+2 u3 , (6)
i=1
f (u) = β1 |u − 150|3 + β2 + β3 u + β4 u2 + β5 u3 . The true parameter vector of EMS system is
,
(5)
θ = [θ l , θ n ] ,
(7)
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
5
Fig. 4. Comparison of the results based fitness against independent trials of BSAs through sorted, and zoomed illustrations for all three case studies of EMS systems.
where θ l and θ n are the parameters corresponding to linear and nonlinear characteristics of EMS respectively. The linear parameter vector θ l is defined as:
[ ] θ l = s1 , s2 , . . . , sns , r1 , r2 , . . . , rnr ,
(8)
and θ n corresponding to input nonlinear functions and in case of polynomial, sigmoid and spline type functions, θ n is respectively defined as [12]: [β1 , β2 , . . . , βm ] , θ n = [β1 , β2 , β3 ] , [β1 , β2 , . . . , β5 ]
{
polynomial type sigmoid type spline type.
functions are given, respectively, as:
( y (t ) = −
ns ∑
Using Eqs. (2)–(9) in (1), then the output of EMS model based on polynomial, sigmoid and cubic spline type input nonlinear
si z
i=1
y (t ) +
(n r ∑
) ri z
−i
( β1 u (t ) + β2 u2 (t )
i=1
) + · · · + βm u (t ) + n (t ) , (10) ( n ) (n )( ) s r β2 u(t) ∑ ∑ e −1 y (t ) = − si z −i y (t ) + ri z −i β1 . β u(t) e 2 + β3 m
i=1
(9)
) −i
i=1
+ n (t ) , ( n ) (n ) s r ∑ ∑ −i −i y (t ) = − si z y (t ) + ri z i=1
i=1
(11)
6
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
Fig. 5. Comparison of the results on the basis of MAEs for EMS system in Example 4.1.
×
) m−2 ( ∑ βi |u (t ) − ui+1 (t )|3 + βm−1 + + n (t ) . (12) βm u (t ) + βm+1 u2 (t ) + βm+2 u3 (t )
functions are updated as:
i=1
The finite output responses of EMS for K time instances based on polynomial, sigmoid and cubic spline type input nonlinear
( y (tk ) = −
ns ∑ i=1
) si z
−i
( y (tk ) +
nr ∑ i=1
) ri z
−i
( β1 u (tk ) + β2 u2 (tk )
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
7
Fig. 6. Comparison of the results on the basis of RMSE and TIC values through bars, histograms, and Stack bar illustrations for EMS system in Example 4.1.
) + · · · + βm um (tk ) + n (tk ) , ( n ) s ∑ y (tk ) = − si z −i y (tk ) i=1 nr
( +
∑ (
y (tk ) = −
ri z −i
)(
i=1 ns
∑ i=1
β1 .
y (tk ) +
nr ∑
K )2 1 ∑( y (tk ) − yˆ (tk ) , K
(17)
k=1
)
eβ2 u(tk ) + β3
(
mathematically it is written as
ε1 =
eβ2 u(tk ) − 1
) si z −i
(13)
+ n (tk ) ,
(14)
) ri z −i
i=1
) m−2 ( ∑ βi |u (tk ) − ui+1 (tk )|3 + βm−1 + × + n (tk ) , βm u (tk ) + βm+1 u2 (tk ) + βm+2 u3 (tk ) i=1
where K represents total number of time instances, y (tk ) is the kth output of EMS model as given in Eqs. (13)–(15), while the yˆ (tk ) is the kth output of estimated response based on approximate parameter vector θˆ with polynomial function based input as:
] [ ] [ θˆ = θˆ l , θˆ n = sˆ1 , sˆ2 , . . . , sˆns , rˆ1 , rˆ2 , . . . , rˆnr , βˆ 1 , βˆ 2 , . . . , βˆ m ,
(15) for k = 1, 2, . . ., K . Now intention is to derive the fitness function of EMS systems by exploiting the approximation theory in mean squared error sense. The fitness function ε for EMS model is constructed using the concept of supporting objective and is defined as the sum of two functions, one is dependent on the response of EMS model and second is based on the parameters of EMS system:
ε = ε1 + ε2 ,
(16)
The first error function ε1 is defined as a mean square difference between the estimated response and the desired output and
(18)
( yˆ (tk ) = −
)
ns
∑
sˆi z −i
( yˆ (tk ) +
i=1
)
nr
∑
rˆi z −i
( βˆ 1 u (tk ) + βˆ 2 u2 (tk )
i=1
) + · · · + βˆ m um (tk ) .
(19)
Similarly, the estimated response yˆ (tk ) with approximate parameter vector θˆ for sigmoid function based input is given as:
[ ] [ ] θˆ = θˆ l , θˆ n = sˆ1 , sˆ2 , . . . , sˆns , rˆ1 , rˆ2 , . . . , rˆnr , βˆ 1 , βˆ 2 , βˆ 3 , (20)
8
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
Fig. 7. Comparison of the results through adaptation of single objective based merit function for all six BSA variants of the EMS Example 4.1.
Fig. 8. Comparison of the results through adaptation of single objective based merit function for all six BSA variants of the EMS Example 4.2.
( yˆ (tk ) = −
ns ∑ i=1
) sˆi z
−i
( yˆ (tk ) +
nr ∑ i=1
)( rˆi z
−i
eβ2 u(tk ) − 1 ˆ
βˆ 1 .
eβˆ 2 u(tk ) + βˆ 3
) ,
Accordingly, the estimated response yˆ (tk ) with approximate parameter vector θˆ for spline function based input is given as:
(21)
[ ] [ ] θˆ = θˆ l , θˆ n = sˆ1 , sˆ2 , . . . , sˆns , rˆ1 , rˆ2 , . . . , rˆnr , βˆ 1 , βˆ 2 , . . . , βˆ m , (22)
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
9
Fig. 9. Comparison of the results through adaptation of single objective based merit function for all six BSA variants of the EMS Example 4.3. Table 1 Variants of backtracking search optimization algorithm. Method
Example 4.1
BSA-1 BSA-2 BSA-3 BSA-4 BSA-5 BSA-6
( yˆ (tk ) = −
ns ∑
Individuals
Generations
Individuals
Generations
40 40 40 20 40 60
200 400 600 200 200 200
40 40 40 10 40 60
1000 2000 3000 1000 1000 1000
40 40 40 20 40 60
500 750 1000 200 200 200
−i
( yˆ (tk ) +
nr ∑
) rˆi z
approximate parameter vector approaches its optimal, i.e., θˆ → θ . If only ε1 given in (17) is used for optimization of parameters in EMS model, then the desired response of EMS can be achieved but accuracy to obtain the desired parameters is vulnerable.
−i
i=1
i=1
) m−2 ( ∑ βˆ i |u (tk ) − ui+1 (tk )|3 + βˆ m−1 . × +βˆ m u (tk ) + βˆ m+1 u2 (tk ) + βˆ m+2 u3 (tk )
(23) 2.2. Optimization of parameters for EMSMs
i=1
The second error function ε2 is defined as a mean square deviation between the estimated and actual parameters of the system and mathematically it is expressed as:
ε2 =
N 1 ∑(
N
θn − θˆn
)2
,
(24)
n=1
where N is the total elements in the parameter vector, θn and θˆn be the nth entry of desired and estimated weights, respectively. In case of polynomial, sigmoid and cubic spline type input nonlinear functions, the parameter N = ns + nr + m, = ns + nr + 3 and = ns + nr + m, respectively. So, the fitness function (16) using Eqs. (17) and (24) is given as:
ε=
K N ( )2 )2 1 ∑ 1 ∑( y (tk ) − yˆ (tk ) + θn − θˆn . K N k=1
Example 4.3
Generations
) sˆi z
Example 4.2
Individuals
(25)
n=1
Now the requirements is to use the optimization techniques to solve the minimization problem (25) and find the appropriate parameters θˆ such that ε → 0, then the estimated response approach the actual response, i.e., yˆ → y, so accordingly, the
A brief introduction for training designed parameters through optimization of merit function (14) of EMS model is given here with the help of a metaheuristic optimization mechanism based on BSA. BSA belong to the class of evolutionary computational algorithms developed by Civicioglu [48] in 2013. BSA is modern stochastic global search technique, broadly employed to find the solution of nondifferentiable, nonlinear, and complex optimization problems. It has single control parameter and additional quality of possessing memory for providing search direction matrix. Trial population is generated with the help of three operators based on mutation, crossover and selection procedures. BSA has been widely applied to optimize real world problems in engineering and technology, i.e., antenna, robotics, wind speed prediction and load dispatch problem [63–66] and references cited therein. Effectiveness of BSA motivates authors to utilize the potentials of said evolutionary optimization procedure and its variants to find optimization variables of EMSMs. Generic flow graph of BSA is shown in Fig. 2, while the detailed stepwise procedural steps of BSA for EMSMs are illustrated in the pseudocode described in Algorithm 1.
10
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
11
Table 2 Performance comparison through results of statistics for EMS system in Example 4.1. Example
Variant
BSA-1
BSA-2
BSA-3
Noise
Model
Approximate parameter vector i=1
i=2
i=3
i=4
i=5
i=6
0.0012
Best Mean Worst
−2.0000 −1.9956 −1.9999
1.0002 0.9985 1.0153
0.0001 0.0028 −0.0264
6.8988 6.9047 6.9807
0.0372 0.0398 −0.0078
2389.70 2389.70 2389.59
Best Mean Worst
−1.9987 −1.9980 −1.9994
0.9945 1.0000 0.9908
−0.0013
0.0102
0.0023 −0.0562
6.8982 6.9010 6.9965
0.0423 0.0419 −0.0373
2389.70 2389.70 2389.63
0.1002
Best Mean Worst
−2.0000 −1.9979 −2.0000
0.9968 0.9210 0.7912
−0.0101 −0.0573 −0.1288
6.8976 6.9037 6.9741
0.0429 0.0839 0.1829
2389.70 2389.70 2389.64
0.0012
Best Mean Worst
−1.9985 −1.9985 −1.9981
0.9985 0.9985 0.9999
0.0022 0.0022 0.0025
6.8994 6.8994 6.8991
0.0410 0.0410 0.0408
2389.70 2389.70 2389.70
0.0102
Best Mean Worst
−1.9985 −1.9985 −2.0000
0.9985 0.9985 0.9986
0.0022 0.0022 0.0021
6.8994 6.8994 6.8995
0.0410 0.0410 0.0410
2389.70 2389.70 2389.70
0.1002
Best Mean Worst
−1.9985 −1.9998 −2.0000
0.9984 0.8162 0.7992
−0.0009 −0.1341 −0.1686
6.8995 6.9027 6.9023
0.0411 0.1477 0.1751
2389.70 2389.70 2389.71
0.0012
Best Mean Worst
−1.9985 −1.9985 −2.0000
0.9985 0.9985 0.9985
0.0022 0.0022 0.0022
6.8994 6.8994 6.8994
0.0410 0.0410 0.0410
2389.70 2389.70 2389.70
0.0102
Best Mean Worst
−1.9985 −1.9985 −2.0000
0.9985 0.9985 0.9985
0.0022 0.0022 0.0022
6.8994 6.8994 6.8994
0.0410 0.0410 0.0410
2389.70 2389.70 2389.70
0.1002
Best Mean Worst
−1.9986 −1.9999 −2.0000
0.9984 0.8037 0.8178
−0.0010 −0.1422 −0.1625
6.8994 6.9024 6.9038
0.0411 0.1558 0.2247
2389.70 2389.70 2389.70
0.0012
Best Mean Worst
−1.9993 −1.9945 −1.9165
0.9920 0.9986 1.0039
0.0013 0.0037 0.0795
6.8969 6.9023 7.0000
0.0446 0.0358 0.0546
2389.69 2389.70 2389.72
Best Mean Worst
−1.9990 −1.9925 −1.7931
0.9996 0.9955 0.8542
0.0102
0.0102
−0.0016 −0.0141
6.9000 6.9043 7.0000
0.0409 0.0429 0.0724
2389.70 2389.70 2389.70
0.1002
Best Mean Worst
−2.0000 −1.9979 −2.0000
0.9981 0.9460 0.8528
−0.0030 −0.0363 −0.2430
6.8963 6.9074 6.9526
0.0437 0.0727 0.1813
2389.70 2389.70 2389.61
0.0012
Best Mean Worst
−1.9996 −1.9980 −1.9892
0.9981 0.9987 0.9378
0.0012 0.0043 0.0456
6.9035 6.8998 6.9294
0.0400 0.0373 −0.0320
2389.70 2389.70 2389.68
Best Mean Worst
−2.0000 −1.9986 −1.9976
0.9973 0.9972 1.0141
−0.0002
0.0102
6.9007 6.9024 7.0000
0.0398 0.0443 0.0071
2389.70 2389.70 2389.71
0.1002
Best Mean Worst
−2.0000 −1.9980 −2.0000
0.9961 0.9084 0.7937
−0.0596 0.1231
6.9000 6.9013 6.9734
0.0441 0.0893 −0.1438
2389.71 2389.70 2389.80
0.0012
Best Mean Worst
−1.9996 −1.9981 −2.0000
0.9989 0.9964 1.0373
0.0033 0.0024 −0.0056
6.8983 6.8979 6.8792
0.0393 0.0449 0.1256
2389.69 2389.70 2389.72
0.0102
Best Mean Worst
−1.9992 −1.9979 −2.0000
0.9993 0.9971 0.9972
0.0043 0.0014 0.0915
6.8988 6.9014 6.8425
0.0415 0.0413 −0.0054
2389.69 2389.70 2389.71
Best Mean Worst
−1.9990 −1.9987 −2.0000
0.9959 0.9030 0.8221
0.0071
0.1002
−0.0711 −0.1961
6.8947 6.8997 6.8864
0.0385 0.0952 0.1779
2389.71 2389.70 2389.76
−1.9985
0.9985
0.0022
6.8994
0.0410
2389.70
4.1
BSA-4
BSA-5
BSA-6
True values
3. Performance indices The four performance measuring operators for the parameter vector θ on the basis of mean absolute error (MAEθ ), normalizing error function, δθ , root of mean squared error (RMSEθ ), and Thiel’s inequality coefficient (TICθ ) are used to evaluate performance the designed algorithms for parameter estimation of EMS systems. The formulae of these indices are defined in this section.
