Chaos, Solitons and Fractals 25 (2005) 475–480 www.elsevier.com/locate/chaos
Ba¨cklund transformation and soliton solutions for KP equation Shu-fang Deng Institute of Mathematics, Fudan University, Shanghai 200433, PeopleÕs Republic of China Accepted 23 November 2004 Communicated by Prof. M. Wadati
Abstract A new representation of N soliton solution and novel N soliton solution for the KP equation are derived through a new form Ba¨cklund transformation. Ó 2005 Elsevier Ltd. All rights reserved.
1. Introduction The KP equation ut ¼ uxxx þ 6uux þ 3@ 1 uyy
ð1:1Þ
was first introduced by Kadomtsev and Peteviashvili [1] in order to study the stability of one-dimensional soliton against transverse perturbations. The N soliton solution for the KP equation was obtained by various methods, for instance, the inverse scattering method [2], Hirota method [3], bilinear Ba¨cklund transformation [4], the trace method [5,6] and Wronskian technique [7] et al. The novel N soliton solution for the KP equation was derived by use of Hirota method [8]. Recently, Zhang and Chen [9,10] have obtained a modified BT by a dependent transformation for some soliton equations, from which some novel soliton can be derived through the Hirota method. In this paper, we would like to consider the solutions of the KP equation similar to Ref. [9,10]. First we present a new form BT in bilinear form through a transformation. Then a new representation of N soliton solution and novel N soliton solution can been derived from the Hirota expansion for special choices of parameter, where the novel N soliton solution was not obtained in Ref. [9,10]. The paper is organized as following. In Section 2, we write the BT in a new bilinear form. In Section 3, the exact solutions for the KP equation are derived by the new form bilinear BT. Finally, a conclusion is given.
E-mail address:
[email protected] 0960-0779/$ - see front matter Ó 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.chaos.2004.11.019
476
S.-f. Deng / Chaos, Solitons and Fractals 25 (2005) 475–480
2. New form Ba¨cklund transformation for the KP equation The bilinear BT [4] for the KP Eq. (1.1) is Dy g f ¼ D2x g f ;
ð2:1aÞ
Dt g f ¼ ðD3x þ 3Dx Dy Þg f ;
ð2:1bÞ
where D is the well-known operator defined by Dmt Dnx a b ¼ ð@ t @ t0 Þm ð@ x @ x0 Þn aðt; xÞbðt0 ; x0 Þjt0 ¼t;x0 ¼x :
ð2:2Þ
The soliton solutions for the KP equation can be denoted by [11] ð2:3Þ
u ¼ 2ðln f Þxx : n
g
Replacing f by e f and g by e g in Eq. (2.1), according to the formula Dmx Dly en f eg g ¼ enþg ½Dx þ ðk hÞm ½Dy þ ðp qÞl f g;
ð2:4aÞ
Dnt en f eg g ¼ enþg ½Dt þ ðx rÞn f g;
ð2:4bÞ
n ¼ kx þ wt þ py þ nð0Þ ;
ð2:4cÞ
g ¼ hx þ rt þ qy þ gð0Þ ;
we can get the new form bilinear BT Dy g f D2x g f 2KDx g f ¼ 0;
ð2:5aÞ
Dt g f D3x g f 3Dx Dy g f 6KD2x g f 12K 2 Dx g f ¼ 0;
ð2:5bÞ
where K is a new parameter. Expanding f and g as f ¼ 1 þ f ð1Þ þ f ð2Þ 2 þ f ð3Þ 3 þ ;
ð2:6aÞ
g ¼ 1 þ gð1Þ þ gð2Þ 2 þ gð3Þ 3 þ :
ð2:6bÞ
Substituting Eq. (2.6) into (2.5) and equating coefficients of yield ð1Þ ð1Þ ð1Þ ð1Þ gð1Þ gð1Þ y fy xx fxx 2Kðg x fx Þ ¼ 0;
ð2:7aÞ
ð2Þ ð2Þ ð2Þ ð2Þ ð1Þ gð2Þ f ð1Þ þ D2x gð1Þ f ð1Þ þ 2KDx gð1Þ f ð1Þ ; gð2Þ y fy xx fxx 2Kðg x fx Þ ¼ Dy g
ð2:7bÞ
ð3Þ ð3Þ ð3Þ ð3Þ ð1Þ gð3Þ f ð2Þ þ gð2Þ f ð1Þ Þ þ D2x ðgð1Þ f ð2Þ þ gð2Þ f ð1Þ Þ gð3Þ y fy xx fxx 2Kðg x fx Þ ¼ Dy ðg
þ 2KDx ðgð1Þ f ð2Þ þ gð2Þ f ð1Þ Þ; . . .
