Neurochemistry International xxx (2017) 1e7
Contents lists available at ScienceDirect
Neurochemistry International journal homepage: www.elsevier.com/locate/nci
Bidirectional interactions between diabetes and Alzheimer's disease Mitsuru Shinohara, Naoyuki Sato* Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi 474-8511, Japan
a r t i c l e i n f o
a b s t r a c t
Article history: Received 31 October 2016 Received in revised form 24 April 2017 Accepted 27 April 2017 Available online xxx
Clinical studies have indicated that diabetes is associated with Alzheimer's disease (AD) and neurodegeneration. However, the mechanisms underlying this association have not been fully elucidated. Diabetes causes neurodegeneration by inducing changes in vascular function and structure, glucose metabolism, and insulin signaling, as well as by modifying b amyloid (Ab)/tau metabolisms. In turn, AD influences systemic glucose metabolism by inducing behavioral changes, memory disturbances, hypothalamic dysfunction, frailty and possibly plasma/peripheral Ab level changes. Hypoglycemia, one of the major conditions encountered during the treatment of patients with diabetes, may also contribute to neurodegeneration. Through this vicious circle, diabetes and AD may cooperate to cause neurodegeneration. Various molecular, cellular, inter-organ, physical and clinical factors might contribute to the bidirectional interactions between diabetes and AD. Explorations of a key factor that underlies the bidirectional interactions, “Factor X”, could lead to the development of a potential therapeutic target for neurodegeneration. Factor X should fulfill the following equation: neurodegeneration equals Ab levels multiplied by Factor X. © 2017 Published by Elsevier Ltd.
Keywords: Diabetes Neurodegeneration Alzheimer's disease Ab Tau
Contents 1. 2.
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Diabetes and neurodegeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1. Diabetes and cognitive decline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2. Diabetes and brain atrophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3. Diabetes and cerebrovascular changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4. Diabetes, brain glucose metabolism and insulin signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5. Diabetes and AD pathology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.1. Ab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5.2. Tau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6. AD and diabetes/glucose intolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. Introduction Emerging evidence indicates that diabetes increases the risk of
* Corresponding author. E-mail address:
[email protected] (N. Sato).
00 00 00 00 00 00 00 00 00 00 00 00 00
Alzheimer's disease (AD) and neurodegeneration. However, the mechanisms by which diabetes modifies AD and the mechanisms underlying diabetes-associated peripheral neuropathy remain unclear (Sato and Morishita, 2013b, 2015). Insulin resistance in midlife is associated with neurodegeneration surrounding senile plaques (Matsuzaki et al., 2010), although retrospective studies have suggested that the magnitude of senile plaques is comparable between
http://dx.doi.org/10.1016/j.neuint.2017.04.020 0197-0186/© 2017 Published by Elsevier Ltd.
Please cite this article in press as: Shinohara, M., Sato, N., Bidirectional interactions between diabetes and Alzheimer's disease, Neurochemistry International (2017), http://dx.doi.org/10.1016/j.neuint.2017.04.020
2
M. Shinohara, N. Sato / Neurochemistry International xxx (2017) 1e7
individuals with AD and diabetes and those with AD and without diabetes (Kalaria, 2009). Indeed, diabetes alters brain structure and function through various mechanisms, and its contributions to dementia vary among patients (Sato and Morishita, 2014). Furthermore, a dual effect has been observed. In addition to the effect of diabetes on AD, the effects of AD on diabetes and systemic metabolism may further contribute to the tendency of these two seemingly unrelated diseases to exacerbate one another. 2. Diabetes and neurodegeneration 2.1. Diabetes and cognitive decline Diabetes/impaired glucose tolerance is associated with mild cognitive impairment (MCI) (Roberts et al., 2014b) and with the progression to dementia in patients with MCI (Morris et al., 2014). Higher HbA1c levels are a risk factor for cognitive dysfunction (West et al., 2014) and for behavioral and psychological symptoms (Sakurai et al., 2014). Importantly, in a study of patients with familial AD harboring presenilin mutations, individuals with diabetes exhibited greater cognitive decline after the onset of AD (AguirreAcevedo et al., 2016). In patients with sporadic AD, patients with diabetes and substantial AD pathological changes exhibited lower cognitive function than patients with the pathological changes alone (Abner et al., 2016). Even among individuals without AD, cognitive function decreases more rapidly in patients with diabetes than in the controls (Weinstein et al., 2015; Redondo et al., 2016). In Holmes and colleagues' assessment of patients with diabetes who presented with hypoglycemia and hyperglycemia induced by an artificial insulin/glucose infusion, cognitive function was delayed when the patients’ glucose levels were altered (Holmes et al., 1983). According to observational studies, the use of anti-diabetic treatments is associated with a reduced risk of dementia (Heneka et al., 2015) (Ng et al., 2014), but other studies did not report similar observations (Moore et al., 2013). In the randomized Memory in Diabetes (MIND) sub-study of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) study, intensive glycemic control had no effect on cognitive function (Launer et al., 2011) (Strachan and Price, 2014). Intensive treatment increases the incidence of hypoglycemia (McCoy et al., 2016). Indeed, hypoglycemia is associated with cognitive impairment and dementia in elderly patients with diabetes (Whitmer et al., 2009; Yaffe et al., 2013; Pilotto et al., 2014). Therefore, diabetes treatments are considered to prevent hyperglycemia and hypoglycemia, improve cognitive performance and aid in preventing dementia. 2.2. Diabetes and brain atrophy Diabetes reduces brain volume (Sato and Morishita, 2014), including the volumes of the hippocampus (Kerti et al., 2013; Moran et al., 2013; Roberts et al., 2014b; Hirabayashi et al., 2016), gray matter (Garcia-Casares et al., 2014; Li et al., 2016) and white matter (Moran et al., 2013). Gray matter loss occurs in the frontal and temporal lobes and in the anterior cingulate cortex (Moran et al., 2013; Garcia-Casares et al., 2014; Roberts et al., 2014b; Erus et al., 2015), whereas white matter loss is also observed in the adjacent regions (Moran et al., 2013). Even in young adults, hyperglycemia is associated with brain atrophy (Weinstein et al., 2015). In animal models, neurodegeneration has been shown to be caused by the disturbance of glucose metabolism with substantial Ab levels in mice overexpressing mutant amyloid precursor protein (APP) crossed with ob/ob mice (Takeda et al., 2010). Moreover, a high-fat diet (Thiebaud et al., 2014), glucose transporter 1 (GLUT1) deficiency (Winkler et al., 2015), over-activation of the energy sensor AMP-activated protein kinase (AMPK) (Mairet-Coello