0.0014 −0.0692 0.0048
The parameter MAEθ is mathematically written as:
MAEθ =
m ⏐ ⏐ 1 ∑⏐ ⏐ ⏐θi − θˆi ⏐ , m
(26)
i=1
where θi is the ith entry of true parameter vector θ while θˆi is its estimation.
12
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
The parameter RMSEθ is mathematically defined as:
m 1 ∑ (θi − θˆi )2 . RMSEθ = √ m
(27)
i=1
Normalize error function based on mean weigh deviation (MWDθ ), δθ is given as:
δθ =
ˆ θ − θ
,
∥θ∥
(28)
where ∥ ∥ is the standard L2 norm. Thiel’s Inequality Coefficient (TICθ ) is formulized as:
⎛ ⎞ m ( m m )2 / 1 ∑ 1 ∑ 1 ∑ ⎝√ TICθ = √ θi − θˆi θi2 + √ θˆi2 ⎠. m
m
i=1
m
i=1
Accordingly, the global version of MAEθ (GMAEθ ) is formulated as:
GMAEθ =
1 ∑ IR
IR
(MAEθ )r =
r =1
1 ∑ IR
(
r =1
i=1
(30)
GRMSE θ
IR
IR
r =1
m
r =1
i=1
GTIC θ
r
IR
IR
r =1
r =1
m
i=1
m
i=1
εθ =
=
IR
IR
r =1
r
K N ( )2 )2 1 ∑ 1 ∑( y (tk ) − yˆ (tk ) + θn − θˆn K N k=1
e0.0410u(t −1) −1
e0.0410u(t −1) +2389.7
]
,
(34)
+ n (t ) ,
The supporting objective based fitness function for the case study is developed using (25) as:
ε=
(εθ )r
(
e0.0410u(t ) − 1
θ = [s1 , s2 , r1 , β1 , β2 , β3 ] , θ = [−1.9985, 0.9985, 0.0022, 6.8994, 0.0410, 2389.70] .
(32)
r =1
IR 1 ∑
= 6.8994.
20 6 ( )2 )2 1 ∑ 1 ∑( y (tk ) − yˆ (tk ) + θ k − θˆ k . 20 6
(35)
k=1
The fitness function without using supporting objective for the case study is developed using (17) as:
i=1
The mean of fitness ε θ based on total number of runs IR is formulized as: IR 1 ∑
eβ2 u(t ) − 1
k=1
⎞⎞ ⎛ m m 1 ∑ 1 ∑ ⎝√ θi2 + √ θˆi2 ⎠⎠ . m
n (t ) ,
eβ2 u(t ) + β3 e0.0410u(t ) + 2389.70 y(t) = − [−1.9985y (t − 1) + 0.9985y (t − 2)]
ε=
⎛ m ( )2 / ∑ ∑ ∑ 1 1 ⎝√ 1 = θi − θˆi (TICθ )r = IR
1 S (z )
R (z ) = r1 z −1 = 0.0022z −1 ,
Global TICθ (GTIC θ ) is formulated as: IR
f (u (t )) +
[ + 0.0022 6.8994 ×
⎞ ⎛ m ∑ 1 ∑ 1 1 ∑ ⎝√ = (θi − θˆi )2 ⎠ . (31) (RMSEθ )r = IR
S (z )
S (z ) = 1 + s1 z −1 + s2 z −2 = 1 − 1.9985z −1 + 0.9985z −2 ,
r
where, symbol IR represents the total independent runs. The global RMSEθ (GRMSE θ ) is mathematically written as: IR
R (z )
f (u (t )) = β1 .
) m ⏐ ⏐ 1 ∑⏐ ⏐ ⏐θi − θˆi ⏐ ,
m
Example 4.1 (EMS System with Sigmoid Function Based Input Nonlinearity). The parameters considered for the problem are taken from the data of experimental study conducted in [12], where the linear dynamics of EMS are model through transfer function based on one zero and two poles, while nonlinear characteristics are given by sigmoid function as per following details: y (t ) =
i=1
(29)
IR
individuals as per settings listed in Table 1 while the fixed or default parameters of each algorithm are given Algorithm 1 for BSA. Repeat the procedure given in Algorithm 1 for all six variants of BSA. Similarly, repeat Algorithm 1 for hundred times in order to conduct statistical analyses. In all three EMSMs, the performance of each variant of BSA is evaluated for three noise variances, i.e., σ 2 = 0.0012 , 0.012 , and 0.12 , for effective inferences.
n=1
) . r
(33)
20 )2 1 ∑( y (tk ) − yˆ (tk ) . 20
(36)
k=1
Example 4.2 (EMS System with Polynomial Function Based Input Nonlinearity). The linear dynamics of EMS in the said system are given through transfer function with two zeros and two poles, while the nonlinear characteristics are model with polynomial type function as given below [12]: y (t ) =
R (z ) S (z )
f (u (t )) +
1 S (z )
n (t ) ,
In the ideal scenarios of the modeling, magnitudes of all these indicators, i.e., MAEθ , δθ εθ , TICθ RMSEθ , and TICθ , along with global version should be zero.
S (z ) = 1 + s1 z −1 + s2 z −2 = 1 − z −1 + 0.8z −2 ,
4. Results and discussion
= 2.8u (t ) − 4.8u2 (t ) + 5.7u3 (t ) , y (t ) = − [−1.00y (t − 1) + 0.8y (t − 2)] + [(1) (2.8)] u (t − 1)
In this section, simulation results are presented for three problems of EMS model identification based on different forms of nonlinearity using six variants of BSA. The performance of BSA is studied using both single and supporting objective based fitness functions given in (17) and (25) respectively. 4.1. Experimental set up The variants of BSA-1 to BSA-6 are designed based on memory size, i.e., generations, and population dynamics, i.e., set of
R (z ) = r1 z −1 + r2 z −2 = z −1 + 0.6z −2 , f (u (t )) = β1 u (t ) + β2 u2 (t ) + β3 u3 (t )
+ [(1) (−4.8)] u2 (t − 1) + [(1) (5.7)] u3 (t − 1) + [(0.6) (2.8)] u (t − 2) + [(0.6) (−4.8)] u2 (t − 2) + [(0.6) (5.7)] u3 (t − 2) + n (t ) , θ = [s1 , s2 , r1 , r2 , β1 , β2 , β3 ] , θ = [−1.00, 0.80, 1.00, 0.60, 2.80, −4.80, 5.70] . (37)
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
The fitness function of the problem through supporting objective using (25) is given as:
ε=
20 7 ( )2 )2 1 ∑ 1 ∑( y (tk ) − yˆ (tk ) + θ k − θˆ k . 20 7 k=1
(38)
k=1
The fitness function of the problem without using supporting objective using (17) is given as:
ε=
20 )2 1 ∑( y (tk ) − yˆ (tk ) . 20
(39)
k=1
Example 4.3 (EMS System with Cubic Spline Function Based Input Nonlinearity). The parameters considered in the example are based on experimental studies reported in [12], where the linear dynamics of the system are given through two zeros and two poles based transfer function, while the nonlinear characteristics are model with cubic spline function having one knot at 150 as: y (t ) =
R(z ) f S (z )
(u (t )) +
S (z ) = 1 + s1 z
−1
1 n S (z ) −2
+ s2 z
(t ) ,
= 1 − 1.094z −1 + 0.109z −2 ,
R (z ) = r1 z −1 + r2 z −2 = z −1 + 0.249z −2 , f (u (t )) = β1 + β2 u (t ) + β3 u2 (t ) + β4 u3 (t ) + β5 ⏐u3 (t ) − 150⏐ , −6 2 f (u (t )) = −0.028 + 1.90 × 10−3 u (t ) − 7.83 × ⏐ 10 u (t ) ⏐ −8 3 −8 ⏐ 3 +1.78 × 10 u (t ) + 2.36 × 10 u (t ) − 150⏐ ,
⏐
⏐
(40) y (t ) = − [−1.094y (t − 1) + 0.109y (t − 2)] + [(1) (−0.028)]
[ ( )] + (1) 1.90 × 10−3 u (t − 1) [ ( )] + (1) −7.83 × 10−6 u2 (t − 1) [ ( )] + (1) 1.78 × 10−8 u3 (t − 1) ⏐ [ ( )] ⏐ + (1) 2.36 × 10−8 ⏐u3 (t − 1) − 150⏐ [ ( )] + [(0.249) (−0.028)] + (0.249) 1.90 × 10−3 u (t − 1) [ ( )] + (0.249) −7.83 × 10−6 u2 (t − 1) [ ( )] + (0.249) 1.78 × 10−8 u3 (t − 1) ⏐ [ ( )] ⏐ + (0.249) 2.36 × 10−8 ⏐u3 (t − 1) − 150⏐ + n (t ) , θ = [s1 , s2 , r1 , r2 , β1 , β2 , β3 , β4 , β5 ] , [ ] −1.094, 0.109, 1.00, −0.249, −0.028, θ= . 1.90 × 10−3 , −7.83 × 10−6 , 1.78 × 10−8 , 2.36 × 10−8 The fitness function for the case study using (25) is formulated as:
ε=
20 9 ( )2 )2 1 ∑ 1 ∑( y (tk ) − yˆ (tk ) + θ k − θˆ k . 20 9 k=1
(41)
k=1
The fitness function for the case study using (17) is formulated as:
ε=
20 )2 1 ∑( y (tk ) − yˆ (tk ) . 20
(42)
k=1
4.2. Analysis through multi objective for EMS The proposed heuristic algorithm based on BSA together with all six variants has been operated on 100 independent trials to optimize the fitness functions of Examples 4.1–4.3 given in (35), (38) and (41) respectively, in case of three different noise levels. The results of BSA-1 to 4 in term of learning curves, i.e., convergence plots of fitness with iterations, are shown graphically in Fig. 3(a–d) for Example 4.1, while in case of Examples 4.2 and 4.3, the respective results are given in Appendix Figures A1(a–d)
13
and Figures A2 (a–d), respectively, for all three noise variances σ 2 = 0.0012 , 0.012 , and 0.12 . In all these figures, it is found that for all three levels of noise variances, all the variants of BSA are convergent but the accuracy and convergence of the BSA3 is much superior than all other schemes for each EMSM. The magnitudes of performance operators of BSA-1 to BSA-4 in terms of MAEθ , RMSEθ and MWDθ are calculated using Eqs. (26), (27) and (28), respectively, and are illustrated graphically in Fig. 3(e– h), for Example 4.1, while in case of Examples 4.2 and 4.3, the respective results are presented in Appendix Figures A1(e–h), and A2(e–h), respectively. Generally, near-optimal value of all three performance measures achieved, but level of magnitudes of these metrics lie in the order of 10−02 to 10−12 , 10−04 to 10−14 and 10−04 to 10−12 , which further establish the consistency correctness of the proposed schemes. Besides this comparison, absolute errors (AEs) for all three EMS systems for each noise variation are shown graphically for BSAs in Fig. 3(i–l) for Example 4.1, while in case of Examples 4.2 and 4.3, the respective results are presented in Appendix Figures A1(i–l), and Figures A2(i–l), respectively. Generally, the AEs are found around 10−08 , 10−06 , and 10−04 using σ 2 = 0.0012 , 0.012 , and 0.12 , respectively, for Example 4.1, 10−08 , 10−05 , and 10−03 for σ 2 = 0.0012 , 0.012 , and 0.12 , respectively, for