...
ð2:7cÞ
and ð1Þ ð1Þ ð1Þ ð1Þ ð1Þ ð1Þ 2 ð1Þ ð1Þ gð1Þ gð1Þ t ft xxx þ fxxx 3gxy 3fxy 6Kðg xx þ fxx Þ 12K ðgx fx Þ ¼ 0;
ð2:8aÞ
ð2Þ ð2Þ ð2Þ ð2Þ ð2Þ ð2Þ 2 ð2Þ ð2Þ gð2Þ gð2Þ t ft xxx þ fxxx 3gxy 3fxy 6Kðg xx þ fxx Þ 12K ðgx fx Þ
¼ Dt gð1Þ f ð1Þ þ D3x gð1Þ f ð1Þ þ 3Dx Dy gð1Þ f ð1Þ þ 6KD2x gð1Þ f ð1Þ þ 12K 2 Dx gð1Þ f ð1Þ ;
ð2:8bÞ
ð3Þ ð3Þ ð3Þ ð3Þ ð3Þ ð3Þ 2 ð3Þ ð3Þ gð3Þ gð3Þ t ft xxx þ fxxx 3gxy 3fxy 6Kðg xx þ fxx Þ 12K ðgx fx Þ
¼ Dt ðgð1Þ f ð2Þ þ gð2Þ f ð1Þ Þ þ D3x ðgð1Þ f ð2Þ þ gð2Þ f ð1Þ Þ þ 3Dx Dy ðgð1Þ f ð2Þ þ gð2Þ f ð1Þ Þ þ 6KD2x ðgð1Þ f ð2Þ þ gð2Þ f ð1Þ Þ þ 12K 2 Dx ðgð1Þ f ð2Þ þ gð2Þ f ð1Þ Þ; . . .
...
3. Solutions of the KP equation In this section we are going to derive some exact solutions for the KP equation from the new form BT.
ð2:8cÞ
S.-f. Deng / Chaos, Solitons and Fractals 25 (2005) 475–480
3.1. A new representation of N-soliton solution for K ¼
pj k j 2
477
, j ¼ 1,2, . . . ,N
1 A zero soliton solution corresponds to f = 1 which yields u = 0. g then satisfies, by Eqs. (2.7)–(2.8) when K ¼ p1 k 2
ð0Þ
gð1Þ ¼ en1 ;
n1 ¼ k 1 ðx þ x1 t þ p1 yÞ þ n1 ;
ð2:9aÞ
gðjÞ ¼ 0; j ¼ 2; 3; . . . ;
x1 ¼ k 21 þ 3p21 ;
ð2:9b;cÞ
g ¼ g1 ¼ 1 þ en1 :
ð2:9dÞ
Therefore the one soliton solution for the KP equation is u ¼ 2ðln g1 Þxx ¼
k 21 n sech2 1 : 2 2
ð2:10Þ
2 If we take f = g1 given by (2.9) and K ¼ p2 k , then the solution generated by the new form bilinear BT is given by 2
gð1Þ ¼ b1 en1 þ b2 en2 ; gðjÞ ¼ 0; b1 ¼
ð0Þ
gð2Þ ¼ b3 en1 þn2 ;
nl ¼ k l ðx þ xl t þ pl yÞ þ nl ; l ¼ 1; 2;
j ¼ 3; 4; . . . ;
ð2:11aÞ ð2:11bÞ
k 1 þ k 2 þ p1 p2 ; k 1 k 2 p1 þ p2
b2 ¼
k 1 þ k 2 p1 þ p2 ; k 1 k 2 p1 þ p2
b3 ¼
k 1 k 2 þ p1 p2 k 1 k 2 p1 þ p2
ð2:11cÞ
and g ¼ g2 ¼ 1 þ b1 en1 þ b2 en2 þ b3 en1 þn2 :
ð2:11dÞ