et al., 2013), and disruption of mammalian target of rapamycin (mTOR) signaling (Perluigi et al., 2015) have been shown to cause neurodegeneration. 2.3. Diabetes and cerebrovascular changes Diabetes increases vascular changes in the brain, heart, kidney and other organs. Vascular changes are concomitantly observed more frequently in the brains of patients with AD and diabetes than in patients with AD without diabetes (Kalaria, 2009). Compared to non-diabetes conditions, diabetes increases cerebral infarct volumes by more than 2-fold (Tanizaki et al., 2000; Arvanitakis et al., 2006; Roberts et al., 2011). Diabetes increases atherosclerosis in the brain by inducing insulin resistance and hyperglycemia (Schmidt et al., 1995; Vicent et al., 2003; Piga et al., 2007). Insulin resistance reduces nitric oxide production (Vicent et al., 2003), which alters the blood vessel reflex and increases the levels of adhesion molecules, which recruit monocytes to the vessel wall. Monocytes penetrate deep into the blood vessel wall and cause inflammation, resulting in arteriosclerosis. Advanced glycation end-products (Schmidt et al., 1995) or high glucose levels (Piga et al., 2007) increase the expression of vascular cell adhesion molecule-1 (VCAM1) in endothelial cells and subsequent inflammation and reduce NO production to exacerbate arteriosclerosis. Moreover, half of patients with diabetes are hypertensive (Sowers et al., 2001; Sowers, 2013), which accelerates vascular injury in the brain (Bouchi et al., 2010). 2.4. Diabetes, brain glucose metabolism and insulin signaling In humans, diabetes/hyperglycemia are associated with brain hypometabolism (Roberts et al., 2014a; Ishibashi et al., 2016; Li et al., 2016). Changes in the distribution pattern of [18F]-fluorodeoxyglucose (F-FDG) depend on the plasma glucose levels, and an AD-like pattern can appear in patients with hyperglycemia (Roberts et al., 2014a; Ishibashi et al., 2016). In an Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, whole brain F-FDG uptake was lower in patients with MCI and diabetes than in patients with MCI without diabetes (Li et al., 2016), indicating that diabetes modifies brain glucose metabolism in the pre-dementia state. Insulin signaling also occurs in the brain (Sato et al., 2011). Brain insulin resistance has been reported in patients with AD (Talbot et al., 2012) and in animal models of diabetes (Takeda et al., 2010; Sato et al., 2011; Morales-Corraliza et al., 2016; Sajan et al., 2016). The expression of insulin-like growth factor-1 (IGF1)-binding protein, an inhibitor that binds IGF1, is increased in patients with peripheral diabetic neuropathy, and inhibition of IGF1 by overexpressing IGF1-binding protein in mice resulted in the development of motor axonopathy and sensory deficits (Rauskolb et al., 2016), indicating that the dysregulation of insulin/IGF signaling might also contribute to CNS neurodegeneration induced by diabetes. The molecular mechanism underlying the link between insulin signaling and neurodegeneration warrants further study. 2.5. Diabetes and AD pathology 2.5.1. Ab Diabetes/hyperglycemia modify Ab accumulation in the brains of wild type animals (Sparks et al., 1994) and animal models of AD (Refolo et al., 2000; Ho et al., 2004; Takeda et al., 2010). Hyperglycemia may increase Ab production by increasing the synaptic release of Ab (Macauley et al., 2015) or modulating APP processing and metabolism (Son et al., 2012) through molecules such as beta secretase-1 (BACE1) (Guglielmotto et al., 2012), glycogen synthase kinase-3b (GSK3b) (Phiel et al., 2003; Sereno et al., 2009; Sofola et al., 2010; Jaworski et al., 2011), or insulin-degrading enzymes
Please cite this article in press as: Shinohara, M., Sato, N., Bidirectional interactions between diabetes and Alzheimer's disease, Neurochemistry International (2017), http://dx.doi.org/10.1016/j.neuint.2017.04.020
M. Shinohara, N. Sato / Neurochemistry International xxx (2017) 1e7
3
Table 1 Bidirectional interactions between diabetes and Alzheimer's disease (AD) in humans and animal models. Humans
Animal models
Diabetes and AD Vascular changes Increased (Arvanitakis et al., 2006; Kalaria, 2009) Insulin signaling Decreased (Talbot et al., 2012) Glucose metabolism Treatments (hypoglycemia) Ab/Tau
AD and diabetes/ systemic glucose metabolism
Behavioral changes and Memory disturbances Hypothalamus Plasma/ peripheral Ab Frailty/ sarcopenia
Decreased (Roberts et al., 2011, 2014a, 2014b)
Increased (Takeda et al., 2009, 2010, 2012) Increased (Sajan et al., 2016) or decreased (Takeda et al., 2009, 2010, 2012) e
Increased risk for dementia (Yaffe et al., 2013)
e
Decreased Ab levels (Kalaria, 2009), or unchanged Ab levels (Arvanitakis et al., 2006, Kalaria, 2009, Roberts et al., 2011, 2014a, 2014b; Pruzin et al., 2016)/increased phospho-Tau levels (Starks et al., 2015) or unchanged phospho-Tau levels (Arvanitakis et al., 2006; Kalaria, 2009, Pruzin et al., 2016)
Increased Ab levels (Sparks et al., 1994; Refolo et al.2000; Ho et al., 2004; Macauley et al., 2015; Sajan et al., 2016)/increased phospho-Tau levels (Ke et al.2009; Kim et al., 2009; Qu et al., 2011; El Khoury et al., 2016; Guo et al., 2016; Morales-Corraliza et al., 2016; Sajan et al., 2016) or unchanged Tau pathology (Gratuze et al., 2016) e e
Increased (Burns et al., 1990; Shinagawa et al., 2016)
Impaired (van de Nes et al., 1998) Increased plasma Ab (Takeda et al., 2009, 2010, 2012), pancreas Ab (Miklossy et al., 2008) and skeletal muscle Ab levels (Roher et al., 2009) Common (Oosterveld et al., 2014)
Impaired (Clarke et al., 2015) Increased plasma Ab levels (Takeda et al., 2009, 2010, 2012; Zhang et al., 2013) e
Fig. 1. Bidirectional interactions between diabetes and Alzheimer's disease (AD) and a key factor that underlies the interactions, “Factor X”. A, Various mechanisms contributing to the bidirectional interactions between diabetes and AD, as well as a key factor that underlies the interactions. B, Equation: neurodegeneration equals Ab levels multiplied by Factor X.