Example 4.2, and respective AEs are 10−07 , 10−06 , and 10−04 for σ 2 = 0.0012 , 0.012 , and 0.12 for Example 4.3 in case of BSA-3. The values of the performance indices in terms of accuracy measures of fitness ε , normalized error function δθ , MAEθ , RMSEθ , and TICθ , as defined in the last section, are calculated for the run of variants of BSA that gives the best fitness and results are shown in Table 2 together with the complexity measures based on time, generations and merit function evaluations. It is quite clear that the MWDθ , δθ values lie close to 10−09 to 10−10 , 10−07 to 10−08 , and 10−05 to 10−06 for noise variances σ 2 = 0.0012 , 0.012 , and 0.12 , respectively, in case of BSA-3 for EMS model in Example 4.1, while for other two case studies of EMS systems, the respective values lie around 10−09 to 10−08 , 10−05 to 10−04 , and 10−02 to 10−03 and 10−07 to 10−04 , 10−05 to 10−04 , and 10−02 to 10−03 , respectively. Generally, the reasonable magnitudes of performance metrics establish the consistency of the six variants of designed BSAs for each EMS systems, however, the BSA-3 outperforms by means of achieving the superior values of all performance indices from the rest of the algorithms for each scenario of all three case studies of EMSMs.(see Fig. 6). In order to establish efficacy, reliability and robustness of the schemes, the designed algorithms are evaluated for 100 trials in each case study of EMSM. The results of statistical observations through supporting objective based fitness are presented in the sorted and zoomed illustrations in Fig. 4. The comparative study based on the performance metrics of MAEθ , RMSEθ and TICθ are presented graphically in Fig. 5 for Example 4.1, while, in case of Examples 4.2 and 4.3, the respective results are given in Appendix Figure A3 and Figure A4 respectively. The MAEs for Examples 4.1–4.3, are illustrated graphically on semi-logarithmic scale to decipher small changes and are shown in Figures 5(a– d) in case of Example 4.1, while for Examples 4.2 and 4.3, the respective results are given in Appendix Figures A3(a–d), and Figures A4(a–d), respectively. The results reveal that the values of MAEs for all three case studies lie in the range of 10−01 to 10−02 , 10−01 to 10−02 and 10−02 to 10−04 in case of BSA-4. For further accuracy analysis of the designed variants of BSA, the histogram plots are presented and results on the basis of RMSEs for all three EMSMs are shown in Figures 6(a–h), Appendix Figures A3(e–l), and Figures A4(e–l), respectively. Moreover, TIC magnitudes of all six variants of BSA for all three problems are shown as stacked bar plots in Figures 6(i–j), Appendix Figures A3(m–n), and A4 10(m–n), respectively. All these graphical illustrations validate
14
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
Table 3 Performance comparison through results of statistics for EMS system in Example 4.2. Example
Variant
BSA-1
BSA-2
BSA-3
Noise
BSA-5
BSA-6
True values
Approximate parameter vector i=1
i=2
i=3
i=4
i=5
i=6
i=7
0.0012
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 1.00
2.80 2.80 2.79
−4.80 −4.80 −4.81
5.70 5.70 5.72
0.60 0.60 0.60
0.0102
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 0.99
2.80 2.80 2.81
−4.80 −4.80 −4.82
5.70 5.70 5.73
0.60 0.60 0.60
0.1002
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 1.00
2.79 2.79 2.79
−4.80 −4.80 −4.81
5.71 5.71 5.72
0.60 0.60 0.60
0.0012
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 1.00
2.80 2.80 2.80
−4.80 −4.80 −4.80
5.70 5.70 5.70
0.60 0.60 0.60
0.0102
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 1.00
2.80 2.80 2.80
−4.80 −4.80 −4.80
5.70 5.70 5.70
0.60 0.60 0.60
0.1002
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 1.00
2.79 2.79 2.79
−4.80 −4.80 −4.80
5.71 5.71 5.71
0.60 0.60 0.60
0.0012
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 1.00
2.80 2.80 2.80
−4.80 −4.80 −4.80
5.70 5.70 5.70
0.60 0.60 0.60
0.0102
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 1.00
2.80 2.80 2.80
−4.80 −4.80 −4.80
5.70 5.70 5.70
0.60 0.60 0.60
0.1002
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 1.00
2.79 2.79 2.79
−4.80 −4.80 −4.80
5.71 5.71 5.71
0.60 0.60 0.60
0.0012
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 0.96
2.80 2.81 2.85
−4.80 −4.82 −5.00
5.70 5.72 6.00
0.60 0.60 0.58
0.0102
Best Mean Worst
−1.00 −1.00 −0.99
0.80 0.80 0.81
1.00 1.00 1.00
2.80 2.80 2.82
−4.80 −4.79 −3.88
5.70 5.68 4.07
0.60 0.61 1.00
0.1002
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 0.96
2.80 2.80 2.84
−4.80 −4.81 −4.99
5.70 5.72 6.00
0.60 0.60 0.58
0.0012
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 1.00
2.80 2.80 2.81
−4.80 −4.80 −4.82
5.70 5.70 5.72
0.60 0.60 0.60
0.0102
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 1.00
2.80 2.80 2.80
−4.80 −4.80 −4.82
5.70 5.70 5.73
0.60 0.60 0.60
0.1002
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 1.00
2.79 2.79 2.79
−4.80 −4.80 −4.81
5.71 5.71 5.72
0.60 0.60 0.60
0.0012
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 1.00
2.80 2.80 2.81
−4.80 −4.80 −4.81
5.70 5.70 5.72
0.60 0.60 0.60
0.0102
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 1.00
2.80 2.80 2.80
−4.80 −4.80 −4.81
5.70 5.70 5.71
0.60 0.60 0.60
0.1002
Best Mean Worst
−1.00 −1.00 −1.00
0.80 0.80 0.80
1.00 1.00 1.00
2.79 2.79 2.79
−4.80 −4.80 −4.80
5.70 5.71 5.72
0.60 0.60 0.60
−1.00
0.80
1.00
2.80
−4.80
5.70
0.60
4.2
BSA-4
Model
the consistent accuracy of all the six variants of BSA for accurate, reliable and robust parameter estimation of EMS systems for all three noise variations, however, the BSA-3 outperforms the rest of the schemes. Further analysis of accuracy level is carried out for 100 independent runs of different variants of BSA through statistical operators based on the best, mean, and worst magnitudes of fitness forσ 2 = 0.0012 , 0.012 , and 0.12 in EMSMs. Statistical results for all six variants of BSA are provided in Tables 3, 4 and 5 for Examples 4.1, 4.2 and 4.3, respectively, along with the true
parameters. With the rise in noise level σ 2 = 0.0012 –0.12 dropoff in the performance is observed for all six variants of BSA in each scenario, however, all six variants are still applicable for optimizing EMS parameters with reasonable accuracy. Analysis on the performance proceeds further by determining the global performance indices as defined in Eqs. (30), (31), (32), and (33), respectively. Results on 100 runs of all six variants of BSA are listed in Table 6 for all three EMSMs in case of all three noise scenarios. Generally, the accuracy levels for global indices in terms of mean fitness lie around 10−02 to 10−09 in case of
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
15
Table 4 Performance comparison through results of statistics for EMS system in Example 4.3. Example
Variant
BSA-1
BSA-2
BSA-3
Noise
BSA-5
BSA-6
True values
Approximate parameter vector i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9
0.0012
Best Mean Worst
−1.094 −1.094 −1.096
0.109 0.109 0.107
1.000 1.000 0.998
−0.249 −0.249 −0.251
−0.028 −0.028 −0.030
1.97E−03 1.91E−03 2.01E−03
−9.32E−06 −1.82E−06 −1.00E−05
−1.00E−05 −1.63E−06 4.69E−06
2.36E−08 2.36E−08 2.38E−08
0.0102
Best Mean Worst
−1.094 −1.094 −1.093
0.109 0.109 0.108
1.000 1.000 1.000
−0.249 −0.249 −0.240
−0.028 −0.028 −0.018
1.89E−03 1.94E−03 1.86E−03
3.59E−06 −1.30E−06 3.82E−06
3.17E−06 −1.36E−06 6.50E−06
2.37E−08 2.36E−08 2.06E−08
0.1002
Best Mean Worst
−1.092 −1.091 −1.088
0.112 0.112 0.112
1.000 1.000 1.000
−0.249 −0.249 −0.247
−0.028 −0.028 −0.032
2.73E−03 2.83E−03 3.16E−03
1.80E−06 3.85E−06 1.00E−05
1.00E−05 9.00E−06 7.27E−06
2.43E−08 2.46E−08 2.63E−08
0.0012
Best Mean Worst
−1.094 −1.094 −1.094
0.109 0.109 0.109
1.000 1.000 1.000
−0.249 −0.249 −0.249
−0.028 −0.028 −0.029
1.90E−03 1.90E−03 1.95E−03
−7.04E−06 −3.05E−06 3.00E−06
−5.63E−07 −1.87E−06 −1.36E−06
2.36E−08 2.36E−08 2.38E−08
0.0102
Best Mean Worst
−1.094 −1.094 −1.093
0.109 0.109 0.109
1.000 1.000 1.000
−0.249 −0.249 −0.249
−0.028 −0.028 −0.029
1.90E−03 1.90E−03 1.78E−03
1.57E−06 −5.48E−06 1.00E−05
6.24E−07 4.85E−06 −1.00E−05
2.36E−08 2.36E−08 2.40E−08
0.1002
Best Mean Worst
−1.091 −1.091 −1.091
0.112 0.112 0.112
1.000 1.000 1.000
−0.249 −0.249 −0.249
−0.028 −0.028 −0.028
2.79E−03 2.79E−03 2.88E−03
9.83E−06 9.75E−06 8.89E−06
1.00E−05 9.99E−06 1.00E−05
2.45E−08 2.45E−08 2.47E−08
0.0012
Best Mean Worst
−1.094 −1.094 −1.094
0.109 0.109 0.109
1.000 1.000 1.000