The corresponding two soliton solution is obtained from u = 2(ln g2)xx. Generally, taking f = gN1, we can get the N soliton solution where " # ( ) N N N X X X X g¼ exp lj nj þ ð1 ll ÞBjl þ lj ll ðC jl þ ipÞ ; l¼0;1
eBjl ¼
l¼1;l6¼j
j¼1
k l þ k j pl þ pj ; k l k j pl þ pj
eCjl ¼
ð2:12aÞ
16j
k j k l þ p j pl : k j k l p j þ pl
ð2:12bÞ
Eqs. (2.12) can be further written as ( ) N N X X X 0 g¼ exp lj nj þ lj ll ðC jl Bjl Blj þ ipÞ ; l¼0;1
n0j ¼ nj þ
N X
ð2:13aÞ
16j
j¼1
eCjl Bjl Blj þip ¼
Bjl ;
l¼1;l6¼j
ðk l k j Þ2 ðpl pj Þ2 ðk l þ k j Þ2 ðpl pj Þ2
¼ eAjl ;
ð2:13bÞ
which is coincidence with the N-soliton solution for the KP equation by Hirota method [11]. 3.2. Novel multi-soliton solutions for K ¼
pj k j 2
, j ¼ 1,3,5, . . . ,2N 1 and K ¼
pj1 k j1 2
, j ¼ 2,4,6, . . . ,2N
1 1 2 , we can derive the one soliton solution (2.10). If we take f = g1 and K ¼ p1 k (not K ¼ P 2 k ), Taking f = 1, K ¼ p1 k 2 2 2 from (2.7)–(2.8), we have
gð1Þ ¼ g1 en1 ; gð2Þ ¼
a11 þ k 1 2n1 e ; k1
x1 ¼ k 31 þ 3p21 ;
ð0Þ
ð2:14aÞ
gðjÞ ¼ 0; j ¼ 3; 4; . . . ;
ð2:14bÞ
g1 ¼ a11 x þ a12 t þ a13 y þ g1 ;
a12 ¼ 3½4k 21 p1 þ a11 ðk 1 þ p1 Þ2 ;
g ¼ g2 ¼ 1 þ g1 en1 þ
a11 þ k 1 2n1 e : k1
a13 ¼ a11 k 1 þ 2k 21 þ a11 p1 ;
ð2:14cÞ ð2:15Þ
478
S.-f. Deng / Chaos, Solitons and Fractals 25 (2005) 475–480
The one soliton solution a11 þ k 1 2n1 u ¼ 2ðln gÞxx ¼ 2 ln 1 þ g1 en1 þ e k1 xx
ð2:16Þ
is uniform with the novel one soliton solution for the KP equation by Hirota method [8]. 2 , by solving (2.7)–(2.8), we can get If f = g2, K ¼ p2 k 2 gð1Þ ¼ ðd 1 g1 þ d 2 Þen1 þ d 3 en2 ; d1 ¼
d3 ¼
k 1 þ k 2 þ p1 p2 ; k 1 k 2 p1 þ p2
ðk 1 þ k 2 p1 þ p2 Þ2 ðk 1 k 2 p1 þ p2 Þ2
ð2:17aÞ d2 ¼
d6 ¼
ðk 1 k 2 p1 þ p2 Þ2
ð2:17bÞ
;
ð2:17cÞ
;
gð2Þ ¼ ðd 4 g1 þ d 5 Þen1 þn2 þ d 6 e2n1 ; d4 ¼
2 2k 21 þ a11 ðk 1 k 2 p1 þ p2 Þ
gð3Þ ¼ d 7 e2n1 þn2 ;
ðk 1 k 2 þ p1 p2 Þðk 1 þ k 2 p1 þ p2 Þ ðk 1 k 2 p1 þ p2 Þ2