(IDE) (Vekrellis et al., 2000). However, firm evidence showing that diabetes increases Ab deposition in humans is not currently available (Tomita et al., 2013; Roberts et al., 2014a). Rather, hyperglycemia and Ab may cooperate to induce neurodegeneration (Akhtar et al., 2016). 2.5.2. Tau In humans, insulin resistance is associated with neurodegeneration, tau phosphorylation surrounding senile plaques (Matsuzaki et al., 2010), and higher tau levels in the cerebrospinal
fluid (CSF) (Starks et al., 2015). In turn, the CSF tau levels predict changes in neurodegeneration and brain glucose metabolism (Dowling et al., 2015). Moreover, tau phosphorylation at the sites implicated in AD is increased in the brains of subjects with diabetes (Liu et al., 2009). Tau phosphorylation is increased in animal models of both type 1 (Clodfelder-Miller et al., 2006; Jolivalt et al., 2008; Ke et al., 2009; Qu et al., 2011; Morales-Corraliza et al., 2016) and type 2 diabetes (Kim et al., 2009; El Khoury et al., 2016; Guo et al., 2016), potentially through the deregulation of c-Jun N-terminal kinase (JNK), AMPK, and protein phosphatase 2A (PP2A)
Please cite this article in press as: Shinohara, M., Sato, N., Bidirectional interactions between diabetes and Alzheimer's disease, Neurochemistry International (2017), http://dx.doi.org/10.1016/j.neuint.2017.04.020
4
M. Shinohara, N. Sato / Neurochemistry International xxx (2017) 1e7
(Mairet-Coello et al., 2013; El Khoury et al., 2016). However, according to retrospective human neuropathological studies, the number of neurofibrillary tangles (NFTs) in the brain at autopsy did not differ between patients with AD and diabetes and those with AD and without diabetes (Arvanitakis et al., 2006; Kalaria, 2009; Abner et al., 2016; Pruzin et al., 2016), and diabetes/hyperglycemia did not affect tau pathogenesis in human tau transgenic mice (Gratuze et al., 2016). Based on these findings, diabetes may mediate Ab-induced tau phosphorylation in early stages but does not exacerbate NFTs at later stages. 2.6. AD and diabetes/glucose intolerance Interestingly, patients with AD have also been reported to present glucose intolerance (Bucht et al., 1983; Meneilly and Hill, 1993; Janson et al., 2004). However, a causal relationship was not determined in these clinical studies. Studies using animal models have effectively shown an effect of AD on peripheral glucose metabolism (Takeda et al., 2010; Sato et al., 2011; Clarke et al., 2015; Ruiz et al., 2016). Although further evidence is needed to confirm these findings, studies investigating the mechanisms by which AD affects the diabetic phenotype are intriguing. Several potential mechanisms have been proposed. First, behavioral changes induced by neurodegeneration in the hippocampus and/or the frontal lobe may be involved in the phenotype. As described above, diabetes causes neurodegeneration in the frontal lobe, hippocampus and white matter and leads to subsequent behavioral changes and memory disturbances. Binge-eating, an eating disorder characterized by recurrent episodes of eating large quantities of food, is also sometimes observed in patients with AD (Burns et al., 1990) and eatingrelated problems, such as overeating, are common in patients with dementia, including AD (Shinagawa et al., 2016). Therefore, these behavioral changes might contribute to the modifications of systemic metabolism, although further studies are required. Second, Ab deposition and tau phosphorylation in the hypothalamus may contribute to an impairment of the central control of peripheral glucose metabolism in patients with AD (van de Nes et al., 1998). In support of these findings, an intracerebroventricular infusion of Ab into the hypothalamus induced peripheral metabolic deregulation (Clarke et al., 2015). Third, plasma/peripheral Ab levels might also mediate peripheral insulin resistance. Plasma Ab levels increase after glucose loading in an AD mouse model and patients with AD, although to a lesser extent (Takeda et al., 2009, 2012; Sato and Morishita, 2013a). Plasma Ab levels also play a role in impaired glucose tolerance and hepatic insulin signaling in AD mice (Zhang et al., 2013). In addition, Ab accumulation also occurs in the pancreas (Miklossy et al., 2008) and skeletal muscle (Roher et al., 2009) and may contribute to the effect on peripheral glucose metabolism. Fourth, frailty is common in patients with AD (Oosterveld et al., 2014). Frailty/sarcopenia causes insulin resistance in skeletal muscle (Cleasby et al., 2016), mediating the link between AD and diabetes. Potential strategies towards identifying Factor X that underlies the bidirectional interactions between diabetes and AD. As shown in a recent large randomized controlled trial, a 2-year multidisciplinary intervention, including exercise and diet, improves or maintains cognitive function in at-risk elderly people (Ngandu et al., 2015). Breaking the vicious circle between diabetes and neurodegeneration might contribute to the prevention of dementia. As discussed in this review, various molecular, cellular, inter-organ, physical and clinical factors might contribute to the bidirectional interactions between diabetes and AD (Table 1). Each factor may be a therapeutic target, as has been discussed previously (Sato and Morishita, 2013b). Briefly, vascular and metabolic components in both short- and long-term should be taken into account