−0.249 −0.249 −0.249
−0.028 −0.028 −0.028
1.90E−03 1.90E−03 1.90E−03
−7.98E−06 −7.09E−06 −6.44E−07
1.37E−07 −4.32E−07 −2.59E−06
2.36E−08 2.36E−08 2.36E−08
0.0102
Best Mean Worst
−1.094 −1.094 −1.094
0.109 0.109 0.109
1.000 1.000 1.000
−0.249 −0.249 −0.249
−0.028 −0.028 −0.028
1.89E−03 1.89E−03 1.89E−03
−1.00E−05 −9.96E−06 −1.00E−05
1.00E−05 9.94E−06 9.01E−06
2.36E−08 2.36E−08 2.36E−08
0.1002
Best Mean Worst
−1.091 −1.091 −1.091
0.112 0.112 0.112
1.000 1.000 1.000
−0.249 −0.249 −0.249
−0.028 −0.028 −0.028
2.79E−03 2.79E−03 2.79E−03
1.00E−05 1.00E−05 1.00E−05
1.00E−05 1.00E−05 1.00E−05
2.45E−08 2.45E−08 2.45E−08
0.0012
Best Mean Worst
−1.076 −1.090 −1.194
0.131 0.103 0.089
1.000 0.954 0.524
−0.261 −0.279 −0.468
−0.029 −0.015 −0.111
1.80E−03 3.26E−03 7.16E−03
−1.90E−06 −3.61E−07 5.50E−06
−8.82E−06 −1.11E−06 −6.86E−06
3.18E−08 1.87E−08 −9.23E−08
0.0102
Best Mean Worst
−1.105 −1.102 −1.134
0.110 0.104 0.143
0.993 0.956 0.694
−0.248 −0.297 −0.646
−0.041 −0.024 −0.031
3.25E−03 3.15E−03 1.70E−03
1.00E−05 −1.09E−06 −3.96E−07
9.81E−06 −1.90E−08 1.00E−05
2.17E−08 2.52E−08 2.79E−07
0.1002
Best Mean Worst
−1.095 −1.096 −1.149
0.136 0.131 0.241
1.000 0.956 0.637
−0.262 −0.289 −0.577
−0.028 −0.031 −0.033
8.72E−03 3.66E−03 1.00E−02
−7.70E−06 −1.80E−06 9.18E−06
−5.25E−06 2.75E−07 1.00E−05
3.42E−08 4.20E−08 5.13E−07
0.0012
Best Mean Worst
−1.097 −1.095 −1.143
0.129 0.113 0.137
1.000 0.988 1.000
−0.268 −0.256 −0.450
−0.030 −0.028 −0.071
1.25E−03 2.75E−03 2.85E−03
5.94E−06 −8.49E−07 1.00E−05
−4.07E−06 −1.16E−06 1.00E−05
2.68E−08 2.45E−08 2.92E−08
0.0102
Best Mean Worst
−1.093 −1.097 −0.982
0.101 0.107 0.189
1.000 0.988 0.995
−0.255 −0.260 −0.399
−0.033 −0.028 −0.077
2.76E−03 2.92E−03 5.21E−03
4.00E−06 −1.38E−07 −1.00E−05
3.18E−06 −2.95E−07 1.00E−05
2.35E−08 2.40E−08 8.01E−08
0.1002
Best Mean Worst
−1.082 −1.095 −1.163
0.104 0.114 0.134
1.000 0.988 1.000
−0.247 −0.255 −0.340
−0.014 −0.029 0.042
8.35E−04 3.50E−03 0.00E+00
−2.42E−06 −7.41E−09 −5.11E−06
3.77E−06 1.67E−06 −3.80E−06
1.92E−08 2.46E−08 −1.22E−08
0.0012
Best Mean Worst
−1.083 −1.101 −1.064
0.128 0.115 0.088
1.000 0.990 0.990
−0.249 −0.254 −0.356
−0.029 −0.025 −0.160
7.84E−04 2.85E−03 7.44E−03
−9.36E−06 −1.14E−06 9.88E−06
−1.01E−06 −1.11E−06 1.00E−05
3.58E−08 2.31E−08 7.50E−08
0.0102
Best Mean Worst
−1.095 −1.096 −1.035
0.113 0.110 0.088
0.996 0.992 0.984
−0.241 −0.253 −0.390
−0.028 −0.034
6.79E−03 2.84E−03 8.46E−04
8.31E−06 −3.13E−07 −9.57E−06
−6.99E−06 −2.18E−07 −1.00E−05
2.57E−08 2.53E−08 2.35E−08
0.1002
Best Mean Worst
−1.095 −1.096 −1.140
0.111 0.117 0.153
1.000 0.993 0.948
−0.254 −0.253 −0.280
0.052
3.21E−03 3.56E−03 0.00E+00
1.00E−05 −7.39E−07 −3.23E−06
6.78E−06 2.16E−06 6.64E−06
2.03E−08 2.48E−08 −7.12E−09
−1.094
0.109
1.000
−0.249
−0.028
1.90E−03
−7.83E−06
1.78E−08
2.36E−08
4.3
BSA-4
Model
Example 4.1, 10−04 to 10−13 in case of Example 4.2, and 10−04 to 10−11 in case of Example 4.3, for all six variants of BSA, while the trend of performance indices of GMAEθ , GRMSEθ , and GTICθ also lie in the same range. The acquired values of the global metrics are found close to their optimal magnitudes that establish the consistency of the BSAs for parameter estimation of EMS systems. Computational complexity analyses for all six variants of BSA is performed in terms of average time consumed, cycles executed and merits functions evaluated by the algorithms to obtain the optimized parameters of all three EMS case studies. All three
0.017
−0.020 −0.028
complexity measures are computed for 100 independent runs of each variant of BSAs and results are tabulated in Table 7 in terms of mean and standard deviation gauges. The range of respective average execution time, generations and functions evaluated are around 3.65 ± 0.07, 3000 and 180060 for EMS system in Example 4.1, 0.89 ± 0.03, 264 ± 50.43 and 41189.17 ± 15950.43 for Example 4.2 and 5.34 ± 0.08, 1000 and 280280 for Example 4.3. It is noticed that the magnitudes of complexity metrics based on fitness functions evaluated for EMS in Example 4.2 is greater than rest of the two models due to higher number of generations
16
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
Table 5 Performance of BSA variants based on the best run through accuracy and complexity measures for all three case studies of EMS systems. Example
Variant
Noise σ 2
Accuracy operators
Complexity operators
ε
δ
MAE
RMSE
TIC
Time
Gens
Functions
2
BSA-1
0.001 0.0102 0.1002
4.73E−06 8.98E−06 3.13E−02
2.23E−06 2.49E−06 5.18E−06
1.95E−03 2.02E−03 3.55E−03
2.17E−03 2.43E−03 5.05E−03
1.11E−06 1.24E−06 2.59E−06
0.363 0.354 0.356
200 200 200
8040 8040 8040
BSA-2
0.0012 0.0102 0.1002
3.62E−11 3.13E−06 3.13E−02
5.90E−09 1.19E−08 1.28E−06
4.59E−06 8.33E−06 5.66E−04
5.75E−06 1.16E−05 1.25E−03
2.95E−09 5.96E−09 6.40E−07
0.696 0.712 0.700
400 400 400
16040 16040 16040
BSA-3
0.0012 0.0102 0.1002
3.13E−12 3.13E−06 3.13E−02
3.15E−10 1.31E−08 1.33E−06
1.71E−08 6.22E−06 5.87E−04
2.08E−08 1.14E−05 1.30E−03
1.06E−11 5.83E−09 6.66E−07
1.044 1.212 1.038
600 600 600
24040 24040 24040
BSA-4
0.0012 0.0102 0.1002
1.54E−05 1.41E−05 3.13E−02
3.30E−05 1.25E−05 5.91E−05
3.29E−03 1.77E−03 2.99E−03
3.92E−03 3.31E−03 3.45E−03
2.01E−06 1.70E−06 1.77E−06
0.191 0.185 0.217
200 200 200
4020 4020 4020
BSA-5
0.0012 0.0102 0.1002
3.34E−06 5.21E−06 3.13E−02
7.36E−06 8.21E−06 2.40E−05
1.28E−03 1.31E−03 3.24E−03
1.83E−03 1.45E−03 4.17E−03
9.37E−07 7.44E−07 2.14E−06
0.359 0.358 0.375
200 200 200
8040 8040 8040
BSA-6
0.0012 0.0102 0.1002
5.42E−06 8.44E−06 3.13E−02
1.62E−05 1.54E−05 1.19E−04
1.74E−03 1.62E−03 3.72E−03
2.33E−03 2.30E−03 4.29E−03
1.19E−06 1.18E−06 2.20E−06
0.528 0.533 0.565
200 200 200
12060 12060 12060
BSA-1
0.0012 0.0102 0.1002
7.61E−08 9.65E−08 1.80E−04
4.35E−05 1.62E−05 9.04E−04
8.82E−05 2.78E−05 1.57E−03
1.34E−04 5.00E−05 2.78E−03
2.18E−05 8.11E−06 4.52E−04
2.31 2.31 2.33
1000 1000 1000
40040 40040 40040
BSA-2
0.0012 0.0102 0.1002
1.73E−12 4.30E−08 1.67E−04
1.19E−07 6.28E−06 1.56E−03
2.59E−07 1.26E−05 2.67E−03
3.67E−07 1.93E−05 4.79E−03
5.96E−08 3.14E−06 7.78E−04
4.58 4.68 4.59
2000 2000 2000
80040 80040 80040
BSA-3
0.0012 0.0102 0.1002
2.93E−14 1.67E−08 1.67E−04
4.99E−09 1.55E−05 1.56E−03
1.04E−08 2.66E−05 2.67E−03
1.54E−08 4.79E−05 4.80E−03
2.50E−09 7.77E−06 7.79E−04
6.93 6.88 7.02
3000 3000 3000
120040 120040 120040
BSA-4
0.0012 0.0102 0.1002
4.74E−09 7.48E−08 2.30E−04
3.32E−06 3.71E−05 4.20E−04
6.90E−06 7.24E−05 9.23E−04
1.02E−05 1.14E−04 1.29E−03
1.66E−06 1.86E−05 2.10E−04
0.59 0.61 0.61
1000 1000 1000
10010 10010 10010
BSA-5
0.0012 0.0102 0.1002
1.30E−06 6.48E−08 1.77E−04
2.32E−05 2.84E−05 1.06E−03
5.33E−05 4.89E−05 1.88E−03
7.13E−05 8.74E−05 3.25E−03
1.16E−05 1.42E−05 5.28E−04
2.31 2.32 2.31
1000 1000 1000
40040 40040 40040
BSA-6
0.0012 0.0102 0.1002
4.36E−07 3.05E−07 1.83E−04
5.49E−05 4.96E−05 9.91E−04
1.03E−04 9.36E−05 1.81E−03
1.69E−04 1.53E−04 3.05E−03
2.74E−05 2.48E−05 4.96E−04
3.46 3.47 3.51
1000 1000 1000
60060 60060 60060
BSA-1
0.0012 0.0102 0.1002
2.90E−07 1.80E−07 8.18E−05
1.08E−04 1.58E−04 2.09E−03
3.13E−04 2.41E−04 1.22E−03
5.44E−05 7.93E−05 1.05E−03
5.41E−05 7.90E−05 1.05E−03
1.44 1.46 1.44
500 500 500
20040 20040 20040
BSA-2
0.0012 0.0102 0.1002
1.28E−09 1.08E−08 8.10E−05
3.86E−06 1.77E−05 2.66E−03
1.55E−05 2.57E−05 7.47E−04
1.94E−06 8.87E−06 1.34E−03
1.93E−06 8.83E−06 1.33E−03
2.14 2.14 2.15
750 750 750
30040 30040 30040
BSA-3
0.0012 0.0102 0.1002
2.86E−12 7.75E−09 8.10E−05
4.68E−07 2.20E−05 2.79E−03
8.92E−07 7.91E−06 7.53E−04
2.35E−07 1.10E−05 1.40E−03
2.34E−07 1.10E−05 1.40E−03
2.85 2.86 2.87
1000 1000 1000
40040 40040 40040
BSA-4
0.0012 0.0102 0.1002
1.55E−03 5.22E−03 6.70E−03
2.03E−02 1.25E−02 1.59E−02
1.20E−02 3.61E−02 5.35E−02
1.02E−02 6.29E−03 8.00E−03
1.02E−02 6.25E−03 7.96E−03
0.16 0.16 0.16
200 200 200
2010 2010 2010
BSA-5
0.0012 0.0102 0.1002
2.04E−03 1.97E−04 4.59E−04
1.64E−02 7.84E−03 1.29E−02
2.85E−02 7.06E−03 1.02E−02
8.24E−03 3.94E−03 6.48E−03
8.22E−03 3.92E−03 6.47E−03
0.59 0.59 0.59
200 200 200
8040 8040 8040
BSA-6
0.0012 0.0102 0.1002
1.42E−03 7.37E−04 5.25E−04
1.48E−02 7.33E−03 6.60E−03
1.59E−02 1.21E−02 1.39E−02
7.44E−03 3.68E−03 3.31E−03
7.42E−03 3.67E−03 3.30E−03
0.87 0.87 0.87
200 200 200
12060 12060 12060
4.1
4.2
4.3
executed for each variant. Moreover, it is observed that with the increase in the cycle consumption, average execution time increases which is quite evident due to increase in function counts. Furthermore, increase in population size also directly affects the magnitude of complexity operators.