ða11 þ k 1 Þðk 1 þ k 2 þ p1 p2 Þ2 k 1 ðk 1 k 2 p1 þ p2 Þ2
d5 ¼
;
d7 ¼
;
gðjÞ ¼ 0;
j ¼ 4; 5; . . . ;
ð2:18aÞ
2½2k 21 þ a11 ðk 1 þ k 2 p1 þ p2 Þ ðk 1 k 2 p1 þ p2 Þ2
;
ða11 þ k 1 Þðk 1 k 2 þ p1 p2 Þ2
ð2:18bÞ
ð2:18cÞ
k 1 ðk 1 k 2 p1 þ p2 Þ2
and g ¼ g3 ¼ ðd 1 g1 þ d 2 Þen1 þ d 3 en2 þ ðd 4 g1 þ d 5 Þen1 þn2 þ d 7 e2n1 þn2 :
ð2:19Þ
2 Let f = g3 and K ¼ p2 k , from (2.7)–(2.8) we have 2
gð1Þ ¼ ðd 8 g1 þ d 9 Þen1 þ ðd 10 g2 þ d 11 Þen2 ; xj ¼ k 2j þ 3p2j ; d8 ¼
aj2 ¼ 3½4k 2j pj þ aj1 ðk j þ pj Þ2 ;
ðk 1 þ k 2 þ p1 p2 Þ2 ðk 1 k 2 p1 þ p2 Þ
d 10 ¼
ð0Þ
gj ¼ aj1 x þ aj2 t þ aj3 y þ gj ;
2
ðk 1 þ k 2 p1 þ p2 Þ2 ðk 1 k 2 p1 þ p2 Þ
d9 ¼
;
2
;
ð2:20aÞ
aj3 ¼ aj1 k j þ 2k 2j þ aj1 pj ;
j ¼ 1; 2;
4ðk 1 þ k 2 þ p1 p2 Þ½2k 21 þ a11 ðk 1 k 2 p1 þ p2 Þ
d 11 ¼
ðk 1 k 2 p1 þ p2 Þ3
ð2:20bÞ ð2:20cÞ
;
4ðk 1 þ k 2 p1 þ p2 Þ½2k 22 þ a21 ðk 1 k 2 p1 þ p2 Þ ðk 1 k 2 p1 þ p2 Þ3
;
ð2:20dÞ
gð2Þ ¼ ðd 12 g1 g2 þ d 13 g2 þ d 14 g1 þ d 15 Þen1 þn2 þ d 16 e2n1 þ d 17 e2n2 ;
ð2:21aÞ
gð3Þ ¼ ðd 18 g2 þ d 19 Þe2n1 þn2 þ ðd 20 g1 þ d 21 Þen1 þ2n2 ;
ð2:21bÞ
gð4Þ ¼ d 22 e2n1 þ2n2 ;
ð2:21cÞ
d 12 ¼
d 13 ¼
gðlÞ ¼ 0;
l ¼ 5; 6; . . . :
ðk 1 k 2 þ p1 p2 Þðk 1 þ k 2 þ p1 p2 Þðk 1 þ k 2 p1 þ p2 Þ ðk 1 k 2 p1 þ p2 Þ3
ð2:22aÞ
;
4f2k 21 ½k 21 k 22 ðp1 pÞ2 þ a11 ½k 21 k 22 2k 1 ðp1 p2 Þ þ ðp1 p2 Þ2 ðk 1 þ p1 p2 Þg
d 14 ¼
ðk 1 k 2 p1 þ p2 Þ4 4f2k 22 ½k 21 k 22 þ ðp1 pÞ2 a21 ½k 21 þ ðk 2 þ p1 p2 Þ2 ðk 2 p1 þ p2 Þg ðk 1 k 2 p1 þ p2 Þ4
;
;
ð2:22bÞ
ð2:22cÞ
S.-f. Deng / Chaos, Solitons and Fractals 25 (2005) 475–480
479
d 15 ¼ 4f4k 21 ½2k 22 þ a21 ðk 2 p1 þ p2 Þ þ a11 ½4k 22 ðk 1 þ p1 p2 Þ þ a21 ½k 21 þ k 22 2k 2 ðp1 p2 Þ 3ðp1 p2 Þ2 2k 1 ðk 2 p1 þ p2 Þg=ðk 1 k 2 p1 þ p2 Þ4 ; d 16 ¼
d 18 ¼
ða21 þ k 2 Þðk 1 þ k 2 p1 þ p2 Þ4 k 2 ðk 1 k 2 p1 þ p2 Þ
ða11 þ k 1 Þðk 1 þ k 2 þ p1 p2 Þ4 k 1 ðk 1 k 2 p1 þ p2 Þ4
k 1 ðk 1 k 2 p1 þ p2 Þ4
ð2:22eÞ