for preventing dementia, although the contributions of these components vary among individuals. For vasculature, amelioration of functional vascular impairment and prevention of irreversible vascular events are needed. For metabolic components, appropriate anti-diabetic therapy is required to avoid hypoglycemia, although vascular complication also should be prevented. Exploring a key factor (Factor X) that underlies these bidirectional interactions could lead to the development of a potential therapeutic target for neurodegeneration (Fig. 1). Factor X is supposed to be a key molecule/pathway that links Ab to neurodegeneration, and it also governs a vicious cycle between AD and diabetes. As such, the level of neurodegeneration based on clinical evidence should equal Ab levels multiplied by Factor X. In addition, evidence from cellular and animal models would be necessary to determine Factor X, e.g. if genetic deletion or pharmacological blockade of a specific pathway or gene in APP and/or APP mice with diabetes led to recovery from cognitive deterioration, neurodegeneration and/or AD-accelerated diabetes, it could be a Factor X. It would not be a simple task to identify Factor X but it should be a worthwhile endeavor given that it could lead to a novel target for the development of effective pharmaceuticals for dementia and diabetes that would benefit millions of patients suffering from these devastating diseases. Acknowledgments This work was supported in part by the Research Funding for Longevity Sciences from the National Center for Geriatrics and Gerontology (28-45); Grants-in-Aid from Japan Promotion of Science; the Japanese Ministry of Education, Culture, Sports, Science and Technology and the Japan Science and Technology Agency (MEXT26293167, MEXT15K15272 & MEXT17H04154); a Takeda Science Foundation Research Encouragement Grant; a SENSHIN Medical Research Foundation Research Grant; a Novartis Foundation for Gerontological Research Award; an Annual Research Award Grant from the Japanese Society of Anti-aging Medicine; and a Takeda Medical Research Foundation Research Grant. Abbreviations Ab b amyloid CNS central nervous system AD Alzheimer's disease MCI mild cognitive impairment HbA1c hemoglobin A1c ACCORD-MIND The Memory in Diabetes sub-study of the Action to Control Cardiovascular Risk in Diabetes study ADNI Alzheimer's Disease Neuroimaging Initiative APP amyloid precursor protein GLUT1 glucose transporter 1 AMPK AMP-activated protein kinase mTOR mammalian target of rapamycin VCAM-1 vascular cell adhesion molecule-1 NO nitric oxide eNOS endothelial nitric oxide synthase F-FDG [18F]-fluorodeoxyglucose IRS1 insulin receptor substrate-1 IGF1 insulin-like growth factor-1 IGFBP5 IGF-binding protein 5 NFTs neurofibrillary tangles JNK c-Jun N-terminal kinase PP2A protein phosphatase 2A PDX1 pancreatic and duodenal homeobox 1 BACE1 beta secretase-1 GSK3b glycogen synthase kinase-3b
Please cite this article in press as: Shinohara, M., Sato, N., Bidirectional interactions between diabetes and Alzheimer's disease, Neurochemistry International (2017), http://dx.doi.org/10.1016/j.neuint.2017.04.020
M. Shinohara, N. Sato / Neurochemistry International xxx (2017) 1e7
IDE PS1 GLP1
insulin-degrading enzymes presenilin1 glucagon-like peptide-1
References Abner, E.L., Nelson, P.T., Kryscio, R.J., Schmitt, F.A., Fardo, D.W., Woltjer, R.L., Cairns, N.J., Yu, L., Dodge, H.H., Xiong, C., Masaki, K., Tyas, S.L., Bennett, D.A., Schneider, J.A., Arvanitakis, Z., 2016. Diabetes is associated with cerebrovascular but not Alzheimer's disease neuropathology. Alzheimers Dement. 12 (8), 882e889. Aguirre-Acevedo, D.C., Lopera, F., Henao, E., Tirado, V., Munoz, C., Giraldo, M., Bangdiwala, S.I., Reiman, E.M., Tariot, P.N., Langbaum, J.B., Quiroz, Y.T., Jaimes, F., 2016. Cognitive decline in a colombian kindred with autosomal dominant alzheimer disease: a retrospective cohort study. JAMA Neurol. 73, 431e438. Akhtar, M.W., Sanz-Blasco, S., Dolatabadi, N., Parker, J., Chon, K., Lee, M.S., Soussou, W., McKercher, S.R., Ambasudhan, R., Nakamura, T., Lipton, S.A., 2016. Elevated glucose and oligomeric beta-amyloid disrupt synapses via a common pathway of aberrant protein S-nitrosylation. Nat. Commun. 7, 10242. Arvanitakis, Z., Schneider, J.A., Wilson, R.S., Li, Y., Arnold, S.E., Wang, Z., Bennett, D.A., 2006. Diabetes is related to cerebral infarction but not to AD pathology in older persons. Neurology 67, 1960e1965. Bouchi, R., Babazono, T., Yoshida, N., Nyumura, I., Toya, K., Hayashi, T., Hanai, K., Tanaka, N., Ishii, A., Iwamoto, Y., 2010. Silent cerebral infarction is associated with the development and progression of nephropathy in patients with type 2 diabetes. Hypertens. Res. 33, 1000e1003. Bucht, G., Adolfsson, R., Lithner, F., Winblad, B., 1983. Changes in blood glucose and insulin secretion in patients with senile dementia of Alzheimer type. Acta Med. Scand. 