4.3. Analysis through single objective for EMS The performance of the proposed BSA heuristic algorithm for optimization of EMS models is also studied using single objective based fitness function given in (36), (39) and (42) for Examples 4.1, 4.2 and 4.3 respectively. The results of BSA-1 to 6 in terms of learning curves are shown graphically in Figs. 7, 8 and
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
17
Table 6 Performance comparison through global operators for all three case studies of EMS systems. Example
Variant
Noise σ 2
Global Operators Fitness ε
MWD δ
RMSE
TIC
Mean
STD
Mean
STD
Mean
STD
Mean
STD
2
BSA-1
0.001 0.0102 0.1002
3.68E−04 3.91E−04 3.14E−02
6.56E−04 7.03E−04 7.62E−04
1.14E−02 1.22E−02 4.16E−02
9.17E−03 8.80E−03 3.54E−02
1.50E−02 1.59E−02 5.56E−02
1.21E−02 1.17E−02 4.78E−02
7.67E−06 8.15E−06 2.85E−05
6.19E−06 5.98E−06 2.45E−05
BSA-2
0.0012 0.0102 0.1002
2.20E−08 3.14E−06 2.99E−02
7.39E−08 4.45E−08 5.37E−04
7.44E−05 7.56E−05 7.21E−02
8.36E−05 6.31E−05 2.53E−02
9.64E−05 9.61E−05 1.03E−01
1.13E−04 9.21E−05 3.60E−02
4.94E−08 4.92E−08 5.28E−05
5.81E−08 4.72E−08 1.84E−05
BSA-3
0.0012 0.0102 0.1002
3.75E−09 3.13E−06 2.97E−02
3.75E−08 5.30E−08 4.11E−04
2.88E−06 1.17E−05 7.64E−02
2.50E−05 3.51E−05 1.75E−02
6.60E−06 2.49E−05 1.10E−01
6.12E−05 8.44E−05 2.50E−02
3.38E−09 1.28E−08 5.62E−05
3.14E−08 4.32E−08 1.28E−05
BSA-4
0.0012 0.0102 0.1002
7.54E−04 1.02E−03 3.20E−02
8.91E−04 1.95E−03 1.31E−03
1.72E−02 1.90E−02 3.76E−02
9.99E−03 1.48E−02 3.34E−02
2.37E−02 2.50E−02 4.91E−02
1.39E−02 2.00E−02 4.33E−02
1.22E−05 1.28E−05 2.52E−05
7.14E−06 1.02E−05 2.22E−05
BSA-5
0.0012 0.0102 0.1002
3.62E−04 3.10E−04 3.13E−02
5.06E−04 4.39E−04 7.71E−04
1.19E−02 1.11E−02 4.53E−02
8.13E−03 7.06E−03 3.78E−02
1.56E−02 1.46E−02 6.03E−02
1.10E−02 9.69E−03 5.08E−02
7.98E−06 7.50E−06 3.09E−05
5.61E−06 4.97E−06 2.60E−05
BSA-6
0.0012 0.0102 0.1002
2.02E−04 2.36E−04 3.11E−02
2.07E−04 3.29E−04 6.74E−04
9.92E−03 9.62E−03 4.69E−02
4.90E−03 6.18E−03 3.74E−02
1.28E−02 1.27E−02 6.36E−02
6.29E−03 8.48E−03 5.08E−02
6.54E−06 6.52E−06 3.26E−05
3.22E−06 4.35E−06 2.60E−05
BSA-1
0.0012 0.0102 0.1002
1.73E−05 2.00E−05 1.78E−04
2.59E−05 4.24E−05 1.46E−05
1.26E−03 1.42E−03 3.05E−03
1.04E−03 1.62E−03 6.96E−04
1.92E−03 2.11E−03 5.23E−03
1.55E−03 2.30E−03 1.04E−03
3.11E−04 3.42E−04 8.48E−04
2.51E−04 3.73E−04 1.69E−04
BSA-2
0.0012 0.0102 0.1002
4.03E−09 2.10E−08 1.67E−04
9.96E−09 1.24E−08 3.17E−11
1.97E−05 3.45E−05 2.67E−03
2.51E−05 2.13E−05 3.39E−07
2.94E−05 5.85E−05 4.80E−03
3.55E−05 3.31E−05 6.93E−07
4.77E−06 9.51E−06 7.79E−04
5.76E−06 5.38E−06 1.12E−07
BSA-3
0.0012 0.0102 0.1002
5.06E−13 1.67E−08 1.67E−04
1.37E−12 1.92E−14 1.32E−17
2.02E−07 2.67E−05 2.67E−03
2.74E−07 9.21E−09 6.53E−10
3.07E−07 4.80E−05 4.80E−03
3.89E−07 1.65E−08 1.16E−09
4.98E−08 7.79E−06 7.79E−04
6.32E−08 2.68E−09 1.88E−10
BSA-4
0.0012 0.0102 0.1002
1.80E−03 1.57E−01 1.02E−03
5.64E−03 1.10E+00 3.67E−03
9.82E−03 1.50E−02 7.38E−03
2.05E−02 6.07E−02 1.42E−02
1.52E−02 2.47E−02 1.20E−02
3.18E−02 1.03E−01 2.22E−02
2.44E−03 4.25E−03 1.93E−03
5.09E−03 1.84E−02 3.55E−03
BSA-5
0.0012 0.0102 0.1002
1.76E−05 1.88E−05 1.81E−04
3.47E−05 3.15E−05 2.74E−05
1.28E−03 1.33E−03 3.09E−03
1.44E−03 1.36E−03 8.02E−04
1.93E−03 2.01E−03 5.28E−03
2.10E−03 2.01E−03 1.23E−03
3.12E−04 3.25E−04 8.57E−04
3.40E−04 3.25E−04 1.99E−04
BSA-6
0.0012 0.0102 0.1002
1.29E−05 9.76E−06 1.75E−04
1.82E−05 9.82E−06 9.04E−06
1.19E−03 1.03E−03 2.90E−03
1.09E−03 7.04E−04 4.42E−04
1.79E−03 1.59E−03 4.97E−03
1.57E−03 1.08E−03 6.83E−04
2.91E−04 2.58E−04 8.06E−04
2.55E−04 1.75E−04 1.11E−04
BSA-1
0.0012 0.0102 0.1002
6.44E−07 9.66E−07 8.21E−05
9.52E−07 2.35E−06 1.65E−06
3.39E−04 3.67E−04 9.99E−04
2.50E−04 3.28E−04 2.72E−04
5.56E−04 6.16E−04 1.61E−03
4.06E−04 5.84E−04 3.95E−04
5.54E−04 6.13E−04 1.61E−03
4.04E−04 5.82E−04 3.94E−04
BSA-2
0.0012 0.0102 0.1002
2.75E−09 1.38E−08 8.10E−05
1.32E−08 2.40E−08 3.99E−09
1.77E−05 2.74E−05 7.59E−04
2.24E−05 3.09E−05 1.15E−05
2.72E−05 4.27E−05 1.40E−03
3.83E−05 5.41E−05 1.54E−05
2.71E−05 4.25E−05 1.40E−03
3.82E−05 5.39E−05 1.53E−05
BSA-3
0.0012 0.0102 0.1002
1.27E−11 7.76E−09 8.10E−05
2.74E−11 5.42E−11 2.91E−11
1.40E−06 8.67E−06 7.53E−04
1.22E−06 1.46E−06 7.23E−07
1.94E−06 1.29E−05 1.40E−03
1.76E−06 1.84E−06 8.49E−07
1.93E−06 1.29E−05 1.40E−03
1.75E−06 1.83E−06 8.46E−07
BSA-4
0.0012 0.0102 0.1002
4.82E−03 3.99E−03 5.16E−03
6.03E−03 4.33E−03 5.46E−03
3.08E−02 3.00E−02 3.27E−02
1.87E−02 1.60E−02 1.95E−02
5.29E−02 5.06E−02 5.49E−02
3.21E−02 2.78E−02 3.29E−02
5.33E−02 5.06E−02 5.50E−02
3.31E−02 2.82E−02 3.35E−02
BSA-5
0.0012 0.0102 0.1002
1.09E−03 1.08E−03 1.04E−03
1.12E−03 1.02E−03 7.52E−04
1.56E−02 1.54E−02 1.46E−02
7.26E−03 7.77E−03 6.41E−03
2.63E−02 2.59E−02 2.47E−02
1.22E−02 1.29E−02 1.07E−02
2.62E−02 2.58E−02 2.46E−02
1.21E−02 1.29E−02 1.06E−02
BSA-6
0.0012 0.0102 0.1002
7.49E−04 7.56E−04 8.29E−04
6.66E−04 6.97E−04 5.33E−04
1.32E−02 1.25E−02 1.33E−02
6.44E−03 5.84E−03 5.61E−03
2.23E−02 2.11E−02 2.22E−02
1.03E−02 1.02E−02 9.18E−03
2.22E−02 2.10E−02 2.21E−02
1.02E−02 1.01E−02 9.16E−03
4.1
4.2
4.3
9 for Examples 4.1, 4.2 and 4.3 respectively using all three noise variations. In all these figures, it is found that for all three levels of noise variances, all the variants of BSA are convergent but the accuracy and convergence of the BSA-3 is much superior than all other schemes for each EMS models. Further analysis through single objective for EMS parameter estimation is carried out by 100 independent runs of different variants of BSA using statistical operators based on the best,
mean, and worst magnitudes of fitness for σ 2 = 0.0012 , 0.012 , and 0.12 . Statistical results for all six variants of BSA are provided in Tables 8, 9 and 10 for Examples 4.1, 4.2 and 4.3, respectively, along with the true parameters. With an increase in the noise level, σ 2 = 0.0012 –0.12 , drop-off in the performance is observed for all six variants of BSA in each scenario. Moreover, the results obtained through single objective for EMS given in Tables 3 to 5 are compared with supporting objective based results presented
18
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
Table 7 Comparison through complexity operators for all three case studies of EMS systems. Example
Variant
Noise σ 2
Complexity operators Time
Generations
Function Counts
Mean
STD
Mean
STD
Mean
STD
2
BSA-1
0.001 0.0102 0.1002
0.358 0.362 0.358
0.003 0.004 0.002
200 200 200
0 0 0
8040 8040 8040
0 0 0
BSA-2
0.0012 0.0102 0.1002
0.699 0.711 0.700
0.004 0.006 0.003
400 400 400
0 0 0
16040 16040 16040
0 0 0
BSA-3
0.0012 0.0102 0.1002
1.038 1.127 1.044
0.004 0.096 0.012
600 600 600
0 0 0
24040 24040 24040
0 0 0
BSA-4
0.0012 0.0102 0.1002
0.189 0.186 0.203
0.003 0.001 0.022
200 200 200
0 0 0
4020 4020 4020
0 0 0
BSA-5
0.0012 0.0102 0.1002
0.358 0.359 0.379
0.003 0.006 0.008
200 200 200
0 0 0
8040 8040 8040
0 0 0
BSA-6
0.0012 0.0102 0.1002
0.528 0.529 0.551
0.002 0.002 0.026
200 200 200
0 0 0
12060 12060 12060
0 0 0
BSA-1
0.0012 0.0102 0.1002
2.421 2.311 2.315
1.067 0.016 0.016
1000 1000 1000
0 0 0
40040 40040 40040
0 0 0
BSA-2
0.0012 0.0102 0.1002
4.639 4.596 4.602
0.056 0.020 0.028
2000 2000 2000
0 0 0
80040 80040 80040
0 0 0
BSA-3
0.0012 0.0102 0.1002
6.942 6.878 6.916
0.082 0.021 0.064
3000 3000 3000
0 0 0
120040 120040 120040
0 0 0
BSA-4
0.0012 0.0102 0.1002
0.594 0.596 0.593
0.004 0.007 0.005
1000 1000 1000
0 0 0
10010 10010 10010
0 0 0
BSA-5
0.0012 0.0102 0.1002
2.322 2.318 2.313
0.017 0.021 0.016
1000 1000 1000
0 0 0
40040 40040 40040
0 0 0
BSA-6
0.0012 0.0102 0.1002
3.486 3.472 3.470
0.030 0.025 0.024
1000 1000 1000
0 0 0
60060 60060 60060
0 0 0
BSA-1
0.0012 0.0102 0.1002
1.442 1.448 1.440
0.008 0.014 0.003
500 500 500
0 0 0
20040 20040 20040
0 0 0
BSA-2
0.0012 0.0102 0.1002
2.148 2.164 2.151
0.007 0.022 0.012
750 750 750
0 0 0
30040 30040 30040
0 0 0
BSA-3
0.0012 0.0102 0.1002
2.856 2.858 2.864
0.007 0.007 0.010
1000 1000 1000
0 0 0
40040 40040 40040
0 0 0
BSA-4
0.0012 0.0102 0.1002
0.160 0.160 0.160
0.001 0.001 0.001
200 200 200
0 0 0
2010 2010 2010
0 0 0
BSA-5
0.0012 0.0102 0.1002
0.587 0.589 0.587
0.002 0.004 0.002
200 200 200
0 0 0
8040 8040 8040
0 0 0
BSA-6
0.0012 0.0102 0.1002
0.872 0.873 0.873
0.003 0.002 0.003
200 200 200
0 0 0
12060 12060 12060
0 0 0
4.1
4.2
4.3
in Tables 8 to 10. It is observed that using supporting objective based fitness function for EMS provides better parameter estimates than single objective based fitness function and this accuracy difference is quite evident in case of log sigmoid nonlinearity, taken in Example 4.3 of EMS model. However, all six variants are still applicable for optimizing EMS parameters with reasonable accuracy.