;
ð2:23aÞ
;
4ða11 þ k 1 Þ½k 21 k 22 þ 2k 1 ðp1 p2 Þ þ ðp1 p2 Þ2 ½2k 22 þ a21 ðk 1 þ k 2 þ p1 p2 Þ k 1 ðk 1 k 2 p1 þ p2 Þ4
ða21 þ k 2 Þ½k 21 ðk 2 p1 þ p2 Þ2 2 k 2 ðk 1 k 2 p1 þ p2 Þ4
d 21 ¼
d 22 ¼
d 17 ¼
;
ða11 þ k 1 Þ½k 21 k 22 þ 2k 1 ðp1 p2 Þ þ ðp1 p2 Þ2 2
d 19 ¼
d 20 ¼
4
ð2:22dÞ
;
ð2:23bÞ
ð2:23cÞ
;
4ða21 þ k 2 Þ½k 21 þ ðk 2 p1 þ p2 Þ2 ½2k 21 þ a11 ðk 1 þ k 2 p1 þ p2 Þ k 2 ðk 1 k 2 p1 þ p2 Þ4
ð2:23dÞ
;
ða11 þ k 1 Þða21 þ k 2 Þðk 1 k 2 þ p1 p2 Þ4
ð2:24Þ
k 1 k 2 ðk 1 k 2 p1 þ p2 Þ4
and g ¼ g4 ¼ 1 þ ðd 8 g1 þ d 9 Þen1 þ ðd 10 g2 þ d 11 Þen2 þ ðd 12 g1 g2 þ d 13 g2 þ d 14 g1 þ d 15 Þen1 þn2 þ d 16 e2n1 þ d 17 e2n2 þ ðd 18 g2 þ d 19 Þe2n1 þn2 þ ðd 20 g1 þ d 21 Þen1 þ2n2 þ d 22 e2n1 þ2n2 ;
ð2:25Þ
from which we can get the two novel soliton solution for the KP equation. N Generally, taking f = g2(N1), K ¼ pN k , we have 2 ( " !#)( lj ðl2j 1Þ N 1 1 X X X NY aj1 þ k j exp lN nN þ 2 BNl ½aj1 ð@ kj þ @ pj Þ þ 2k j @ pj lj ð2lj Þ g ¼ g2N 1 ¼ k j lN ¼0;1 l¼0;1;2 j¼1 l¼1 ! " #) N 1 N 1 N X X X 0 0 exp lj nj þ 2 Bjl þ BjN þ lj ll C jl Bjl Blj þ ip jB0 ¼Bjl ;B0 ¼BjN ; ð2:26Þ l¼1;l6¼j
j¼1
jl
16j
jN
N , we can get the N novel soliton solution where If f = g2N1 and K ¼ pN k 2
g¼
N X Y aj1 þ k j kj
l¼0;1;2 j¼1
"
exp
N X
lj nj þ 2
½aj1 ð@ kj þ @ pj Þ þ 2k j @ pj lj ð2lj Þ
N X
! B0jl
l¼1;l6¼j
j¼1 0
lj ðlj 1Þ 2
þ
N X
# lj ll ðC jl Bjl Blj þ ipÞ jB0 ¼Bjl ; jl
16j
ð2:27Þ
k 0 þk 0 p0 þp0
here eBjl ¼ k l0 kj0 pl0 þpj0 . l
j
l
j
Let aj1 = 2kj. Eqs. (2.26) and (2.27) can be rewritten as " # " # 1 N 1 N lj ðlj 1Þ X NY X X X lj ð2lj Þ ~ ~ 2 expðlN nN Þ ð1Þ ð2k j @ k j Þ exp lj nj þ lj ll Ajl ; g¼ lN ¼0;1
~nN ¼ nN þ 2
l¼0;1;2 j¼1 N 1 X l¼1
BNl ;
~nj ¼ nj þ 2
j¼1 N 1 X l¼1;l6¼j
B0jl þ B0jN ;
ð2:28aÞ
16j
ð2:28bÞ
480
S.-f. Deng / Chaos, Solitons and Fractals 25 (2005) 475–480
g¼
N X Y
ð1Þ