213, 387e392. Burns, A., Jacoby, R., Levy, R., 1990. Psychiatric phenomena in Alzheimer's disease. IV: disorders of behaviour. Br. J. Psychiatry 157, 86e94. Clarke, J.R., Lyra, E.S.N.M., Figueiredo, C.P., Frozza, R.L., Ledo, J.H., Beckman, D., Katashima, C.K., Razolli, D., Carvalho, B.M., Frazao, R., Silveira, M.A., Ribeiro, F.C., Bomfim, T.R., Neves, F.S., Klein, W.L., Medeiros, R., LaFerla, F.M., Carvalheira, J.B., Saad, M.J., Munoz, D.P., Velloso, L.A., Ferreira, S.T., De Felice, F.G., 2015. Alzheimer-associated Abeta oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol. Med. 7, 190e210. Cleasby, M.E., Jamieson, P.M., Atherton, P.J., 2016. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J. Endocrinol. 229, R67eR81. Clodfelder-Miller, B.J., Zmijewska, A.A., Johnson, G.V., Jope, R.S., 2006. Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes 55, 3320e3325. Dowling, N.M., Johnson, S.C., Gleason, C.E., Jagust, W.J., 2015. The mediational effects of FDG hypometabolism on the association between cerebrospinal fluid biomarkers and neurocognitive function. Neuroimage 105, 357e368. El Khoury, N.B., Gratuze, M., Petry, F., Papon, M.A., Julien, C., Marcouiller, F., Morin, F., Nicholls, S.B., Calon, F., Hebert, S.S., Marette, A., Planel, E., 2016. Hypothermia mediates age-dependent increase of tau phosphorylation in db/db mice. Neurobiol. Dis. 88, 55e65. Erus, G., Battapady, H., Zhang, T., Lovato, J., Miller, M.E., Williamson, J.D., Launer, L.J., Bryan, R.N., Davatzikos, C., 2015. Spatial patterns of structural brain changes in type 2 diabetic patients and their longitudinal progression with intensive control of blood glucose. Diabetes Care 38, 97e104. Garcia-Casares, N., Berthier, M.L., Jorge, R.E., Gonzalez-Alegre, P., Gutierrez Cardo, A., Rioja Villodres, J., Acion, L., Ariza Corbo, M.J., Nabrozidis, A., Garcia-Arnes, J.A., Gonzalez-Santos, P., 2014. Structural and functional brain changes in middleaged type 2 diabetic patients: a cross-sectional study. J. Alzheimers Dis. 40, 375e386. Gratuze, M., Julien, J., Morin, F., Calon, F., Hebert, S.S., Marette, A., Planel, E., 2016. High-fat, high-sugar, and high-cholesterol consumption does not impact tau pathogenesis in a mouse model of Alzheimer's disease-like tau pathology. Neurobiol. Aging 47, 71e73. Guglielmotto, M., Aragno, M., Tamagno, E., Vercellinatto, I., Visentin, S., Medana, C., Catalano, M.G., Smith, M.A., Perry, G., Danni, O., Boccuzzi, G., Tabaton, M., 2012. AGEs/RAGE complex upregulates BACE1 via NF-kappaB pathway activation. Neurobiol. Aging 33 (196), e113e127. Guo, C., Zhang, S., Li, J.Y., Ding, C., Yang, Z.H., Chai, R., Wang, X., Wang, Z.Y., 2016. Chronic hyperglycemia induced via the heterozygous knockout of Pdx1 worsens neuropathological lesion in an Alzheimer mouse model. Sci. Rep. 6, 29396. Heneka, M.T., Fink, A., Doblhammer, G., 2015. Effect of pioglitazone medication on the incidence of dementia. Ann. Neurol. 78, 284e294. Hirabayashi, N., Hata, J., Ohara, T., Mukai, N., Nagata, M., Shibata, M., Gotoh, S., Furuta, Y., Yamashita, F., Yoshihara, K., Kitazono, T., Sudo, N., Kiyohara, Y., Ninomiya, T., 2016. Association between diabetes and hippocampal atrophy in elderly Japanese: the hisayama study. Diabetes Care 39 (9), 1543e1549. Ho, L., Qin, W., Pompl, P.N., Xiang, Z., Wang, J., Zhao, Z., Peng, Y., Cambareri, G., Rocher, A., Mobbs, C.V., Hof, P.R., Pasinetti, G.M., 2004. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. Faseb J. 18, 902e904. Holmes, C.S., Hayford, J.T., Gonzalez, J.L., Weydert, J.A., 1983. A survey of cognitive functioning at difference glucose levels in diabetic persons. Diabetes Care 6,
5
180e185. Ishibashi, K., Onishi, A., Fujiwara, Y., Ishiwata, K., Ishii, K., 2016. Plasma glucose levels affect cerebral 18F-FDG distribution in cognitively normal subjects with diabetes. Clin. Nucl. Med. 41, e274e280. Janson, J., Laedtke, T., Parisi, J.E., O'Brien, P., Petersen, R.C., Butler, P.C., 2004. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53, 474e481. Jaworski, T., Dewachter, I., Lechat, B., Gees, M., Kremer, A., Demedts, D., Borghgraef, P., Devijver, H., Kugler, S., Patel, S., Woodgett, J.R., Van Leuven, F., 2011. GSK-3alpha/beta kinases and amyloid production in vivo. Nature 480. E4e5;discussion E6. Jolivalt, C.G., Lee, C.A., Beiswenger, K.K., Smith, J.L., Orlov, M., Torrance, M.A., Masliah, E., 2008. Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin. J. Neurosci. Res. 86, 3265e3274. Kalaria, R.N., 2009. Neurodegenerative disease: diabetes, microvascular pathology and Alzheimer disease. Nat. Rev. Neurol. 5, 305e306. Ke, Y.D., Delerue, F., Gladbach, A., Gotz, J., Ittner, L.M., 2009. Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer's disease. PLoS One 4, e7917. Kerti, L., Witte, A.V., Winkler, A., Grittner, U., Rujescu, D., Floel, A., 2013. Higher glucose levels associated with lower memory and reduced hippocampal microstructure. Neurology 81, 1746e1752. Kim, B., Backus, C., Oh, S., Hayes, J.M., Feldman, E.L., 2009. Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology 150, 5294e5301. Launer, L.J., Miller, M.E., Williamson, J.D., Lazar, R.M., Gerstein, H.C., Murray, A.M., Sullivan, M., Horowitz, K.R., Ding, J., Marcovina, S., Lovato, L.C., Lovato, J., Margolis, K.L., O'Connor, P., Lipkin, E.W., Hirsch, J., Coker, L., Maldjian, J., Sunshine, J.L., Truwit, C., Davatzikos, C., Bryan, R.N., 2011. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy. Lancet Neurol. 10, 969e977. Li, W., Risacher, S.L., Huang, E., Saykin, A.J., Initiative FtAsDN, 2016. Type 2 diabetes mellitus is associated with brain atrophy and hypometabolism in the ADNI cohort. Neurology 87 (6), 595e600. Liu, Y., Liu, F., Grundke-Iqbal, I., Iqbal, K., Gong, C.X., 2009. Brain glucose transporters, O-GlcNAcylation and phosphorylation of tau in diabetes and Alzheimer's disease. J. Neurochem. 111, 242e249. Macauley, S.L., Stanley, M., Caesar, E.E., Yamada, S.A., Raichle, M.E., Perez, R., Mahan, T.E., Sutphen, C.L., Holtzman, D.M., 2015. Hyperglycemia modulates extracellular amyloid-b concentrations and neuronal activity in vivo. J. Clin. Invest. 125 (6), 2463e2467. Mairet-Coello, G., Courchet, J., Pieraut, S., Courchet, V., Maximov, A., Polleux, F., 2013. The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Abeta oligomers through Tau phosphorylation. Neuron 78, 94e108. Matsuzaki, T., Sasaki, K., Tanizaki, Y., Hata, J., Fujimi, K., Matsui, Y., Sekita, A., Suzuki, S.O., Kanba, S., Kiyohara, Y., Iwaki, T., 2010. Insulin resistance is associated with the pathology of Alzheimer disease: the Hisayama study. Neurology 75, 764e770. McCoy, R.G., Lipska, K.J., Yao, X., Ross, J.S., Montori, V.M., Shah, N.D., 2016. Intensive treatment and severe hypoglycemia among adults with type 2 diabetes. JAMA Intern Med. 176, 969e978. Meneilly, G.S., Hill, A., 1993. Alterations in glucose metabolism in patients with Alzheimer's disease. J. Am. Geriatr. Soc. 41, 710e714. szlo , F., Miller, L., Miklossy, J., Qing, H., Radenovic, A., Kis, A., Vileno, B., La Martins, R.N., Waeber, G., Mooser, V., Bosman, F., Khalili, K., Darbinian, N., McGeer, P.L., 2008. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes. Neurobiol. Aging 31 (9), 1503e1515. Moore, E.M., Mander, A.G., Ames, D., Kotowicz, M.A., Carne, R.P., Brodaty, H., Woodward, M., Boundy, K., Ellis, K.A., Bush, A.I., Faux, N.G., Martins, R., Szoeke, C., Rowe, C., Watters, D.A., 2013. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 36, 2981e2987. Morales-Corraliza, J., Wong, H., Mazzella, M.J., Che, S., Lee, S.H., Petkova, E., Wagner, J.D., Hemby, S.E., Ginsberg, S.D., Mathews, P.M., 2016. Brain-wide insulin resistance, tau phosphorylation changes, and hippocampal neprilysin and amyloid-beta alterations in a monkey model of type 1 diabetes. J. Neurosci. 36, 4248e4258. Moran, C., Phan, T.G., Chen, J., Blizzard, L., Beare, R., Venn, A., Munch, G., Wood, A.G., Forbes, J., Greenaway, T.M., Pearson, S., Srikanth, V., 2013. Brain atrophy in type 2 diabetes: regional distribution and influence on cognition. Diabetes Care 36, 4036e4042. Morris, J.K., Vidoni, E.D., Honea, R.A., Burns, J.M., 2014. Impaired glycemia increases disease progression in mild cognitive impairment. Neurobiol. Aging 35, 585e589. Ng, T.P., Feng, L., Yap, K.B., Lee, T.S., Tan, C.H., Winblad, B., 2014. Long-term metformin usage and cognitive function among older adults with diabetes. J. Alzheimers Dis. 41, 61e68. €lahti, E., Ahtiluoto, S., Antikainen, R., Ngandu, T., Lehtisalo, J., Solomon, A., Leva €ckman, L., Ha €nninen, T., Jula, A., Laatikainen, T., Lindstro €m, J., Mangialasche, F., Ba Paajanen, T., Pajala, S., Peltonen, M., Rauramaa, R., Stigsdotter-Neely, A., Strandberg, T., Tuomilehto, J., Soininen, H., Kivipelto, M., 2015. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385 (9984), 2255e2263.
Please cite this article in press as: Shinohara, M., Sato, N., Bidirectional interactions between diabetes and Alzheimer's disease, Neurochemistry International (2017), http://dx.doi.org/10.1016/j.neuint.2017.04.020
6
M. Shinohara, N. Sato / Neurochemistry International xxx (2017) 1e7
Oosterveld, S.M., Kessels, R.P., Hamel, R., Ramakers, I.H., Aalten, P., Verhey, F.R., Sistermans, N., Smits, L.L., Pijnenburg, Y.A., van der Flier, W.M., Olde Rikkert, M.G., Melis, R.J., 2014. The influence of co-morbidity and frailty on the clinical manifestation of patients with Alzheimer's disease. J. Alzheimers Dis. 42, 501e509. Perluigi, M., Di Domenico, F., Butterfield, D.A., 2015. mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol. Dis. 84, 39e49. Phiel, C.J., Wilson, C.A., Lee, V.M., Klein, P.S., 2003. GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature 423, 435e439. Piga, R., Naito, Y., Kokura, S., Handa, O., Yoshikawa, T., 2007. Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis 193, 328e334. Pilotto, A., Noale, M., Maggi, S., Addante, F., Tiengo, A., Perin, P.C., Rengo, G., Crepaldi, G., 2014. Hypoglycemia is independently associated with multidimensional impairment in elderly diabetic patients. Biomed. Res. Int. 2014, 906103. Pruzin, J.J., Schneider, J.A., Capuano, A.W., Leurgans, S.E., Barnes, L.L., Ahima, R.S., Arnold, S.E., Bennett, D.A., Arvanitakis, Z., 2016. Diabetes, hemoglobin A1C, and regional alzheimer disease and infarct pathology. Alzheimer Dis. Assoc. Disord. 31 (1), 41e47. Qu, Z., Jiao, Z., Sun, X., Zhao, Y., Ren, J., Xu, G., 2011. Effects of streptozotocin-induced diabetes on tau phosphorylation in the rat brain. Brain Res. 1383, 300e306. Rauskolb, S., Dombert, B., Sendtner, M., 2016. Insulin-like growth factor 1 in diabetic neuropathy and amyotrophic lateral sclerosis. Neurobiol. Dis. 97 (Part B), 103e113. Redondo, M.T., Beltran-Brotons, J.L., Reales, J.M., Ballesteros, S., 2016. Executive functions in patients with Alzheimer's disease, type 2 diabetes mellitus patients and cognitively healthy older adults. Exp. Gerontol. 