5. Conclusions Novel application of Backtracking search optimization heuristic, i.e., BSA is presented for accurate, reliable and robust parameter estimation problem of EMS systems required for rehabilitation of paralyzed muscles. The EMS systems are modeled with Hammerstein control autoregressive structure in which linear dynamics of muscle are given by transfer function and nonlinear
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
19
Table 8 Performance comparison through results of statistics using single objective based fitness function for EMS system in Example 4.1. Example
Variant
Noise
0.0012
BSA-1
0.0102
0.1002
0.0012
BSA-2
0.0102
0.1002
0.0012
BSA-3
0.0102
0.1002 4.1 0.0012
BSA-4
0.0102
0.1002
0.0012
BSA-5
0.0102
0.1002
0.0012
BSA-6
0.0102
0.1002 True values
Model
Approximate parameter vector i=1
i=2
i=3
i=4
i=5
i=6
Best Mean Worst Best Mean Worst Best Mean Worst
−2.00 −1.19 −1.26 −0.71 −1.01 −0.63 −1.20 −0.95 −1.03
1.00 0.17 0.22 0.34 0.06 0.42 0.22 0.14 0.08
0.02 0.05 0.02 1.98 0.28 0.03 6.96 1.04 0.20
0.83 0.14 0.08 0.13 0.78 1.66 2.00 1.51 4.39
0.02 0.23 0.35 1.59 0.54 2.00 2.00 0.89 1.17
2196.09 2337.04 1181.09 2420.33 2134.39 1691.20 2524.85 1203.06 1249.11
Best Mean Worst Best Mean Worst Best Mean Worst
−1.97 −1.24 −1.74 −0.54 −1.08 −0.67 −1.04 −1.16 −0.97
0.96 0.24 0.83 0.59 0.01 0.46 0.08 0.09 0.12
0.05 0.08 0.00 0.26 0.34 1.58 1.20 0.38 1.92
0.09 0.07 1.08 0.21 0.22 0.46 5.44 3.06 0.61
0.14 0.22 1.37 1.56 0.80 0.40 1.17 0.74 1.38
2502.72 1531.01 1377.10 2133.01 2723.11 1377.45 2003.57 1290.76 1417.13
Best Mean Worst Best Mean Worst Best Mean Worst
−1.92 −1.62 −1.69 −1.38 −1.17 −1.36 −1.61 −1.33 −1.42
0.92 0.65 0.75 0.31 0.09 0.27 0.57 0.27 0.37
2.00 0.07 0.00 0.16 1.12 3.71 3.19 0.80 1.15
2.00 0.24 0.01 0.51 0.01 1.17 1.98 2.16 4.35
0.00 0.97 2.00 1.10 0.98 0.06 1.15 1.12 0.99
2288.71 2349.85 1614.40 2388.33 2066.76 1223.66 2468.62 1864.05 1960.33
Best Mean Worst Best Mean Worst Best Mean Worst
−0.82 −0.78 −0.41 −0.40 −0.75 −0.88 −1.40 −0.66 −0.38
0.01 0.23 0.40 0.84 0.40 0.43 0.34 0.41 0.55
0.11 0.07 0.01 1.17 0.99 0.22 4.30 1.15 0.07
0.01 0.14 0.09 5.51 0.85 3.18 2.00 0.48 0.56
1.31 0.39 1.30 0.09 0.38 0.41 1.07 1.38 7.00
2569.25 2619.78 1353.52 2237.44 2225.24 1103.36 2255.14 1286.77 1002.00
Best Mean Worst Best Mean Worst Best Mean Worst
−1.46 −1.29 −0.78 −1.85 −1.46 −1.66 −1.61 −0.86 −0.35
0.40 0.29 0.30 0.83 0.40 0.60 0.56 0.22 0.68
0.21 0.18 2.00 0.10 1.06 2.00 0.42 2.04 −0.01
0.44 0.11 0.00 0.82 0.01 0.06 1.97 1.74 3.33
0.01 0.34 0.32 0.69 0.24 0.23 1.85 1.10 6.72
2206.11 1995.29 778.01 2333.43 2002.83 395.84 2458.23 1429.30 −2.00
Best Mean Worst Best Mean Worst Best Mean Worst
−0.51 −0.91 −1.17 −1.05 −1.13 −0.91 −1.69 −1.23 −1.64
0.51 0.08 0.27 0.09 0.04 0.26 0.65 0.16 0.62
0.00 0.68 0.44 0.37 0.82 5.18 1.49 3.05 5.44
0.95 0.03 0.00 5.01 0.14 0.36 7.00 0.14 1.77
0.82 0.50 2.00 0.22 0.02 0.14 0.83 1.12 0.46
2291.04 2230.56 1582.23 2669.13 2358.64 1219.58 2390.94 1809.02 1392.68
−1.9985
0.9985
0.0022
6.8994
0.0410
2389.70
characteristic are based on polynomial, sigmoid and cubic spline kernels. The six variants of BSA are designed by exploiting the memory size and population dynamics, and effectively applied to three cases studies of EMS models for noise variances σ 2 = 0.0012 , 0.012 , and 0.12 . Comparative study from true parameter of systems based on performance indices of MAEθ , RMSEθ , MWDθ and TICθ established the worth of each algorithm however, the performance of each variant degraded with increase in the level of noise. Generally, the BSA-3 provides better results in terms of performance measures from the rest. Verification and validations for the variants of BSA is ascertained through statistical interpretations of the results based on large number of trials
for optimization of parameters of EMS systems of all three case studies, and BSA-3 is found to be the most accurate, reliable and robust performer. The variants of BSA algorithm based on more number of iterations as well as operated with bigger population of individual perform grander estimation of EMS parameters and vice versa. Additionally, the complexity of the BSAs for EMS system in Example 4.2 is higher from other two case studies because the design algorithms for the said system based on larger memory, i.e., number of iterations. The proposed BSA is accurate and reliable for both single objective and supporting objective based fitness functions, but the later provides the more accurate parameter estimates of EMS system, especially in case
20
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
Table 9 Performance comparison through results of statistics using single objective based fitness function for EMS system in Example 4.2. Example
Variant
BSA-1
BSA-2
BSA-3
Noise
BSA-5
BSA-6
True values
Approximate parameter vector i=1
i=2
i=3
i=4
i=5
i=6
i=7
0.0012
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
1.000 0.990 0.976
2.798 2.824 2.872
−4.800 −4.848 −4.921
5.702 5.756 5.843
0.600 0.594 0.585
0.0102
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
0.999 0.987 0.971
2.805 2.838 2.881
−4.806 −4.864 −4.943
5.706 5.778 5.870
0.599 0.592 0.583
0.1002
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
1.000 0.991 0.965
2.808 2.827 2.907
−4.806 −4.847 −4.972
5.697 5.754 5.905
0.600 0.594 0.579
0.0012
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
0.998 0.986 0.965
2.806 2.840 2.901
−4.811 −4.869 −4.974
5.713 5.781 5.906
0.599 0.592 0.579
0.0102
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
1.000 0.991 0.979
2.800 2.826 2.860
−4.801 −4.845 −4.902
5.701 5.754 5.821
0.600 0.594 0.588
0.1002
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
0.999 0.985 0.967
2.802 2.844 2.896
−4.803 −4.875 −4.965
5.704 5.790 5.896
0.600 0.591 0.580
0.0012
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
0.998 0.991 0.982
2.805 2.825 2.851
−4.808 −4.843 −4.888
5.710 5.751 5.804
0.599 0.595 0.589
0.0102
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
1.000 0.988 0.975
2.801 2.834 2.871
−4.802 −4.858 −4.921
5.702 5.769 5.844
0.600 0.593 0.585
0.1002
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
0.998 0.993 0.988
2.806 2.821 2.833
−4.810 −4.836 −4.856
5.712 5.742 5.767
0.599 0.596 0.593
0.0012
Best Mean Worst
−1.000 −1.000 −0.999
0.800 0.800 0.800
0.999 0.990 0.960
2.809 2.830 3.000
−4.808 −4.846 −5.000
5.704 5.751 5.886
0.599 0.596 0.582
0.0102
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
1.000 0.995 0.967
2.800 2.812 2.899
−4.800 −4.822 −4.964
5.699 5.725 5.892
0.600 0.598 0.581
0.1002
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
1.000 0.986 0.959
2.798 2.839 2.906
−4.797 −4.871 −5.000
5.699 5.778 5.944
0.600 0.593 0.577
0.0012
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
1.000 0.989 0.961
2.799 2.830 2.922
−4.799 −4.854 −5.000
5.700 5.765 5.926
0.600 0.594 0.577
0.0102
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
1.000 0.990 0.971
2.801 2.828 2.875