lj ðlj 1Þ 2
l¼0;1;2 j¼1
nj ¼ nj þ 2
N X
ð2k j @ kj Þlj ð2lj Þ exp
" N X
nj þ lj
j¼1
N X
# ð2:29aÞ
lj ll Ajl ;
16j
B0jl :
ð2:29bÞ
l¼1;l6¼j
In Ref. [8], if take f ð1Þ ¼
N 1 X
ð0Þ
ð0Þ
gj enj þ enN ; nj ¼ k j ðxj t þ x þ pj yÞ þ nj ; gj ¼ aj t þ bj x þ cj y þ gj :
ð2:30Þ
j¼1
We can get the N soliton solution which is uniform with (2.28). Eq. (2.29) is uniform with the N novel soliton solution for the KP equation [8].
4. Conclusion In this paper, the new form bilinear BT for the KP equation is derived. Through the new form BT we can not only get a new representation of N soliton solutions but also derive the novel N soliton solutions. The present method is also applicable to other nonlinear evolution equations.
Acknowledgment I am grateful to D.Y. Chen for his valuable discussion. I also would like to express my sincere thanks to the referees for their helpful suggestion. This project is supported by the National Science Foundation of China (10371070) and the Postdoctoral Science Foundation of China.
References [1] Kadomtsev BB, Petviashvili VI. Sov Phys Doklady 1970;15:539. [2] Zakharov VE, Shabat AB. Funct Anal Appl 1974;8:226; Zakharov VE, Shabat AB. Sov Sci Rev 1980;A1:133. [3] Satsuma J. J Phys Soc Jpn 1976;40:286. [4] Hirota R. Soliton. In: Bullough RK, Caudrey PJ, editors. Direct methods in soliton theory. Berlin: Springer; 1980. [5] Wadati M, Sawada K. J Phys Sco Jpn 1980;48:312. 1980;48:319. [6] Ohkuma K, Wadati M. J Phys Sco Jpn 1983;52:749. [7] Freeman NC, Nimmo JJC. Phys Lett A 1983;95:1. [8] Deng SF, Chen DY. J Phys Soc Jpn 2001;70:3174. [9] Zhang Y, Chen DY. Chaos, Solitons & Fractals 2004;20:343. [10] Zhang Y, Chen DY. Chaos, Solitons & Fractals 2005;23:175. [11] Ablowitz MJ, Segur H. Soliton and inverse scattering transform. Philadelphia: SIAM; 1981.