83, 47e55. Refolo, L.M., Malester, B., LaFrancois, J., Bryant-Thomas, T., Wang, R., Tint, G.S., Sambamurti, K., Duff, K., Pappolla, M.A., 2000. Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model. Neurobiol. Dis. 7, 321e331. Roberts, R.O., Kantarci, K., Geda, Y.E., Knopman, D.S., Przybelski, S.A., Weigand, S.D., Petersen, R.C., Jack Jr., C.R., 2011. Untreated type 2 diabetes and its complications are associated with subcortical infarctions. Diabetes Care 34, 184e186. Roberts, R.O., Knopman, D.S., Cha, R.H., Mielke, M.M., Pankratz, V.S., Boeve, B.F., Kantarci, K., Geda, Y.E., Jack Jr., C.R., Petersen, R.C., Lowe, V.J., 2014a. Diabetes and elevated hemoglobin a1c levels are associated with brain hypometabolism but not amyloid accumulation. J. Nucl. Med. 55, 759e764. Roberts, R.O., Knopman, D.S., Przybelski, S.A., Mielke, M.M., Kantarci, K., Preboske, G.M., Senjem, M.L., Pankratz, V.S., Geda, Y.E., Boeve, B.F., Ivnik, R.J., Rocca, W.A., Petersen, R.C., Jack Jr., C.R., 2014b. Association of type 2 diabetes with brain atrophy and cognitive impairment. Neurology 82, 1132e1141. Roher, A.E., Esh, C.L., Kokjohn, T.A., Castano, E.M., Van Vickle, G.D., Kalback, W.M., Patton, R.L., Luehrs, D.C., Daugs, I.D., Kuo, Y.M., Emmerling, M.R., Soares, H., Quinn, J.F., Kaye, J., Connor, D.J., Silverberg, N.B., Adler, C.H., Seward, J.D., Beach, T.G., Sabbagh, M.N., 2009. Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer's disease. Alzheimers Dement. 5, 18e29. Ruiz, H.H., Chi, T., Shin A.C., Lindtner, C., Hsieh, W., Ehrlich, M., Gandy, S., Buettner, C., 2016. Increased susceptibility to metabolic dysregulation in a mouse model of Alzheimer's disease is associated with impaired hypothalamic insulin signaling and elevated BCAA levels. Alzheimers Dement. 12 (8), 851e861. Sajan, M., Hansen, B., Ivey 3rd, R., Sajan, J., Ari, C., Song, S., Braun, U., Leitges, M., Farese-Higgs, M., Farese, R.V., 2016. Brain insulin signaling is increased in insulin-resistant states and decreases in FOXOs and PGC-1alpha and increases in Abeta1-40/42 and phospho-tau may abet alzheimer development. Diabetes 65, 1892e1903. Sakurai, T., Kawashima, S., Satake, S., Miura, H., Tokuda, H., Toba, K., 2014. Differential subtypes of diabetic older adults diagnosed with Alzheimer's disease. Geriatr. Gerontol. Int. 14 (Suppl. 2), 62e70. Sato, N., Morishita, R., 2013a. Plasma abeta: a possible missing link between Alzheimer disease and diabetes. Diabetes 62, 1005e1006. Sato, N., Morishita, R., 2013b. Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer disease: short- and long-term modification by non-genetic risk factors. Front. Aging Neurosci. 5, 64. Sato, N., Morishita, R., 2014. Brain alterations and clinical symptoms of dementia in diabetes: abeta/tau-dependent and independent mechanisms. Front. Endocrinol. (Lausanne) 5, 143. Sato, N., Morishita, R., 2015. The roles of lipid and glucose metabolism in modulation of beta-amyloid, tau, and neurodegeneration in the pathogenesis of Alzheimer disease. Front. Aging Neurosci. 7, 199. Sato, N., Takeda, S., Uchio-Yamada, K., Ueda, H., Fujisawa, T., Rakugi, H., Morishita, R., 2011. Role of insulin signaling in the interaction between Alzheimer disease and diabetes mellitus: a missing link to therapeutic potential. Curr. Aging Sci. 4, 118e127. Schmidt, A.M., Hori, O., Chen, J.X., Li, J.F., Crandall, J., Zhang, J., Cao, R., Yan, S.D., Brett, J., Stern, D., 1995. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J. Clin. Invest. 96, 1395e1403.
Sereno, L., Coma, M., Rodriguez, M., Sanchez-Ferrer, P., Sanchez, M.B., Gich, I., Agullo, J.M., Perez, M., Avila, J., Guardia-Laguarta, C., Clarimon, J., Lleo, A., Gomez-Isla, T., 2009. A novel GSK-3beta inhibitor reduces Alzheimer's pathology and rescues neuronal loss in vivo. Neurobiol. Dis. 35, 359e367. Shinagawa, S., Honda, K., Kashibayashi, T., Shigenobu, K., Nakayama, K., Ikeda, M., 2016. Classifying eating-related problems among institutionalized people with dementia. Psychiatry Clin. Neurosci. 70, 175e181. Sofola, O., Kerr, F., Rogers, I., Killick, R., Augustin, H., Gandy, C., Allen, M.J., Hardy, J., Lovestone, S., Partridge, L., 2010. Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer's disease. PLoS Genet. 6, e1001087. Son, S.M., Song, H., Byun, J., Park, K.S., Jang, H.C., Park, Y.J., Mook-Jung, I., 2012. Accumulation of autophagosomes contributes to enhanced amyloidogenic APP processing under insulin-resistant conditions. Autophagy 8. Sowers, J.R., 2013. Diabetes mellitus and vascular disease. Hypertension 61, 943e947. Sowers, J.R., Epstein, M., Frohlich, E.D., 2001. Diabetes, hypertension, and cardiovascular disease: an update. Hypertension 37, 1053e1059. Sparks, D.L., Scheff, S.W., Hunsaker 3rd, J.C., Liu, H., Landers, T., Gross, D.R., 1994. Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp. Neurol. 