−4.800 −4.850 −4.944
5.700 5.758 5.873
0.601 0.594 0.583
0.1002
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
0.997 0.988 0.971
2.806 2.836 2.888
−4.813 −4.861 −4.940
5.716 5.772 5.871
0.598 0.593 0.583
0.0012
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
0.995 0.985 0.975
2.814 2.841 2.871
−4.824 −4.873 −4.923
5.729 5.787 5.845
0.597 0.591 0.585
0.0102
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
1.000 0.986 0.965
2.802 2.838 2.905
−4.800 −4.867 −4.976
5.698 5.779 5.906
0.600 0.592 0.579
0.1002
Best Mean Worst
−1.000 −1.000 −1.000
0.800 0.800 0.800
1.000 0.989 0.972
2.803 2.828 2.878
−4.801 −4.854 −4.938
5.699 5.767 5.867
0.600 0.593 0.583
−1.00
0.80
1.00
2.80
−4.80
5.70
0.60
4.2
BSA-4
Model
of sigmoid type nonlinearities. The proposed study shows that nature/bio inspired heuristic is an alternate, accurate and reliable computing paradigm that effectively estimates the parameters of (EMS) model. Therefore, the proposed study motivates the researchers to investigate in applying other metaheuristics based on fractional order Darwinian particle swarm optimization, fractional order firefly algorithm, fireworks and new cuckoo search algorithms for optimization of EMS model. Moreover, one may
explore in developing modified forms of BSA for more accurate and robust estimation of EMS parameters in case of real and online scenarios. Declaration of competing interest No author associated with this paper has disclosed any potential or pertinent conflicts which may be perceived to have
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
21
Table 10 Performance comparison through results of statistics using single objective based fitness function for EMS system in Example 4.3. Example
Variant
BSA-1
BSA-2
BSA-3
Noise
BSA-5
BSA-6
True values
Approximate parameter vector i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9
0.0012
Best Mean Worst
−1.1902 −1.1873 −1.5009
0.1908 0.2010 0.5128
1.0000 0.4764 0.0628
−0.4373 −0.4546 −0.1441
0.1100 −0.3203 −0.3591
0.00E+00 1.05E−03 0.00E+00
−1.00E−05 1.06E−06 1.00E−05
−1.00E−05 −4.44E−06 6.33E−06
−1.65E−08 −2.05E−09 1.97E−08
0.0102
Best Mean Worst
−1.3403 −1.2852 −1.5371
0.3542 0.2982 0.5480
0.6948 0.3117 0.0145
−0.6534 −0.2908 −0.0035
0.4584 0.1908 0.8498
5.62E−03 4.69E−03 1.00E−02
1.00E−05 1.30E−07 −1.00E−05
−1.00E−05 1.55E−07 1.00E−05
6.61E−08 8.67E−08 3.35E−07
Best Mean Worst
−1.2183 −1.2886 −1.2362
0.2367 0.3015 0.2428
0.9988 0.4689 0.0231
−0.6815 −0.4448
0.0918
0.1002
0.00E+00 3.23E−03 0.00E+00
1.00E−05 3.59E−06 −1.00E−05
9.91E−06 −1.05E−06 1.00E−05
6.58E−09 1.05E−07 4.11E−07
0.0012
Best Mean Worst
−1.1205 −1.1438 −1.2677
0.1394 0.1598 0.2854
0.6968 0.2511 0.0749
0.0084
5.76E−03 5.70E−03 1.00E−02
−1.00E−05 −1.28E−07 −1.00E−05
1.00E−05 0.00E+00 1.00E−05
5.99E−08 5.63E−08 3.71E−07
0.0102
Best Mean Worst
−1.1469 −1.1314 −1.2310
0.1641 0.1469 0.2513
0.9498 0.4109 0.6383
−0.6968 −0.4731 −0.6062
7.91E−03 4.59E−03 3.35E−03
1.00E−05 5.76E−06 1.00E−05
1.00E−05 −1.53E−07 −1.41E−06
1.16E−07 4.48E−08 4.25E−08
0.1002
Best Mean Worst
−1.1905 −1.2717 −1.2458
0.2036 0.2856 0.2564
0.8172 0.4216 0.0000
−0.7380 −0.5268 0.0332
−0.2669 −1.0000
9.40E−03 3.78E−03 0.00E+00
1.00E−05 7.96E−06 −1.00E−05
−1.00E−05 −6.27E−06 1.00E−05
1.22E−07 9.04E−08 5.88E−07
0.0012
Best Mean Worst
−1.1809 −1.1681 −1.1903
0.1982 0.1842 0.2066
0.4532 0.5336 0.0209
−0.1768 −0.5176 −0.0708
−0.0077 −0.2133 −0.9500
3.77E−03 5.37E−03 6.10E−03
−1.00E−05 −2.49E−06 1.00E−05
−1.00E−05 4.60E−06 1.00E−05
4.16E−08 7.42E−08 6.93E−08
0.0102
Best Mean Worst
−1.1296 −1.1405 −1.1857
0.1455 0.1562 0.1994
0.5396 0.3530 0.3371
−0.2975 −0.3256 −0.3722
−0.1476 −0.3333 −0.9719
6.37E−03 5.34E−03 0.00E+00
−1.00E−05 2.84E−06 1.00E−05
1.00E−05 4.78E−06 7.24E−06
9.01E−08 7.47E−08 −7.45E−09
Best Mean Worst
−1.2809 −1.2789 −1.3046
0.2945 0.2926 0.3200
0.9052 0.4886 0.6942
−0.4044 −0.4541 −0.6547
−0.2302
0.1002
6.53E−03 5.18E−03 2.57E−03
−1.00E−05 6.00E−06 1.00E−05
1.00E−05 −3.75E−06 −7.52E−06
8.72E−08 4.70E−08 2.41E−08
0.0012
Best Mean Worst
−1.0966 −1.4770 −2.0000
0.0958 0.4904 1.0000
0.6066 0.3168 0.0000
−0.2870 −0.3063 −0.0050
−0.3443 −0.0008 1.0000
1.00E−02 4.86E−03 4.39E−05
9.26E−06 3.05E−06 1.00E−05
−6.76E−06 3.94E−07 −8.73E−06
1.34E−07 8.62E−08 −4.00E−07
0.0102
Best Mean Worst
−1.3329 −1.4559 −2.0000
0.3229 0.4686 1.0000
1.0000 0.5024 0.0403
−0.9449 −0.4403 −0.0549
0.0443 0.0480 1.0000
9.51E−03 3.70E−03 0.00E+00
−1.00E−05 3.88E−06 8.29E−06
3.83E−06 −1.00E−06 −1.00E−05
1.13E−07 2.12E−08 −3.81E−07
0.1002
Best Mean Worst
−1.1508 −1.5108 −1.9635
0.1665 0.5229 1.0000
0.0637 0.3590 0.0998
−0.1156 −0.2205 −0.0889
−0.1073 −0.1487 −1.0000
1.12E−03 5.21E−03 1.00E−02
−5.66E−06 −3.35E−06 −1.00E−05
−1.00E−05 0.00E+00 1.00E−05
−1.76E−07 −9.05E−08 5.95E−07
Best Mean Worst
−1.2754 −1.3155 −1.7303
0.2967 0.3310 0.7453
0.9966 0.2478 0.0065
−0.5683 −0.0752 −0.0105
−0.3646
0.0012
0.0404 −1.0000
1.00E−02 2.92E−03 0.00E+00
−1.00E−05 −2.21E−06 −1.00E−05
−1.00E−05 −1.20E−06 1.00E−05
1.32E−07 −7.23E−08 −6.48E−07
0.0102
Best Mean Worst
−1.1190 −1.3371 −1.5592
0.1303 0.3480 0.5726
0.8795 0.4978 0.5941
−0.2422 −0.3355 −0.5801
0.1128 0.2532 1.0000
8.74E−04 4.63E−03 1.00E−02
4.28E−06 −1.29E−06 −2.08E−06
−2.59E−06 7.41E−07 −1.00E−05
−1.71E−08 9.29E−08 1.14E−07
Best Mean Worst
−1.4021 −1.4460 −1.4932
0.4043 0.4547 0.4992
0.0262 0.3558 0.0421
−0.1929 −0.1937
−0.0862
0.1002
0.0146
7.37E−03 7.21E−03 1.00E−02
9.58E−06 −1.37E−07 −1.00E−05
−1.00E−05 2.05E−06 1.00E−05
−1.21E−08 1.04E−07 4.22E−07
0.0012
Best Mean Worst
−1.1017 −1.1840 −1.4535
0.1006 0.1985 0.4740
0.5662 0.3520 0.2311
−0.1792 −0.4151 −1.0000
0.1140 −0.4250
1.00E−02 4.61E−03 8.02E−03
−7.37E−07 −4.16E−06 −1.00E−05
1.00E−05 4.39E−06 1.00E−05
2.36E−07 −2.45E−08 1.16E−07
0.0102
Best Mean Worst
−1.3893 −1.2219 −1.4959
0.3949 0.2353 0.5064
0.9314 0.3591 0.0000
0.0890 −0.0124 −0.2307
0.0058 −0.0848 −0.8628
0.00E+00 4.31E−03 1.00E−02
−8.75E−06 −2.85E−06 −1.00E−05
−2.22E−06 3.48E−06 1.00E−05
5.78E−09 −2.65E−08 2.28E−07
0.1002
Best Mean Worst
−0.9698 −1.2162 −1.3446
0.0000 0.2340 0.3424
1.0000 0.5295 0.0681
−0.1319 −0.3286 0.5045
−0.0078 −0.3501 −0.7156
2.51E−03 3.42E−03 1.00E−02
1.00E−05 2.67E−06 −1.00E−05
1.00E−05 2.56E−07 1.00E−05
1.90E−08 7.61E−08 2.25E−07
−1.094
0.109
1.000
−0.249
−0.028
1.90E−03
−7.83E−06
1.78E−08
2.36E−08
4.3
BSA-4
Model
0.0547
−0.5723 −0.1378
−0.0457 −1.0000 0.0160
−0.0929 −0.8440 −0.2430 −0.0831 0.9658 0.0380
0.1387 0.7292
0.0805 −1.0000
−0.7043
impending conflict with this work. For full disclosure statements refer to https://doi.org/10.1016/j.asoc.2019.105705.
of Hammerstein structure obtained through real time experimentation conducted at rehabilitation center of the Southampton University subject to proper citing the relevant literature [12–14].
Acknowledgments
Appendix A. Supplementary data
Authors would like to thank Prof. Ivan Markovsky and his research team for giving the consent to use the desired parameters
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.asoc.2019.105705.