126, 88e94. Starks, E.J., O'Grady, J.P., Hoscheidt, S.M., Racine, A.M., Carlsson, C.M., Zetterberg, H., Blennow, K., Okonkwo, O.C., Puglielli, L., Asthana, S., Dowling, N.M., Gleason, C.E., Anderson, R.M., Davenport-Sis, N.J., DeRungs, L.M., Sager, M.A., Johnson, S.C., Bendlin, B.B., 2015. Insulin resistance is associated with higher cerebrospinal fluid tau levels in asymptomatic APOE ε4 carriers. J. Alzheimers Dis. JAD 46 (2), 525e533. Strachan, M.W., Price, J.F., 2014. Diabetes. Cognitive decline and T2DMea disconnect in the evidence? Nat. Rev. Endocrinol. 10, 258e260. Takeda, S., Sato, N., Uchio-Yamada, K., Sawada, K., Kunieda, T., Takeuchi, D., Kurinami, H., Shinohara, M., Rakugi, H., Morishita, R., 2009. Elevation of plasma beta-amyloid level by glucose loading in Alzheimer mouse models. Biochem. Biophys. Res. Commun. 385, 193e197. Takeda, S., Sato, N., Uchio-Yamada, K., Sawada, K., Kunieda, T., Takeuchi, D., Kurinami, H., Shinohara, M., Rakugi, H., Morishita, R., 2010. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. Proc. Natl. Acad. Sci. U. S. A. 107, 7036e7041. Takeda, S., Sato, N., Uchio-Yamada, K., Yu, H., Moriguchi, A., Rakugi, H., Morishita, R., 2012. Oral glucose loading modulates plasma beta-amyloid level in Alzheimer's disease patients: potential diagnostic method for Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 34, 25e30. Talbot, K., Wang, H.Y., Kazi, H., Han, L.Y., Bakshi, K.P., Stucky, A., Fuino, R.L., Kawaguchi, K.R., Samoyedny, A.J., Wilson, R.S., Arvanitakis, Z., Schneider, J.A., Wolf, B.A., Bennett, D.A., Trojanowski, J.Q., Arnold, S.E., 2012. Demonstrated brain insulin resistance in Alzheimer's disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest. 122, 1316e1338. Tanizaki, Y., Kiyohara, Y., Kato, I., Iwamoto, H., Nakayama, K., Shinohara, N., Arima, H., Tanaka, K., Ibayashi, S., Fujishima, M., 2000. Incidence and risk factors for subtypes of cerebral infarction in a general population: the Hisayama study. Stroke 31, 2616e2622. Thiebaud, N., Johnson, M.C., Butler, J.L., Bell, G.A., Ferguson, K.L., Fadool, A.R., Fadool, J.C., Gale, A.M., Gale, D.S., Fadool, D.A., 2014. Hyperlipidemic diet causes loss of olfactory sensory neurons, reduces olfactory discrimination, and disrupts odor-reversal learning. J. Neurosci. 34, 6970e6984. Tomita, N., Furukawa, K., Okamura, N., Tashiro, M., Une, K., Furumoto, S., Iwata, R., Yanai, K., Kudo, Y., Arai, H., 2013. Brain accumulation of amyloid beta protein visualized by positron emission tomography and BF-227 in Alzheimer's disease patients with or without diabetes mellitus. Geriatr. Gerontol. Int. 13, 215e221. van de Nes, J.A., Kamphorst, W., Ravid, R., Swaab, D.F., 1998. Comparison of betaprotein/A4 deposits and Alz-50-stained cytoskeletal changes in the hypothalamus and adjoining areas of Alzheimer's disease patients: amorphic plaques and cytoskeletal changes occur independently. Acta Neuropathol. 96, 129e138. Vekrellis, K., Ye, Z., Qiu, W.Q., Walsh, D., Hartley, D., Chesneau, V., Rosner, M.R., Selkoe, D.J., 2000. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J. Neurosci. 20, 1657e1665. Vicent, D., Ilany, J., Kondo, T., Naruse, K., Fisher, S.J., Kisanuki, Y.Y., Bursell, S., Yanagisawa, M., King, G.L., Kahn, C.R., 2003. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J. Clin. Invest. 111, 1373e1380. Weinstein, G., Maillard, P., Himali, J.J., Beiser, A.S., Au, R., Wolf, P.A., Seshadri, S., DeCarli, C., 2015. Glucose indices are associated with cognitive and structural brain measures in young adults. Neurology 84 (23), 2329e2337. West, R.K., Ravona-Springer, R., Schmeidler, J., Leroith, D., Koifman, K., GuerreroBerroa, E., Preiss, R., Hoffman, H., Silverman, J.M., Heymann, A., SchnaiderBeeri, M., 2014. The association of duration of type 2 diabetes with cognitive performance is modulated by long-term glycemic control. Am. J. Geriatr. Psychiatry 22 (10), 1055e1059. Whitmer, R.A., Karter, A.J., Yaffe, K., Quesenberry Jr., C.P., Selby, J.V., 2009. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. Jama 301, 1565e1572. Winkler, E.A., Nishida, Y., Sagare, A.P., Rege, S.V., Bell, R.D., Perlmutter, D., Sengillo, J.D., Hillman, S., Kong, P., Nelson, A.R., Sullivan, J.S., Zhao, Z., Meiselman, H.J., Wenby, R.B., Soto, J., Abel, E.D., Makshanoff, J., Zuniga, E., De
Please cite this article in press as: Shinohara, M., Sato, N., Bidirectional interactions between diabetes and Alzheimer's disease, Neurochemistry International (2017), http://dx.doi.org/10.1016/j.neuint.2017.04.020
M. Shinohara, N. Sato / Neurochemistry International xxx (2017) 1e7 Vivo, D.C., Zlokovic, B.V., 2015. GLUT1 reductions exacerbate Alzheimer's disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18, 521e530. Yaffe, K., Falvey, C.M., Hamilton, N., Harris, T.B., Simonsick, E.M., Strotmeyer, E.S., Shorr, R.I., Metti, A., Schwartz, A.V., 2013. Association between hypoglycemia
7
and dementia in a biracial cohort of older adults with diabetes mellitus. JAMA Intern Med. 173, 1300e1306. Zhang, Y., Zhou, B., Deng, B., Zhang, F., Wu, J., Wang, Y., Le, Y., Zhai, Q., 2013. Amyloid-beta induces hepatic insulin resistance in vivo via JAK2. Diabetes 62, 1159e1166.
Please cite this article in press as: Shinohara, M., Sato, N., Bidirectional interactions between diabetes and Alzheimer's disease, Neurochemistry International (2017), http://dx.doi.org/10.1016/j.neuint.2017.04.020