22
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705
References [1] M.J. Castro, D.F. Apple Jr, E.A. Hillegass, G.A. Dudley, Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury, European J. Appl. Physiol. Occup. Physiol. 80 (4) (1999) 373–378. [2] P. Vestergaard, K. Krogh, L. Rejnmark, L. Mosekilde, Fracture rates and risk factors for fractures in patients with spinal cord injury, Spinal cord 36 (11) (1998) 790. [3] E.T. Mahoney, C.S. Bickel, C. Elder, C. Black, J.M. Slade, D. Apple, G.A. Dudley, Changes in skeletal muscle size and glucose tolerance with electrically stimulated resistance training in subjects with chronic spinal cord injury, Arch. Phys. Med. Rehabil. 86 (7) (2005) 1502–1504. [4] R.K. Shields, S. Dudley-Javoroski, Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training, J. Neurophysiol. 95 (4) (2006) 2380–2390. [5] R.K. Shields, S. Dudley-Javoroski, A.E. Littmann, Post-fatigue potentiation of paralyzed soleus muscle: Evidence for adaptation with long-term electrical stimulation training, J. Appl. Physiol. 101 (2006) 556–565. [6] R.K. Shields, S. Dudley-Javoroski, Musculoskeletal adaptations in chronic spinal cord injury: effects of long-term soleus electrical stimulation training, Neurorehabilitation Neural Repair 21 (2) (2007) 169–179. [7] L.F. Law, R.K. Shields, Mathematical models of human paralyzed muscle after long-term training, J. Biomech. 40 (12) (2007) 2587–2595. [8] J. Bobet, R.B. Stein, A simple model of force generation by skeletal muscle during dynamic isometric contractions, IEEE Trans. Biomed. Eng. 45 (8) (1998) 1010–1016. [9] J. Ding, A.S. Wexler, S.A. Binder-Macleod, Mathematical models for fatigue minimization during functional electrical stimulation, J. Electromyogr. Kinesiol. 13 (6) (2003) 575–588. [10] K.J. Hunt, M. Munih, N.D.N. Donaldson, F.M. Barr, Investigation of the Hammerstein hypothesis in the modeling of electrically stimulated muscle, IEEE Trans. Biomed. Eng. 45 (8) (1998) 998–1009. [11] E.W. Bai, Z. Cai, S. Dudley-Javorosk, R.K. Shields, Identification of a modified Wiener–Hammerstein system and its application in electrically stimulated paralyzed skeletal muscle modeling, Automatica 45 (3) (2009) 736–743. [12] F. Le, Identification of electrically stimulated muscle after stroke (Doctoral dissertation), University of Southampton, 2011. [13] F. Le, I. Markovsky, C.T. Freeman, E. Rogers, Identification of electrically stimulated muscle models of stroke patients, Control Eng. Pract. 18 (4) (2010) 396–407. [14] F. Le, I. Markovsky, C.T. Freeman, E. Rogers, Recursive identification of Hammerstein systems with application to electrically stimulated muscle, Control Eng. Pract. 20 (4) (2012) 386–396. [15] M.K. Masood, Y.C. Soh, C. Jiang, Occupancy estimation from environmental parameters using wrapper and hybrid feature selection, Appl. Soft Comput. 60 (2017) 482–494. [16] J.M. Ali, N.H. Hoang, M.A. Hussain, D. Dochain, Hybrid observer for parameters estimation in ethylene polymerization reactor: a simulation study, Appl. Soft Comput. 49 (2016) 687–698. [17] S.M. Hamze-Ziabari, T. Bakhshpoori, Improving the prediction of ground ′ motion parameters based on an efficient bagging ensemble model of M5 and CART algorithms, Appl. Soft Comput. 68 (2018) 147–161. [18] Y. Mao, F. Ding, A. Alsaedi, T. Hayat, Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems, Signal Process. 128 (2016) 417–425. [19] X. Wang, F. Ding, Recursive parameter and state estimation for an input nonlinear state space system using the hierarchical identification principle, Signal Process. 117 (2015) 208–218. [20] H. Chen, F. Ding, Hierarchical least squares identification for Hammerstein nonlinear controlled autoregressive systems, Circuits Systems Signal Process. 34 (1) (2015) 61–75. [21] Y. Mao, F. Ding, A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems, Digit. Signal Process. 46 (2015) 215–225. [22] Y. Mao, F. Ding, E. Yang, Adaptive filtering-based multi-innovation gradient algorithm for input nonlinear systems with autoregressive noise, Internat. J. Adapt. Control Signal Process. 31 (10) (2017) 1388–1400. [23] Y. Wang, F. Ding, Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model, Automatica 71 (2016) 308–313. [24] Y. Mao, F. Ding, A novel parameter separation based identification algorithm for Hammerstein systems, Appl. Math. Lett. 60 (2016) 21–27. [25] N.I. Chaudhary, M.A.Z. Raja, Identification of Hammerstein nonlinear ARMAX systems using nonlinear adaptive algorithms, Nonlinear Dynam. 79 (2) (2015) 1385–1397. [26] N.I. Chaudhary, M.A.Z. Raja, Design of fractional adaptive strategy for input nonlinear Box–Jenkins systems, Signal Process. 116 (2015) 141–151. [27] N.I. Chaudhary, M.A.Z. Raja, A.U.R. Khan, Design of modified fractional adaptive strategies for Hammerstein nonlinear control autoregressive systems, Nonlinear Dynam. 82 (4) (2015) 1811–1830.
[28] M.S. Aslam, N.I. Chaudhary, M.A.Z. Raja, A sliding-window approximationbased fractional adaptive strategy for Hammerstein nonlinear ARMAX systems, Nonlinear Dynam. 87 (1) (2017) 519–533. [29] N.I. Chaudhary, M.S. Aslam, M.A.Z. Raja, Modified Volterra LMS algorithm to fractional order for identification of Hammerstein non-linear system, IET Signal Process. 11 (8) (2017) 975–985. [30] N.I. Chaudhary, S. Zubair, M.A.Z. Raja, N. Dedovic, Normalized fractional adaptive methods for nonlinear control autoregressive systems, Appl. Math. Model. 66 (2019) 457–471. [31] M.A.Z. Raja, A.A. Shah, A. Mehmood, N.I. Chaudhary, M.S. Aslam, Bioinspired computational heuristics for parameter estimation of nonlinear Hammerstein controlled autoregressive system, Neural Comput. Appl. 29 (12) (2018) 1455–1474, http://dx.doi.org/10.1007/s00521-016-2677-x. [32] S. Boubaker, Identification of nonlinear Hammerstein system using mixed integer-real coded particle swarm optimization: application to the electric daily peak-load forecasting, Nonlinear Dynam. 90 (2) (2017) 797–814. [33] L. Ma, X. Liu, A novel APSO-aided weighted LSSVM method for nonlinear Hammerstein system identification, J. Franklin Inst. B 354 (4) (2017) 1892–1906. [34] A. Mehmood, et al., Nature-inspired heuristic paradigms for parameter estimation of control autoregressive moving average systems, Neural Comput. Appl., 1–24. [35] X. Hong, S. Chen, The system identification and control of Hammerstein system using non-uniform rational B-spline neural network and particle swarm optimization, Neurocomputing 82 (2012) 216–223. [36] A. Naitali, F. Giri, Wiener–Hammerstein system identification–an evolutionary approach, Internat. J. Systems Sci. 47 (1) (2016) 45–61. [37] E. Cuevas, P. Díaz, O. Avalos, D. Zaldívar, M. Pérez-Cisneros, Nonlinear system identification based on ANFIS-Hammerstein model using gravitational search algorithm, Appl. Intell. 48 (1) (2018) 182–203. [38] M.J. Moghaddam, H. Mojallali, M. Teshnehlab, Recursive identification of multiple-input single-output fractional-order Hammerstein model with time delay, Appl. Soft Comput. 70 (2018) 486–500. [39] I. Ahmad, S. Ahmad, M. Awais, S.U.I. Ahmad, M.A.Z. Raja, Neuroevolutionary computing paradigm for Painlevé equation-II in nonlinear optics, Eur. Phys. J. Plus 133 (5) (2018) 184. [40] M.A.Z. Raja, U. Farooq, N.I. Chaudhary, A.M. Wazwaz, Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes, Appl. Soft Comput. 38 (2016) 561–586. [41] I. Ahmad, M.A.Z. Raja, M. Bilal, F. Ashraf, Bio-inspired computational heuristics to study Lane–Emden systems arising in astrophysics model, SpringerPlus 5 (1) (2016) 1866. [42] M.A.Z. Raja, M.A. Manzar, F.H. Shah, F.H. and Shah, Intelligent computing for Mathieu’s systems for parameter excitation, vertically driven pendulum and dusty plasma models, Appl. Soft Comput. 62 (2018) 359–372. [43] Z. Sabir, M.A. Manzar, M.A.Z. Raja, M. Sheraz, A.M. Wazwaz, Neuroheuristics for nonlinear singular Thomas–Fermi systems, Appl. Soft Comput. 65 (2018) 152–169. [44] M.A.Z. Raja, S.A. Niazi, S.A. Butt, An intelligent computing technique to analyze the vibrational dynamics of rotating electrical machine, Neurocomputing 219 (2017) 280–299. [45] M.A.Z. Raja, F.H. Shah, E.S. Alaidarous, M.I. Syam, Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the dynamics of heartbeat model, Appl. Soft Comput. 52 (2017) 605–629. [46] A. Zameer, J. Arshad, A. Khan, M.A.Z. Raja, Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks, Energy Convers. Manage. 134 (2017) 361–372. [47] M.A.Z. Raja, U. Ahmed, A. Zameer, A.K. Kiani, N.I. Chaudhary, Bio-inspired heuristics hybrid with sequential quadratic programming and interiorpoint methods for reliable treatment of economic load dispatch problem, Neural Comput. Appl. (2017) 1–29. [48] P. Civicioglu, Backtracking search optimization algorithm for numerical optimization problems, Appl. Math. Comput. 219 (15) (2013) 8121–8144. [49] K. Yu, J.J. Liang, B.Y. Qu, Z. Cheng, H. Wang, Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models, Appl. Energy 226 (2018) 408–422. [50] J. Lin, Z.J. Wang, X. Li, A backtracking search hyper-heuristic for the distributed assembly flow-shop scheduling problem, Swarm Evol. Comput. 36 (2017) 124–135. [51] F. Zou, D. Chen, S. Li, R. Lu, M. Lin, Community detection in complex networks: Multi-objective discrete backtracking search optimization algorithm with decomposition, Appl. Soft Comput. 53 (2017) 285–295. [52] W.U. Khan, et al., Backtracking search integrated with sequential quadratic programming for nonlinear active noise control systems, Appl. Soft Comput. 73 (2018) 666–683. [53] J.A. Ali, M.A. Hannan, A. Mohamed, M.G. Abdolrasol, Fuzzy logic speed controller optimization approach for induction motor drive using backtracking search algorithm, Measurement 78 (2016) 49–62. [54] M. Modiri-Delshad, N.A. Rahim, Solving non-convex economic dispatch problem via backtracking search algorithm, Energy 77 (2014) 372–381.
A. Mehmood, A. Zameer, N.I. Chaudhary et al. / Applied Soft Computing Journal 84 (2019) 105705 [55] N.N. Islam, M.A. Hannan, H. Shareef, A. Mohamed, An application of backtracking search algorithm in designing power system stabilizers for large multi-machine system, Neurocomputing 237 (2017) 175–184. [56] M. Modiri-Delshad, N.A. Rahim, Multi-objective backtracking search algorithm for economic emission dispatch problem, Appl. Soft Comput. 40 (2016) 479–494. [57] S.D. Madasu, M.S. Kumar, A.K. Singh, Comparable investigation of backtracking search algorithm in automatic generation control for two area reheat interconnected thermal power system, Appl. Soft Comput. 55 (2017) 197–210. [58] S. Nama, A.K. Saha, S. Ghosh, Improved backtracking search algorithm for pseudo dynamic active earth pressure on retaining wall supporting c-Φ backfill, Appl. Soft Comput. 52 (2017) 885–897. [59] C. Zhang, Q. Lin, L. Gao, X. Li, Backtracking search algorithm with three constraint handling methods for constrained optimization problems, Expert Syst. Appl. 42 (21) (2015) 7831–7845. [60] Z. Su, H. Wang, P. Yao, A hybrid backtracking search optimization algorithm for nonlinear optimal control problems with complex dynamic constraints, Neurocomputing 186 (2016) 182–194.
23
[61] M.Z. bin Mohd Zain, J. Kanesan, G. Kendall, J.H. Chuah, Optimization of fed-batch fermentation processes using the backtracking search algorithm, Expert Syst. Appl. 91 (2018) 286–297. [62] S. Yan, J. Zhou, Y. Zheng, C. Li, An improved hybrid backtracking search algorithm based T–S fuzzy model and its implementation to hydroelectric generating units, Neurocomputing 275 (2018) 2066–2079. [63] K. Guney, A. Durmus, Pattern nulling of linear antenna arrays using backtracking search optimization algorithm, Int. J. Antennas and Propagation 2015 (2015). [64] A.O. de Sá, N. Nedjah, L. Mourelle, Distributed and resilient localization algorithm for swarm robotic systems, Appl. Soft Comput. 57 (2017) 738–750. [65] A.R. Jordehi, Optimal allocation of FACTS devices for static security enhancement in power systems via imperialistic competitive algorithm (ICA), Appl. Soft Comput. 48 (2016) 317–328. [66] F. Zou, D. Chen, R. Lu, Hybrid hierarchical backtracking search optimization algorithm and its application, Arab. J. Sci. Eng. 43 (2) (2018) 993–1014.